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ABSTRACT 
In safety literature, simulation-based multivariate framework is the most commonly employed 

approach for analyzing multiple crash frequency dependent variables. The current research effort 

contributes to literature on crash frequency analysis by suggesting an alternative and 

mathematically simpler approach for analyzing multiple crash frequency variables for the same 

study unit. The proposed recasts a multivariate distributional problem as a repeated measure 

univariate problem. Specifically, we employed a simpler panel random parameter based univariate 

model framework to analyze zonal level crash counts for different crash types. The empirical 

analysis is based on the traffic analysis zone (TAZ) level crash count data for both motorized and 

non-motorized crashes from Central Florida for the year 2016. The performance of the proposed 

framework is compared with the performance of the random parameter multivariate negative 

binomial model (RPMNB) using a host of metrics for estimation sample and hold-out sample. The 

resulting goodness of fit and predictive measures clearly highlight the comparable performance 

offered by the proposed framework relative to the commonly used RPMNB model with 

substantially fewer parameters.  The comparison exercise is augmented by computing aggregate 

level elasticity effects for both PMNB and RPMNB models. The results clearly highlight the 

comparable performance offered by the proposed PMNB model relative to the traditional RPMNB 

model. In summary, the proposed framework allows for a parsimonious specification without 

compromising the model explanatory power and provides similar performance as the most 

traditional multivariate NB model for analyzing different crash dimensions. 

 

Keywords: Unobserved factors; panel univariate model; Multivariate negative binomial 

framework; Crash type.  
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1 INTRODUCTION 

 

1.1   Motivation 

In the United States, road traffic crashes have resulted in nearly 40,000 fatalities in 2016 (NHTSA, 

2017). In addition to the alarmingly high number of fatalities, there are multiple worrying trends 

within these numbers. The increase in the number of fatalities year over year for 2015 and 2016 

represent the two largest year over year increases over the last three decades. Further, in 2016, the 

percentage of non-motorized road user fatalities as a proportion of total fatalities have increased.  

These trends clearly highlight the challenges associated with addressing the enormous 

consequences of road traffic crashes. Thus, it is not surprising that safety researchers are working 

toward devising appropriate remedial solutions for reducing the number and consequence of traffic 

crashes. A major tool employed in the literature to develop counter measures is the application of 

econometric models for crash frequency and crash severity. Crash frequency models explore the 

relationship between various attributes and crash occurrences (Yan et al., 2009; Geedipally et al., 

2010; Jonathan et al., 2016) while crash severity models, conditional on crash occurrence, examine 

attributes affecting crash consequences (Abdelwahab and Abdel-Aty, 2002; Milton et al., 2008; 

Wang and Abdel-Aty, 2008; Eluru et al., 2010). The current research effort contributes to literature 

on crash frequency analysis by suggesting an alternative and mathematically simpler approach for 

analyzing multiple crash frequency variables for the same study unit.  

Several research efforts have developed crash frequency models in safety literature. The 

various crash frequency dimensions explored in existing literature include total crashes, crashes 

by severity, crashes by crash type and crashes by vehicle type for a spatial unit over a given time 

period (Ye et al., 2009, 2013; Lee et al., 2015; Wang et al., 2017; Yasmin et al., 2018). Earlier 

research efforts typically adopted a univariate framework to study a single crash frequency 

variable (such as total crashes) or multiple crash frequency variables (such as crash frequency by 

injury severity). While univariate approaches are adequate to accommodate for the influence of 

observed factors, they are not appropriate to account for the common unobserved factors affecting 

the multiple dependent variables for the same observational unit (see (Mannering et al., 2016) for 

a detailed review). Toward addressing this limitation, several research efforts have developed 

frameworks that accommodate for the influence of these common unobserved factors 

(Anastasopoulos, 2016; Mannering et al., 2016; Nashad et al., 2016). These approaches typically 

estimate the univariate models for crash frequency and bundle these univariate models into a 

multivariate version. The univariate models could take the form of a negative binomial or a log-

normal formulation (or other variants). The bundling process can be achieved through simulation-

based approaches within the classical regime using maximum simulated likelihood approaches or 

in the Bayesian regime using Markov Chain Monte Carlo (MCMC) methods (Anastasopoulos et 

al., 2012; Aguero-Valverde, 2013; Wang and Kockelman, 2013; Barua et al., 2014; Dong et al., 

2014). In safety literature, a number of model structures have been adopted within the simulation-

based multivariate framework including multivariate Poisson regression model, multivariate 

Poisson lognormal model, multinomial-generalized Poisson model, multivariate Poisson 

lognormal spatial and/or temporal model, flexible Bayesian semiparametric approach and 

multivariate random-parameters zero-inflated negative binomial model. 

For some specific cases, analytically closed form bundling approaches have also been 

proposed. These approaches rely on developing multivariate distributions (or approximations of 

multivariate distributions) with analytical closed form probability expressions that obviate the 

need for simulation. These model frameworks are estimated employing maximum likelihood or 
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composite maximum likelihood approaches (Wang et al., 2015; Nashad et al., 2016; Yasmin et 

al., 2018). In safety literature the analytical frameworks adopted include copula-based bivariate 

negative binomial (NB) model, copula-based multivariate NB model, copula-based ordered logit 

model and composite maximum likelihood based crash frequency and severity models. 

 

1.2   Focus of the Current Study  

Our proposed research attempts to contribute to simulation-based multivariate approaches by 

altering how the multiple dependent variables are analyzed. Prior to presenting our alternative 

approach, challenges with the current simulation-based multivariate approaches in estimating 

observed and unobserved variable effects are discussed. In multivariate approaches, a separate 

crash propensity equation is adopted for each crash type. Thus, if there are D dependent variables 

and K independent variables, the order of observed parameters estimated in the model structure is 

of the order of D*K. With increasing number of dimensions (D), the number of parameters to be 

estimated increase rapidly. Thus, in models with D >3, the number of parameters to be estimated 

are prohibitively high. For example, consider a case of crash frequency for four crash types at an 

intersection (rear-end, side-swipe, angle and non-motorized). In the univariate models, for each of 

the crash types, Annual Average Daily Traffic (AADT) is likely to have a statistically significant 

impact. So, the typical multivariate model estimates 4 parameters for AADT. However, it is 

possible that the impact of AADT on side-swipe and angle crashes is not statistically different. 

Testing this is not straightforward in the multivariate model structure. The analyst will need to 

modify the model estimation code to restrict the parameters across the side-swipe and angle 

univariate models to be the same. Subsequently, the restricted model version data fit must be 

compared with the data fit of the unrestricted version using log-likelihood ratio (LR) test. Based 

on the result, the analyst can conclude if AADT does offer different impacts for side-swipe and 

angle crash profiles. Given the additional burden of these steps, the models employed in safety 

literature typically ignore if the variable impacts are really different across crash type propensities. 

The result is an ill-specified model structure with too many parameters. To be sure, the model 

estimates thus obtained are not incorrect. However, the estimation process could become 

inefficient particularly when sample sizes for crash frequency are small (<1000). The sample sizes 

for micro-level analysis can typically vary from 200-500 and the number of total parameters 

estimated has an impact of model estimation efficiency.  

In simulation-based multivariate approaches, the influence of unobserved factors is 

typically accommodated as random effects and correlation parameters across dimensions. The 

random effects accommodate for the influence of unobserved factors affecting crash propensity 

within the dimension. The correlation parameters account for the influence of unobserved factors 

affecting multiple dependent variables. These effects require simulation for parameter estimation. 

The complexity of the model estimation is dependent on the number of unobserved parameters 

estimated. With higher dimensions, the model estimation infrastructure can get computationally 

demanding (while not unmanageable with latest computing power).   

In our research, we propose to address these challenges by recasting the multivariate crash 

frequency modeling problem as a pooled univariate crash frequency (with unobserved 

heterogeneity accommodated) analysis problem. To elaborate, instead of considering the crash 

frequency by crash type as a multivariate distribution, we represent it as repeated measures of 

crash frequency while recognizing that each repetition represents a different crash type. Thus, in 

this process we cast a multivariate distribution as a univariate distribution with repeated measures. 

The recasting will offer multiple advantages. First, the recasting allows us to employ a simple 
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panel random parameter based univariate model code for model estimation. The panel model is 

substantially easier to program and estimate compared to the multivariate version. Second, instead 

of estimating crash propensity equations by crash type, a single crash propensity equation that 

completely generalizes the separate crash propensity equations can be estimated. The 

consideration of a single crash propensity equation allows the analyst to estimate a base effect for 

each independent variable and then estimate deviations for different crash types. If the deviation 

variable for a crash type is statistically insignificant based on the t-statistic the parameter does not 

exhibit differential sensitivity for the base crash type and crash type for which the deviation was 

computed. Thus, through this recasting, we are able to replace the parameter by parameter LR test 

based analysis (discussed earlier) to a simple t-statistic evaluation. Through this approach, the 

analyst can estimate a parsimonious model without substantial effort and with less computational 

burden. The reader would note that the multivariate model and the recasted panel univariate model 

will provide identical data fit with the same number of parameters but with different representation 

of the parameter effects. Third, the estimation process can use the same infrastructure to estimate 

random effects and correlation parameters in the proposed pooled model. The only additional 

burden is associated with creating appropriate variables during data preparation to represent 

correlation structures. The reader would note that the proposed approach provides exactly the same 

mathematical formulation by leveraging the panel model structure of the pooled data (with as 

many records per observation unit as crash types). Such a recasting is only possible in our context 

because all the univariate dependent variables are assumed to follow the same mathematical 

structure. If the simulation-based multivariate model has multiple model structures, then our 

approach can be customized but will become cumbersome. However, the adoption of different 

mathematical structures is not common for crash frequency analysis multivariate model contexts.  

In summary, the proposed research presents an alternative formulation to analyze multiple 

crash frequency variables by recasting a multivariate distributional problem as a repeated measure 

univariate problem. Methodologically, the study presents a first of its kind approach in safety 

literature to simplify current modeling infrastructure for multivariate analysis. The recasting 

allows us to estimate parsimonious model systems thus improving parameter estimation 

efficiency. Further, by simplifying the specification process, it is likely to reduce computational 

time for estimating parameters associated with unobserved factors. Empirically, the research 

contributes to our understanding of analyzing zonal level crashes for both motorized and non-

motorized road user group while considering different crash types within the motorized category 

including rear-end, angular, sideswipe, all single vehicle and other multiple vehicle crashes. We 

employ a panel mixed negative binomial model (PMNB) for examining crash count by different 

crash types as well as incorporating the presence of unobserved heterogeneity across crash types. 

The analysis is conducted using the zonal level crash records from Central Florida for the year 

2016 considering a comprehensive set of exogenous variables. Further, the study evaluates the 

performance of the proposed approach by undertaking a comparison exercise with the traditional 

random parameter multivariate negative binomial model. 

The rest of the paper is organized as follows: The next section presents the methodological 

framework adopted in the analysis while the third section provides a detailed description of the 

dataset. Model findings are discussed in the fourth section followed by the concluding thoughts in 

the last section. 

 

2 METHODOLOGY 

In this section, we briefly provide the details of the model frameworks employed in our study. 
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2.1   Random Parameter Multivariate NB Model 

The focus of random parameter multivariate NB (referred as multivariate NB model in the 

following sections for simplicity) model is to examine number of crashes across different crash 

types jointly. In our current study context, we consider six different crash types (Five within 

motorized category: rear-end, angular, sideswipe, all single vehicle and other multiple vehicle 

crashes; and non-motorized crashes). Thus, in estimating multivariate NB model, we examine six 

different NB models for six different crash types simultaneously. Let us assume that 𝑖 (𝑖 =
1,2,3, … , 𝑁, 𝑁 = 3,815) be the index for TAZ. Let 𝑗 be the index representing different crash type, 

where (𝑗 = 1,2, … , 𝐽, 𝐽 = 6 ), the index 𝑗 may take the values of rear-end (𝑗 =1), angular (𝑗 =2), 

sideswipe (𝑗 =3), all single vehicle (𝑗 =4) crashes, other multiple vehicle (𝑗 =5) , and non-

motorized (𝑗 =6) crashes. Using these notations, the equation system for modeling crash count 

across different crash type 𝑗 in the usual negative binomial (NB) formulation can be written as: 

𝑃(𝑐𝑖𝑗|𝜇𝑖𝑗 , 𝛼𝑗) =  

Γ (𝑐𝑖𝑗 +
1
𝛼𝑗

)

Γ(𝑐𝑖𝑗 + 1)Γ (
1
𝛼𝑗

)
(

1

1 + 𝛼𝑗𝜇𝑖𝑗
)

1
𝛼𝑗

(1 −
1

1 + 𝛼𝜇𝑖𝑗
)

𝑐𝑖𝑗

 (1)  

where, 𝑐𝑖𝑗 be the index for crash counts specific to crash type 𝑗 occurring over a period of time in 

TAZ 𝑖. 𝑃(𝑐𝑖𝑗) is the probability that TAZ 𝑖 has 𝑐𝑖𝑗 number of crashes for crash type 𝑗. Γ(∙) is the 

gamma function, 𝛼𝑗 is NB over dispersion parameter and 𝜇𝑖𝑗 is the expected number of crashes 

occurring in TAZ 𝑖 over a given time period for crash type 𝑗. Further, we can express 𝜇𝑖𝑗 as a 

function of explanatory variables by using a log-link function as follows: 

𝜇𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒛𝑖𝑗) = 𝑒𝑥𝑝((𝜹𝑗  + 𝜻𝑖𝑗)𝒛𝑖𝑗 + 𝜀𝑖𝑗 + 𝜂𝑖𝑗) (2)  

where, 𝒛𝑖𝑗 is a vector of explanatory variables associated with TAZ 𝑖 and crash type 𝑗. 𝜹𝑗 is a 

vector of coefficients to be estimated. 𝜻𝑖𝑗 is a vector of unobserved factors on crash count 

propensity associated with crash type 𝑗 for TAZ 𝑖 and its associated zonal characteristics, assumed 

to be a realization from standard normal distribution: 𝜻𝑖𝑗~𝑁(0, 𝝅𝑗
2). 𝜀𝑖𝑗 is a gamma distributed 

error term with mean 1 and variance 𝛼𝑗. 𝜂𝑖𝑗 captures unobserved factors that simultaneously 

impact number of crashes across different crash types for TAZ 𝑖. Here it is important to note that 

the unobserved heterogeneity between total number of crashes across different crash types can 

vary across TAZs. Therefore, in the current study, the correlation parameter 𝜂𝑖𝑗 is parameterized 

as a function of observed attributes as follows: 

𝜂𝑖𝑗 = 𝜸𝒋𝒔𝑖𝑗  (3)  

where, 𝒔𝑖𝑗 is a vector of exogenous variables, 𝜸𝒋 is a vector of unknown parameters to be estimated 

(including a constant). In the current analysis, the multivariate NB model only allows for a positive 

correlation for total number of crashes across different crash types.  

In examining the model structure of crash count across different crash types, it is necessary 

to specify the structure for the unobserved vectors 𝜻 and 𝜸 represented by Ω. In this paper, it is 
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assumed that these elements are drawn from independent normal distributions: 

Ω~𝑁(0, (𝝅𝑗
𝟐, 𝝈𝑗

2)). Thus, conditional on Ω, the likelihood function for the joint probability can 

be expressed as: 

𝐿𝑖 = ∫ ∏ (𝑃(𝑐𝑖𝑗))

𝐽

𝑗=1𝛀

𝑓(𝛀)𝑑𝛀 (4)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (5)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 5. The parameters to be estimated in the multivariate NB model are: 𝜹𝑗, 𝛼𝑗, 

𝝅𝑗, and 𝝈𝒋. 

 

2.2   Panel Mixed NB Model 

The focus of our study is to estimate a panel mixed univariate NB modeling framework. As 

highlighted earlier, we alter the dataset by taking all six types of crashes as repeated measures 

(same TAZ is repeated 6 times) of crash frequency in a univariate NB formulation while 

recognizing that each repetition represents a different crash type. The econometric framework of 

the proposed approach is presented in this section. Let’s assume 𝑖 (𝑖 = 1,2,3, … , 𝑁, 𝑁 = 3,815) 

be an index to represent observation unit and 𝑟(𝑟 = 1,2, … , 𝑅, 𝑅 = 6) be an index for different 

crash type at observation unit 𝑖. Then the probability equation of the NB formulation can be 

rewritten as follow: 

𝑃(𝑦𝑖𝑟|𝑣𝑖𝑟 , 𝜆′) =  
Γ (𝑦𝑖𝑟 +

1
𝜆′

)

Γ(𝑦𝑖𝑟 + 1)Γ (
1
𝜆′

)
(

1

1 + 𝜆′𝑣𝑖𝑟
)

1
𝜆′

(1 −
1

1 + 𝜆′𝑣𝑖𝑟
)

𝑦𝑖𝑟

 (6)  

where, 𝑦𝑖𝑟 be the index for crash counts occurring over a period of time in observation unit i and 

crash type r. 𝑃(𝑦𝑖𝑟) is the probability that unit 𝑖 has 𝑦𝑖𝑟 number of crashes for crash type r. 𝜆′ is 

NB over dispersion parameter and 𝑣𝑖𝑟 is the expected number of crashes occurring in 𝑖 over a 

given time period for crash type r. Similar to the multivariate structure, 𝑣𝑖𝑟 an be expressed as a 

function of explanatory variables using a log-link function as follows: 

𝑣𝑖𝑟 = 𝐸(𝑦𝑖𝑟|𝒙𝑖𝑟) = 𝑒𝑥𝑝((𝜷 + 𝜽𝑖 + 𝝔𝑖𝑟)𝒙𝑖𝑟 + 𝜀𝑖𝑟) (7)  

where, 𝒙𝑖𝑟 is a vector of explanatory variables associated with observations 𝑖 for crash type r. 𝜷 

is a vector of coefficients to be estimated.  𝜽𝑖 is a vector of unobserved factors moderating the 

influence of attributes in 𝒙𝑖𝑟 on the crash count propensity for analysis unit i, 𝝔𝑖𝑟 is a vector of 

unobserved effects specific to crash type 𝑟. 𝜀𝑖𝑟 is a gamma distributed error term with mean 1 and 

variance 𝜆′. In estimating the model, it is necessary to specify the structure for the unobserved 



   

 

8 

 

vectors 𝜽, 𝝔 represented by Ψ. In this paper, it is assumed that these elements are drawn from 

independent normal distribution: Ψ~𝑁(0, (𝝅′𝟐
, 𝜱𝟐 )).  

This 𝝔𝑖𝑟 will be same across crash types in our case and thus the unobserved heterogeneity 

across crash types will be captured (same as 𝜂𝑖𝑗 in the multivariate NB structure). Moreover, 𝜽𝑖 

term will capture the random effect across observations (same as 𝜹𝑗 in the multivariate structure). 

The reader would note that, in the multivariate NB model, we can accommodate correlation and 

attribute variability across different crash type. In the proposed approach, we can do the same by 

introducing variables specific to crash types (interaction term between crash types and variables). 

Thus, conditional on Ψ, the likelihood function across TAZ can be expressed as 

𝐿𝑖 =  (∫ ∏(𝑃(𝑦𝑖𝑟))

𝑅

𝑟=1Ψ

𝑓(Ψ)𝑑Ψ (8)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (9)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 9.  

 

3 DATA PREPARATION 

Our study area, Central Florida region is composed of 4,747 TAZs. The study is focused on crashes 

involving both motor vehicles and non-motorists at a zonal level for the year 2016. The data are 

compiled from Florida Department of Transportation (FDOT), Crash Analysis Reporting System 

and Signal Four Analytics databases. At first, the crash data were sorted into two classes based on 

the road user group: motorist and non-motorist; within the motorized group, the records are further 

classified into five categories based on the manner of crash: rear-end, angular, sideswipe, all single 

vehicle and other multiple vehicle crashes. Based on the crash records, crashes of different types 

are combined together as one category: left-turn, right-turn and angular crashes within angular 

class; off-road, rollover and other single vehicle in the all single vehicle category; and head-on 

and other multiple vehicle crashes are classified as the other multiple vehicle crash types. All the 

crash records are aggregated at a TAZ level using the Geographic Information System (GIS). A 

total of 114,458 motorized and 3,413 non-motorized crashes were reported in the Central Florida 

region for the year 2016. Within the motorized crashes, rear-end is found to be the most prevalent 

crash type (44.09%) while sideswipe is less frequent with 10.82% among all other motorized crash 

types. Crash statistics at a zonal level for different crash types are summarized in Table 1. From 

the total records, for the validation analysis, we set aside data from 932 TAZs and the remaining 

3,815 TAZs are used for the estimation analysis. 

 

3.1   Variables Considered 

A comprehensive set of exogenous variables including roadway, built environment, land-use, 

traffic and sociodemographic characteristics are considered in the current research effort. 

Information about these variables are collected from different data sources including FDOT 
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Transportation Statistics Division, US Census Bureau, American Community Survey and Florida 

Geographic Data Library databases. Similar to the crash records, explanatory attributes are also 

aggregated at a zonal level using the GIS. Roadway attributes included are road lengths for 

different functional class, proportion of rural and urban road, proportion of road with different 

number of lanes (1, 2, and 3 or more), number of intersections and signals, mean and variance of 

speed limit, length of road with different speed limit (≤40mph, 41-54mph and ≥55mph), average 

width of inside and outside shoulder, average width of bike lane and sidewalk. While the 

information about land use category including area of urban, residential, industrial, institutional, 

recreational, office and land use mix are provided in the land use attributes, built environment 

characteristics mainly reflects the information about the number of business center, commercial 

center, school, hospital, recreational center, restaurant and shopping center are collected. Further, 

for traffic characteristics, average annual daily traffic (AADT), average annual daily truck traffic 

(truck AADT), vehicle miles traveled (VMT), truck vehicle miles traveled (truck VMT) and 

proportion of heavy traffic are considered. In sociodemographic attributes, population and 

household density, proportion of means of transportation used by commuter for their work trips 

(car, transit, bike and walk) proportion of people by age and race and proportion of household by 

vehicle ownership level (1, 2, 3 and 4 or more) are included.  

Table 2 summarizes sample characteristics of the explanatory variables with the 

appropriate definition considered for final model estimation along with the minimum, maximum 

and mean values at a zonal level. In estimating the model, several functional forms, combination 

of variables and interaction terms are considered and those that provides the best fit are retained 

in the final specification. The final specification of the model was based on removing the 

statistically insignificant variables in a systematic process based on 90% confidence level. 

 

4 EMPIRICAL ANALYSIS 

 

4.1   Model Specification and Overall Measure of Fit 

The empirical analysis involves estimation of count models from two approaches: 1) traditional 

approach - we estimated two models including Independent NB model (separate NB models for 6 

different crash types) and Random Parameter Multivariate NB model (RPMNB); and 2) proposed 

approach - two models are estimated including Independent Panel NB model (counterpart of 

Independent NB model in the traditional approach) and Panel Mixed NB (PMNB) model 

(counterpart of RPMNB in the traditional approach).The reader would note that the model 

estimation in the proposed approach is informed from the traditional approach models (particularly 

for the independent models). To elaborate, observing the model specifications in the independent 

models, we identify potential parameters that can be restricted to be the same across various crash 

types and test that restriction in our proposed model system. Subsequently, we estimate a base 

effect for each exogenous variable that is common across crash types and then, we estimate the 

deviation for each crash type relative to the base effect. Given we have 6 total crash types, we 

typically can estimate 5 deviations from the base effect. The t-statistic of the estimated parameters 

will provide evidence if the deviation term offers a statistically significant difference from the base 

effect. If the deviation variable for a crash type is statistically insignificant based on the t-statistic, 

the parameter does not exhibit differential sensitivity for the base crash type and crash type for 

which the deviation was computed. The reader would note that for some exogenous variables, the 

overall parameters estimated for an exogenous variable could vary from 0 (i.e. the variable has no 

impact across crash types) to 6 (i.e. the variable has a statistically distinct effect for every crash 
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type). Typically, models estimated within the panel formulation have fewer parameters. To 

facilitate the reader’s understanding of the overall model estimation, Appendix A provides details 

of the intermediate steps in the estimation process.   

The log-likelihood values at convergence for the final estimated models are: For traditional 

approach, (a) Independent NB model (89 parameters) is -44,791.54, and (b) RPMNB model (92 

parameters) is -43,597.82; and for proposed approach, (a) Independent Panel NB model (58 

parameters) is –44,808.32, and (b) PMNB model (61 parameters) is -43,622.57. We also compute 

the Bayesian Information Criterion (BIC) (lower is better) for these four models. For the traditional 

models, the corresponding BIC values are 90,317.02 (Independent NB) and 87,954.34 (RPMNB) 

respectively. On the other hand, for the proposed frameworks, the BIC values are as follows: 

90,094.95 (Independent Panel NB), and 87,748.19 (PMNB model). Based on the BIC values, two 

observations can be made. First, models accommodating unobserved effects perform better than 

their corresponding independent models (in both traditional and proposed regimes) highlighting 

the importance of accommodating for unobserved heterogeneity in examining crash count by 

different crash types. Second, our proposed approach provides superior fit compared to its’ 

counterparts in the traditional frameworks (Independent Panel NB vs Independent NB and PMNB 

vs RPMNB) when accounting for penalty for additional parameters. Thus, our proposed approach 

allows us to estimate parsimonious model systems with more efficient parameter estimation. 

 

4.2   Model Estimation Result 

This section presents a detailed discussion of the factors affecting crash count components across 

different crash types. Table 3 presents the model estimation results for the proposed panel mixed 

NB model. The estimation results of the multivariate NB model are presented in Table 4 for 

comparison. For the sake of brevity, we do not discuss these parameter estimates.  

As discussed before, in presenting our model results, we have selected a representation that 

provides results similar to the traditional model approach i.e. present the net effect of each 

exogenous variable in the crash propensity equation. For example, consider the constants estimated 

in the various crash type propensity equations. The proposed estimated the base effect as -1.074 

and the deviations across crash type as – rear-end 0.000, angular -0.716, Sideswipe -0.907, All 

single vehicle 2.137, Other multiple vehicle  -1.172, and Non-motorized -2.109. The reader 

would note that the “rear-end” crash type served as the base. The model results presented compute 

the net effect for each crash type. For non-motorized crash type this would be computed as -1.704 

(base) + -2.109 (non-motorized deviation) = -3.841. The consolidation of parameters in this 

manner allows an easy comparison with the traditional approach.  The consolidation of parameters 

in this manner allows an easy comparison with the traditional approach. At the same time, to 

highlight the gains in parameters if any, we identify the number of parameters estimated across the 

crash types (range between 1 and 6). In cases where the deviation for a crash type was insignificant, 

the reader would notice a common coefficient across 2 or more crash types. The number of distinct 

parameters estimated provides a guide to the improvement in model estimation attained by the 

proposed model structure. For instance, the variable length of divided roads offers an important 

comparison across the two models (see Table 3 and 4). In our proposed model, we estimated a 

single parameter across 5 crash types while the same variable results in five distinct parameters 

across 5 crash types in the traditional multivariate model. The variable impact illustrates how our 

proposed approach allows for parsimonious specification while not compromising on model 

explanatory power. Finally, the reader would note that for some exogenous variables, a common 
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base effect might not be statistically significant. In such cases, the exogenous variable is 

considered by crash type to test for the variable impact.  

A positive (negative) sign for a variable in the crash count component of Table 3 indicates 

that an increase in the variable is likely to result in more (less) crashes. 

 

4.2.1 Crash Specific Constants 

The crash specific constants represent the intercept of crash propensity after adding the various 

exogenous variables and do not have any substantive interpretation.   

 

4.2.1 Roadway Attributes 

The parameter associated with proportion of arterial roads offers a positive impact (with same 

magnitude) on crash count propensity for rear-end, angular, sideswipe and non-motorized crashes 

indicating a higher likelihood of crashes with increased proportion of arterial roads in a TAZ. On 

the other hand, with respect to all single vehicle crashes, the impact is negative revealing a reduced 

incidence of all single vehicle crashes with higher proportion of arterial roads. This is intuitive as 

off-road and rollover crashes (these are combined in all single vehicle crashes) are likely to be 

associated with high vehicular speed and on arterial roads drivers are likely to drive at lower 

operating speeds. Number of intersections are found to positively influence angular, other multiple 

vehicle and non-motorized crashes indicating a higher likelihood of crash occurrence for these 

three crash types in a zone with increased number of intersections.  It is also found that the impact 

is not statistically different for angular and non-motorized crashes. The results are in line with 

earlier research specific to angular and non-motorized crashes (Abdel-Aty and Wang, 2006; 

Reynolds et al., 2009). In terms of variance of speed, the estimated result shows that a TAZ with 

higher variance in speed limit is likely to result in higher crash risk across all crash types except 

non-motorized crashes. Among these effects, the magnitude of impact is larger for sideswipe 

crashes and remains the same across other four crash types  

In terms of length of divided roads, the variable is found to have the same positive effect 

on all crash types except non-motorized crashes. Signal intensity in the zone reveals a negative 

association with sideswipe and all single vehicle specific crashes indicating a reduced occurrence 

of sideswipe and all single vehicle crashes in a zone with higher number of signals. This is expected 

because, vehicles are likely to drive at a lower speed in the location with higher number of signals 

and as a result, the risk of motorized off-road crashes reduces. Average outside shoulder width has 

a negative influence on crash risk propensity for rear-end, angular, sideswipe and other multiple 

vehicle crashes which is perhaps indicating greater safety margins for vehicular maneuverability.  

The estimated results show that a TAZ with higher proportion of roads over 55mph speed limit is 

likely to experience increased number of rear-end, sideswipe and all single vehicle crashes while 

a negative effect is observed for angular and non-motorized crashes.  Further, we found that 

proportion of road over 55mph has significant variability specific to angular crashes as indicated 

by the standard deviation parameter. The reader would note that the distributional parameter 

indicates that the overall impact of the variable on angular crashes is likely to be negative (80%). 

With respect to sidewalk width, the variable is found to be significant in rear-end crash component 

with a positive impact while a negative association is observed for the non-motorized crashes. The 

results are contrary to some of the earlier studies (Aguero-Valverde and Jovanis, 2006; Cai et al., 

2016; Dong et al., 2014). However, there is a reasonable explanation for the effects identified. 

Increasing sidewalk width is a surrogate for non-motorized activity in the zone. The presence of 

non-motorists can potentially increase rear-end crashes at as vehicles might stop abruptly to allow 
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for non-motorist movement increasing rear-end crash risk. Also, the presence of a wider side walk 

provides additional margin of safety for non-motorists from colliding with a motorized vehicle and 

thus results in reduced risk for non-motorized users in the zone. 

 

4.2.2 Traffic Characteristics 

As expected, the coefficient associated with VMT offers a positive impact on the crash risk 

component of angular, sideswipe, other multiple vehicle and non-motorized crashes while the 

likelihood of all single vehicle crashes will go down with higher VMT. VMT mainly reflects the 

exposure measure for traffic volume and therefore, with increased VMT, the probability of getting 

involved in a crash is likely to be higher. However, with increased traffic volume, the likelihood 

of speeding is lower which eventually results in reduced number of all single vehicle crashes. 

Truck VMT is found to positively influence the rear-end and all single vehicle crash propensity 

indicating a higher risk of getting involved in rear-end and all single vehicle specific crashes with 

increased proportion of trucks on the road.  

 

4.2.3 Land-use Attributes 

From Table 3, we can observe that TAZs with higher urbanized and office areas are likely to 

experience more crashes specific to all crash types. This is expected as urban area serves as an 

additional surrogate for exposure for traffic. Moreover, the impact of urban area specific to rear-

end crash is of higher magnitude relative to other crash types signifying that rear-end crash is a 

prominent safety issue in urban areas. Institutional areas are associated with increased crash risks 

for rear-end, angular, other multiple vehicle and non-motorized crash. The variable also illustrated 

the advantages of our proposed approach. Specifically, in our proposed framework, we estimate a 

total of two parameters for the variable. However, in the traditional multivariate structure, four 

distinct parameters were estimated.  Residential area has a significant negative impact for rear-

end, angular and sideswipe crashes.  

 

4.2.4 Built Environment Characteristics 

In terms of built environment attributes, we considered a number of variables, among which only 

number of restaurants and number of shopping centers have significant impact on zonal level crash 

risks. The coefficient associated with number of restaurants reveals the higher likelihood of crash 

propensity of all crash types with increased number of restaurants in a TAZ. On the other hand, a 

zone with higher number of shopping centers is likely to experience an increased number of rear-

end and angular crashes relative to other zones.  

 

4.2.5 Sociodemographic Characteristics 

With respect to sociodemographic characteristics, population density – another surrogate for 

exposure – is positively associated with increased likelihood of crash risk for all crash types. We 

can also observe that the parameter associated with the number of non-motorist commuters in the 

TAZ reveals a higher probability of crash risk for rear-end, sideswipe and non-motorized crashes 

in the TAZ. In fact, the reader would note that the magnitude of these impacts is same across the 

three crash types in the current study context.  Further, the coefficient specific to proportion of 

households without vehicle indicates that the variable is negatively associated with rear-end and 

sideswipe (motorized) crashes but has a positive impact on non-motorist road user group. The 

result is expected as people from households without access to personal vehicles experience higher 
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exposure for non-motorized crashes as they are restricted to using public transport, walk or bike 

as their primary mode of transportation. 

 

4.2.7 Unobserved Heterogeneity 

The final set of variables in Table 3 correspond to the unobserved heterogeneity across zones. The 

reader would not that, in estimating the model, we found two common unobserved components1 

including (1) common unobserved factors affecting rear-end and non-motorized crashes and (2) 

common unobserved factors affecting angular, sideswipe and all single vehicle crashes. These 

parameter estimates lend support to the presence of unobserved heterogeneity across different 

crash type.  

 

5 MODEL COMPARISON EXERCISE 

 

5.1   Predictive Performance 

In an effort to assess the predictive performance of the estimated models, we compute several 

goodness fit of measures at disaggregate level including MPB (Mean prediction bias), MAD (mean 

absolute deviation), MAPE (mean absolute percentage error), RMSE (Root mean square error) 

and predictive BIC (please see (Bhowmik et al., 2018) for a discussion on estimating these 

measures). Specifically, we employ these measure on two datasets: 1) in-sample dataset: for the 

records used in the model estimation (sample size = 3,815 TAZs) and 2) holdout sample: records 

that are set aside for validation analysis (sample size = 932 TAZs). The reader would note that 

model with lower value of predictive measures and BIC will reflect better performance in terms 

of prediction and statistical fit relative to the observed data. Table 5 presents the values of these 

measures for Random parameter multivariate NB and Panel mixed NB models for both in-sample 

and holdout-sample measures. From Table 5, we can observe that the performance of the two 

models across various prediction measures are quite similar even though there is a large difference 

in the number of parameters between the two specifications (92 vs 61). Further, RPMNB model 

performs marginally better than the proposed framework for the deviation measures with respect 

to angular, sideswipe, other multiple vehicle and non-motorized crashes while in terms of rear-end 

and all single vehicle crashes, the proposed approach offers better performance (for both in-sample 

and holdout samples). These deviation measures do not consider the difference in number of 

parameters across the two models. The BIC measure that penalizes additional parameters clearly 

shows that the proposed panel model structure offers improved statistical fit.  In summary, the 

resulting goodness of fit measures clearly highlight the comparable performance offered by the 

proposed framework compared to the commonly used RPMNB model even with substantially 

fewer parameters. 

To further evaluate the predictive performance of the estimated models, we carried out a 

comparison exercise between the random parameter negative binomial model and panel mixed NB 

model by predicting the crash frequencies across different count events for different crash types. 

For this purpose, 20 data samples with 250 records (TAZs) each, are randomly generated from the 

holdout validation sample consisting of 932 records (TAZs). For these samples, we predict the 

number of TAZs from both models (RPMNB and PMNB) for different count events across 

different crash types. These counts are employed to generate the ratio of predicted and observed 

counts specific to each level (count groups and crash types). A value of 1 for the ratio would imply 

a prefect prediction. For example, if there are 100 TAZs with 0 rear end crashes in data sample 1 

                                                 
1 The same correlation structure was revealed from the traditional multivariate model structure (as shown in Table 4). 
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and we predict 60 and 50 TAZs from RPMNB and PMNB model respectively, then the estimated 

ratio of these models will be 0.6 (60/100) and 0.5 (50/100) respectively. For both models, two box 

plots are generated using all the data samples (for every count event, there are 20 points) by each 

count group and crash type. Figure 1a to 1c represents the ratio statistics for different crash types. 

From Figure 1, we can see that while the models might under-predict or over-predict crash counts, 

the performance of the two models are quite similar. Thus, one can conclude that the proposed 

approach has offered equivalent predictions relative to the multivariate NB model despite with 

substantially fewer model parameters (31 less parameters to be precise). 

 

5.2   Elasticity Effects 

The parameters of the exogenous variables in Table 3 and 4 do not directly provide the exact 

magnitude of the effects of variables on the zonal level crash counts across different crash types. 

However, it might be possible that the effects (exact magnitude) of some attributes could differ 

considerably across the two frameworks. To evaluate this, we compute aggregate level elasticity 

effects for both PMNB and RPMNB models. For this purpose, we identify a subset of exogenous 

variables including proportion of arterial roads, length of divided roads, proportion of roads over 

55mph, institutional areas and number of non-motorist commuters. In our study, we investigate 

the effect as percentage change in the expected zonal level crash counts in response to the increase 

of the explanatory variable by 10% (see Eluru and Bhat, 2007 for a discussion on the methodology 

for computing elasticities). The numbers in Figure 2 can be interpreted as the percentage change 

in the expected crash counts (increase for positive sign and decrease for negative sign) due to the 

change in the exogenous variable for different crash types. For instance, the elasticity estimates 

generated from the proposed PMNB (RPMNB) model for proportion of arterial roads variable in 

rear-end crashes indicates that the expected mean rear-end crash will increase by 0.656% (1.038%) 

for an 10% increase in the proportion of arterial roads.  

Several observations can be made based on the elasticity effects presented in Figure 2. 

First, in general, we do not observe any large differences in the elasticity effects of the two models 

across different crash types. From the five variables considered for our elasticity exercise, a 

substantial number of the effects (14 out of 22) offer very little differences. Second, the PMNB 

model with fewer parameters is able to represent the substantial differences in the elasticity effects 

for the same variable across different crash types. For instance, the elasticity effect for length of 

divided roads variable is different across the five crash types despite estimating a single parameter 

(same impact in magnitude) for the variable across the five crash types. Third, for some variables, 

we found substantial differences in the elasticity effects across the two frameworks for different 

crash types. For example, in case of rear-end crashes, the proposed PMNB model predicts an 

0.65% increase in the expected mean for 10% increase in the proportion of roads over 55mph while 

we found an increase of 0.92% from the RPMNB model. Such differences could be attributed to 

the non-linearity embedded within the two model structures estimated with similar data fit. In 

summary, the proposed framework allows for a parsimonious specification without compromising 

the model explanatory power and provides similar performance (most of the times) as the most 

traditional multivariate NB model. 

  

6 CONCLUSIONS 

The most common approach employed to address correlation across multiple crash frequency 

dependent variables in safety literature is the development of simulation-based multivariate 

frameworks. However, with higher dimensions, the multivariate model estimation infrastructure 
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can get computationally demanding in terms of the number of observed and unobserved parameters 

to estimate. In this context, our proposed research attempts to contribute to simulation-based 

multivariate approaches by altering how the multiple dependent variables are analyzed. 

Specifically, instead of considering the crash frequency by crash type as a multivariate distribution, 

we represent it as a repeated measures of crash frequency while recognizing that each repetition 

represents a crash type specific to a zone. Thus, in this process we cast a multivariate distribution 

as a univariate distribution with repeated measures. The recasting allows us to estimate 

parsimonious model systems as well as simplify the specification process. This simplification 

leading to parsimonious specification can reduce the computational time for estimating parameters 

associated with unobserved factors. To the best of authors’ knowledge, this study is the first of its 

kind to simplify current modeling infrastructure for multivariate analysis in safety literature. 

In our current research effort, a simple random parameter based univariate model code was 

employed to analyze zonal level crash counts for different crash types including rear-end, angular, 

sideswipe, all single vehicle, other multiple vehicle and non-motorized crashes. The empirical 

analysis was based on the traffic analysis zone (TAZ) level crash count data from Central Florida 

for the year 2016. A host of exogenous variables including roadway, built environment, land-use, 

traffic and sociodemographic characteristics were considered in the current research effort. A 

comprehensive comparison of the proposed model with the most commonly used multivariate 

negative binomial (NB) model was conducted. The comparison exercise based on the BIC value 

clearly highlighted the superiority of the proposed approach over the traditional multivariate 

formulation in terms of data fit. The comparison exercise was further augmented by generating 

several predictive measures for both estimation and holdout samples.  Based on the resulting fit 

measures, the study concludes that the proposed formulation has offered equivalent predictions 

relative to the most traditional multivariate NB model even though there is a significant difference 

in the number of parameters within these two frameworks (61 vs 92). Further, we compute 

aggregate level elasticity effects for both PMNB and RPMNB models to quantify whether the 

effect of variables significantly differs across the two frameworks. For this purpose, we identify a 

subset of exogenous variable including proportion of arterial roads, length of divided roads, 

proportion of roads over 55mph, institutional areas and number of non-motorist commuters. The 

elasticity results clearly indicate that for most of the variables, the effects are quite similar for both 

models across different crash types. However, for some variables, we found some significant and 

substantial differences in the elasticity effects across the two frameworks for some crash types. 

Such differences could be attributed to the non-linearity embedded within the two model structures 

estimated with similar data fit.  

The current research effort contributes to literature on crash frequency analysis by 

suggesting an alternative and mathematically simpler approach for analyzing multiple crash 

frequency variables for the same study unit. Specifically, the proposed framework while 

simplifying the model estimation process, allows for parsimonious specification without 

compromising the model explanatory power and provides similar performance (predictions) as the 

currently employed multivariate NB model. In conclusion, the aim of the proposed scheme is to 

augment the inventory of crash frequency models with an alternative formulation and serves as a 

viable approach to reduce the parameter explosion that is common within a multivariate NB model 

with large number of dependent variable dimensions. 

To be sure, the paper is not without limitations. In our study, we considered left-turn and 

right-turn crashes in the same category due to sample size restrictions. In future research efforts, 

it might be useful to consider them separately given that the crash mechanisms for these crash 



 

 

16 

 

types could be potentially different. Moreover, given the inherent aggregation of the dataset, it 

would be beneficial to accommodate for the presence of spatial unobserved effects as well.  

Further, it might be interesting to explore the transferability of models developed for crash count 

by estimating similar models for multiple spatial units and several years. Finally, it would be an 

interesting research exercise to evaluate if the findings are confirmed for other count model kernels 

(such a log-normal frameworks).  
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FIGURE 1a Predicted to Observed Ratio for Rear-end and Angular Crashes. 
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FIGURE 1b Predicted to Observed Ratio for Sideswipe and All Single Vehicle Crashes. 
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FIGURE 1c Predicted to Observed Ratio for Other Multiple Vehicle and Non-motorized Crashes. 
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FIGURE 2 Elasticity Effects Across Two Models (PMNB and RPMNB) for Six Crash Types 
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TABLE 1 Descriptive Statistics of Dependent Variables 

Variable 

Names 
Definition 

Zones (N=4,747) 

Minimum Maximum Mean 
Standard 

Deviation 

Rear-end Crash 

(motorized) 

Total number of rear-end crash 

(motorized) occurred in a TAZ 
0.000 243.000 10.948 18.517 

Angular Crash 

(motorized) 

Total number of left turn, right 

turn and angular crash (motorized) 

occurred in a TAZ 

0.000 104.000 4.216 6.817 

Sideswipe Crash 

(motorized) 

Total number of sideswipe crash 

(motorized) occurred in a TAZ 
0.000 66.000 2.686 5.228 

All Single 

Vehicle Crash 

(motorized) 

Total number of off-road, rollover 

and other-single vehicle crash 

(motorized) occurred in a TAZ 

0.000 62.000 3.317 4.480 

Other-multiple 

Vehicle Crash 

(motorized) 

Total number of head-on and 

other-multiple vehicle crash 

(motorized) occurred in a TAZ 

0.000 112.000 2.945 4.549 

Non-motorized 

Crash 

Total number of non-motorized 

(pedestrian and bicycle) crash in a 

TAZ 

0.000 12.000 0.719 1.318 

Total Crash 
Total number of crash (motorized 

and non-motorized) in a TAZ 
0.000 413.000 24.831 35.326 
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TABLE 2 Summary Statistics of Exogenous Variables (Zonal Level) 

Variables Definition 
Zonal (N=4,747) 

Minimum Maximum Mean Std. Deviation 

Roadway Characteristic 

Proportion of rural roads (Rural roads length/total road length)  0.000 1.000 0.121 0.309 

Proportion of urban roads (Urban roads length/total road length)  0.000 1.000 0.806 0.381 

Proportion of arterial roads (Arterial roads length/total road length)  0.000 1.000 00377 0.393 

Number of Intersection Ln (no of intersection) 0.000 4.682 1.921 1.053 

Signal intensity Total number of traffic signal per intersection 0.000 1.000 0.038 0.096 

Average speed limit Ln (mean speed limit in mph) 0.000 4.248 3.228 1.279 

Variance of speed limit Ln (variance of speed limit in mph) 0.000 6.686 2.325 2.041 

Average bike lane length Ln (average length of bike lane in feet) 0.000 1.662 0.044 0.147 

Average inside shoulder 

width 
Ln (average inside shoulder width in feet) 0.000 2.650 0.288 0.445 

Average outside shoulder 

width 
Ln (average outside shoulder width in feet) 0.000 2.977 0.964 0.579 

Average sidewalk width Ln (average sidewalk width in feet) 0.000 2.977 0.964 0.579 

Divided road length Ln of (divided road length in meter)  0.000 1.547 0.037 0.096 

Road ≥55mph Proportion of road length greater than 55mph 0.000 1.000 0.088 0.174 

Land-use Attributes 

Urban area Ln (urban area+1) in acre 0.000 9.440 4.921 1.970 

Recreational area Ln (recreational area+1) in acre 0.000 9.814 0.470 1.408 

Office area Ln (office area+1) in acre 0.000 6.440 0.877 1.383 

Residential area Ln (residential area+1) in acre 0.000 8.131 3.811 2.075 

Industrial area Ln (industrial area+1) in acre 0.000 7.067 1.118 1.306 

Institutional area Ln (institutional area+1) in acre 0.000 6.617 1.946 1.589 

Land use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the 

category of land-use, 𝑝 is the proportion of the 

developed land area for specific land-use, 𝑁  is 

the number of land-use categories   

0.000 0.946 0.369 0.221 

Built Environment Characteristics 



 

26 

 

No of business center Z score2:  No of business center -0.138 19.664 0.000 1.000 

No of commercial center Z score:  No of commercial center -0.270 9.521 0.000 1.000 

No of educational center Z score:  No of educational center -0.487 11.610 0.000 1.000 

No of recreational center Z score:  No of park and recreational center -0.475 16.678 0.000 1.000 

No of restaurant Z score:  No of restaurant -0.464 11.021 0.000 1.000 

No of shop Z score:  No of shopping center -0.442 19.728 0.000 1.000 

Traffic Characteristics 

VMT Vehicle miles travelled 0.000 15.026 7.914 3.368 

Truck VMT Tuck vehicle miles traveled 0.000 13.049 3.474 2.864 

Proportion of heavy vehicles Total truck AADT/ Total AADT 0.000 0.369 0.068 0.046 

Sociodemographic Characteristics 

Population density Total population/Total area of TAZ in acre 0.000 21.293 2.364 2.233 

household density  Total number of household/Total area of TAZ 

in acre 
0.000 8.556 0.902 0.878 

Average TAZ income Ln (Average TAZ income+1) 0.000 12.534 11.065 0.386 

Proportion of commuter  Total number of commuter/total population 0.000 0.778 0.408 0.085 

Non-motorist commuter Ln (NMT means to work for a TAZ) 0.000 5.261 1.278 1.098 

Proportion of senior people 
Total number of people over 65 years/total 

population in TAZ 
0.000 0.821 0.206 0.114 

Proportion of African-

American people 

Total number of African-American people 

/total population in TAZ 
0.000 0.969 0.142 0.159 

Proportion of household with 

no vehicle 

Number of household with no vehicle/total 

household 
0.000 0.471 0.069 0.065 

 

 

 

 

 

                                                 
2 Z-score represents the standardized form of the actual variable. 
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TABLE 3 Panel Mixed NB Model (PMNB) Estimation Results 

Variables3 
No. of 

Param* 

Rear End Angular Sideswipe 
All single 

vehicle 

Other 

multiple vehicle 
Non-motorized 

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) 

Constant 6 -1.074 (-12.165) -1.790 (-22.389) -2.697 (-25.745) -0.560 (-8.412) -1.732 (-21.046) -3.841 (-34.651) 

Roadway Characteristics 

Proportion of  

arterial roads 
2 0.134 (5.545) 0.134 (5.545) 0.134 (5.545) -0.230 (-5.266) -- 0.134 (5.545) 

Number of 

intersections 
2 --4 0.305 (13.006) -- -- 0.173 (6.503) 0.305 (13.006) 

Variance of speed 2 0.031 (6.845) 0.031 (6.845) 0.072 (6.379) 0.031 (6.845) 0.031 (6.845) -- 

Length of  

divided roads 
1 0.456 (6.346) 0.456 (6.346) 0.456 (6.346) 0.456 (6.346) 0.456 (6.346) -- 

Signal intensity 1 -- -- -0.585 (-5.613) -0.585 (-5.613) -- -- 

Average outside 

shoulder width 
3 -0.386 (-11.366) -0.166 (-4.576) -0.386 (-11.366) -- -0.099 (-2.633) -- 

Road length  

over 55mph 
3 1.039 (21.596) -0.516 (-4.090) 1.039 (21.596) 1.039 (21.596) -- -0.139 (-1.717) 

Standard deviation 1 -- 0.622 (3.040) -- -- -- -- 

Sidewalk width 2 0.089 (3.401) -- -- -- -- -0.085 (-4.136) 

Traffic Characteristic 

VMT 4 -- 0.065 (7.910) 0.211 (21.727) -0.118 (-5.491) 0.087 (9.454) 0.065 (7.910) 

Truck VMT 2 0.209 (18.563) -- -- 0.332 (13.182) -- -- 

Land-use attributes 

Urban area 5 0.173 (13.355) 0.125 (9.322) 0.134 (8.675) 0.060 (7.964) 0.092 (7.916) 0.173 (13.345) 

Office area 4 0.234 (30.359) 0.234 (30.359) 0.234 (30.359) 0.083 (6.931) 0.169 (13.301) 0.161 (8.505) 

Institutional area 2 0.063 (7.291) 0.063 (7.291) -- -- 0.063 (7.291) 0.109 (5.942) 

Residential area 2 -0.085 (-14.223) -0.023 (-2.668) -0.085 (-14.223) -- -- -- 

Built environment characteristic 

No. of restaurants 4 0.241 (19.756) 0.241 (19.756) 0.301 (17.306) 0.101 (5.017) 0.265 (19.626) 0.241 (19.756) 

                                                 
3 Please see Table 3 for variable definitions and units 
4 -- = attribute insignificant at 90% significance level 
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No of shopping 

center 
1 0.022 (1.932) 0.022 (1.932) -- -- -- -- 

Socio-demographic characteristics 

Population density 3 0.142 (32.333) 0.142 (32.333) 0.142 (32.333) 0.023 (2.944) 0.118 (16.551) 0.142 (32.333) 

Non-motorist 

commuter 
1 0.042 (4.013) -- 0.042 (4.013) -- -- 0.042 (4.013) 

Proportion of 

households without 

vehicle 

2 -0.760 (-3.938) -- -0.760 (-3.938) -- -- 2.447 (6.409) 

Over dispersion 6 0.523 (25.262) 0.184 (10.107) 0.291 (11.621) 0.490 (23.805) 0.098 (6.059) 0.055 (1.837) 

Unobserved Heterogeneity 

Correlation 1 1 0.672 (27.686) -- -- -- -- 0.672 (27.686) 

Correlation 2 1 -- 0.771 (50.059) 0.771 (50.059) 0.771 (50.059) -- -- 

Total number of parameters = 61, Log-likelihood: -43,622.58;    AIC: 87,367.14;    BIC:87,748.19 

Note: *No. of Param = Number of parameters estimated for the corresponding variable.  
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TABLE 4 Random Parameter Multivariate NB (RPMNB) Model Estimation Results 

Variables5 
No. of 

Parm* 

Rear End Angular Sideswipe 
All single 

 vehicle 

Other 

multiple vehicle 
Non-motorized 

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) 

Constant 6 -1.069 (-9.246) -1.763 (-18.966) -2.663 (-21.251) -0.612 (8.595) -1.738 (-19.770) -3.722 (-23.811) 

Roadway Characteristics 

Proportion of  

arterial roads 
5 0.206 (3.332) 0.070 (1.777) 0.085 (1.998) -0.232 (-5.503) -- 0.248 (3.205) 

Number of 

intersections 
3 -- 0.291 (9.732) -- -- 0.176 (5.906) 0.318 (7.114) 

Variance of speed 5 0.031 (2.127) 0.040 (2.932) 0.075 (4.630) 0.021 (2.016) 0.034 (2.532) -- 

Length of divided 

road 
5 0.454 (1.757) 0.332 (1.942) 0.320 (1.707) 0.512 (2.688) 0.376 (1.725) -- 

Signal intensity 2 -- -- -0.489 (-2.324) -0.632 (-4.721) -- -- 

Average outside 

shoulder width 
4 -0.489 (-6.398) -0.167 (-3.720) -0.341 (-6.050) -- -0.087 (-1.927) -- 

Road length over 

55mph 
5 0.814 (5.138) -0.608 (-4.131) 1.038 (6.416) 1.245 (12.224) -- -0.366 (-1.752) 

Standard deviation 1 -- 0.681 (3.459) -- -- -- -- 

Sidewalk width 2 0.135 (4.174) -- -- -- -- -0.072 (-2.798) 

Traffic Characteristic 

VMT 5 -- 0.070 (6.053) 0.209 (16.874) -0.111 (-4.974) 0.086 (7.450) 0.053 (3.111) 

Truck VMT 2 0.202 (14.464) -- -- 0.325 (12.257) -- -- 

Land-use attributes 

Urban area 6 0.168 (11.399) 0.124 (8.870) 0.136 (8.079) 0.063 (8.193) 0.094 (7.674) 0.160 (7.631) 

Office area 6 0.212 (10.241) 0.243 (13.821) 0.244 (11.481) 0.087 (7.031) 0.177 (10.097) 0.168 (7.715) 

Institutional area 4 0.062 (3.580) 0.074 (4.853) -- -- 0.044 (3.060) 0.111 (5.566) 

Residential area 3 -0.074 (-5.909) -0.031 (-3.196) -0.101 (-8.061) -- -- -- 

Built environment characteristic 

No. of restaurant 6 0.246 (6.002) 0.254 (8.792) 0.299 (10.372) 0.102 (4.703) 0.265 (11.693) 0.219 (8.116) 

                                                 
5 Please see Table 3 for variable definitions and units 
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No of shopping center 2 0.041 (1.859) 0.021 (1.721) -- -- -- -- 

Socio-demographic characteristics 

Population density 6 0.246 (10.682) 0.133 (12.254) 0.144 (10.490) 0.027 (3.243) 0.114 (10.808) 0.128 (10.153) 

Non-motorist 

commuter 
3 0.034 (1.883) -- 0.044 (2.152) -- -- 0.042 (1.752) 

Proportion of 

household without 

vehicle 

3 -0.674 (1-.748) -- -1.143 (-3.077) -- -- 2.491 (6.084) 

Over dispersion 6 0.522 (24.872) 0.179 (9.849) 0.291 (11.565) 0.491 (23.614) 0.098 (5.921) 0.033 (2.152) 

Unobserved Heterogeneity 

Correlation 1 1 0.669 (27.067) -- -- -- -- 0.669 (27.067) 

Correlation 2 1 -- 0.772 (48.990) 0.772 (48.990) 0.772 (48.990) -- -- 

Total number of parameters= 92, Log-likelihood: -43,597.82;    AIC: 87,379.64;    BIC:87,954.34 

Note: *No. of Parm = Number of parameters estimated for the corresponding variable. So, 6 means, the effect of that specific variable is estimated for all six crash 

types 
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TABLE 5 Predictive Performance Measure of Two Models 

Dataset Crash Type 
MPB MAD MAPE RMSE Predictive BIC 

RPMNB* PMNB RPMNB* PMNB RPMNB PMNB RPMNB PMNB RPMNB PMNB 

In-Sample 

Measures 

(3,815 

TAZs) 

Rear-end 3.340 2.787 9.395 8.884 2.676 2.584 53.823 35.848 

 87,954.34 87,748.19  

Angular 0.878 0.942 3.321 3.386 0.882 1.205 10.627 13.044 

Sideswipe 0.661 0.654 2.555 2.553 0.764 0.753 10.612 10.852 

All single 

vehicle 
0.025 0.007 2.197 2.189 0.228 0.217 3.508 3.502 

Other multiple 

vehicle 
0.486 0.492 2.253 2.258 0.579 0.502 6.120 6.190 

Non-Motorized 0.063 0.076 0.699 0.712 0.056 0.107 1.388 1.607 

Total 5.454 4.956 20.421 19.983 5.185 5.367 56.339 40.325 

Hold-out 

sample 

Measures 

(932 TAZs) 

Rear-end 5.546 4.691 10.927 10.102 2.583 2.932 71.879 56.098 

 21,868.31 21,66173 

Angular 1.402 1.449 3.623 3.669 0.723 0.774 13.666 14.955 

Sideswipe 1.352 1.353 3.056 3.063 0.915 1.029 17.978 18.597 

All single 

vehicle 
0.098 0.080 2.138 2.119 0.200 0.219 3.452 3.415 

Other multiple 

vehicle 
0.659 0.682 2.575 2.603 0.777 0.282 9.351 9.860 

Non-Motorized 0.136 0.158 0.748 0.768 0.124 0.069 1.552 1.896 

Total 9.193 8.414 23.066 22.325 5.323 5.306 76.015 61.879 

Note: *RPMNB=Random parameter multivariate negative binomial model, PMNB= Panel mixed negative binomial model 

          *Red colours are the one where multivariate NB model performs better 
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APPENDIX A 

To assist the reader with the model estimation process, we provide a discussion of the various 

intermediate steps in the estimation process. First, we estimate the traditional multivariate NB 

model with separate propensity equations for all crash types (Model 1; Table A.1). Subsequently, 

we estimate an equivalent panel model with the exact same specification (Model 2; Table A.2). 

Then, this specification was employed to drop deviation effects that were insignificant (Model 3; 

Table A.3). Finally, we present the net effect of each exogenous variable in the crash propensity 

equation for representing the model in a similar fashion as model 1 (Model 4; Table A.4). To 

facilitate the comparison, let us focus on the variance of speed variable in Models 1, 2, 3 and 4. In 

model 1, the variable variance of speed has 5 distinct parameters. In Model 2, the same variable 

has 1 base effect (rear-end serve as the base) and 4 deviation terms. In Model 3, the insignificant 

deviation terms were dropped to arrive at 2 distinct parameters: 1 base effect (here rear-end, 

angular, all single vehicle and other multiple vehicle serve as the base) and 1 deviation term for 

sideswipe crashes. The estimated base effect is 0.032 and the deviations across crash types are: 

rear-end 0.000, angular 0.000, Sideswipe 0.044, all single vehicle 0.000 and other multiple vehicle 

0.000. Finally, in Model 4, we compute the net effect of the variable for each crash type by taking 

the summation of base effect and deviation corresponds to specific crash types. So, the effect of 

variance of speed variable for rear-end, angular, all single vehicle and other multiple vehicle would 

be: 0.032+0.000 = 0.032; and for sideswipe crash, the effect would be 0.032+0.044=0.076.  

 

The reader would note, for simplicity in comparison, we do not add unobserved parameters in the 

models provided in Appendix A. 
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TABLE A.1 Model 1: Traditional Multivariate Model with Distinct Propensity Equations 

Variables6 
Rear End Angular Sideswipe 

All single  

vehicle 

Other multiple 

vehicle 
Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant -0.770 -10.181 -1.301 -14.573 -2.161 -16.951 -0.612 -7.364 -1.261 -14.781 -3.391 -25.776 

Roadway Characteristics 

Proportion of 

arterial roads 
0.232 5.769 0.114 2.082 0.123 1.770 -0.232 -4.805 -- -- 0.265 3.757 

Number of 

intersections 
-- -- 0.235 7.037 -- -- -- -- 0.087 3.147 0.243 5.239 

Variance of speed 0.037 3.560 0.040 3.263 0.075 5.153 0.021 1.971 0.032 2.830 -- -- 

Length of divided 

road 
0.478 2.427 0.357 1.978 0.361 1.668 0.512 3.590 0.458 2.528 -- -- 

Signal intensity -- -- -- -- -0.753 -3.330 -0.632 -2.704  -- -- -- 

Average outside 

shoulder width 
-0.420 -7.493 -0.135 -3.078 -0.321 -5.840 -- -- -0.072 -1.891 -- -- 

Road length over 

55mph 
0.900 7.911 -0.424 -2.509 1.165 6.711 1.245 10.174 -- -- -0.469 -1.923 

Sidewalk width 0.104 3.859 -- -- -- -- -- -- -- -- -0.071 -2.874 

Traffic Characteristic 

VMT -- -- 0.060 4.504 0.187 12.395 -0.111 -4.127 0.094 7.979 0.061 3.300 

Truck VMT 0.183 20.085 -- -- -- -- 0.325 11.169 -- -- -- -- 

Land-use attributes 

Urban area 0.169 17.080 0.117 8.812 0.132 7.968 0.063 6.286 0.082 6.304 0.158 7.629 

Office area 0.201 15.566 0.226 14.091 0.221 10.625 0.087 6.602 0.157 9.691 0.158 7.414 

Institutional area 0.046 3.342 0.079 4.996 -- -- -- -- 0.054 3.892 0.113 5.683 

Residential area -0.064 -7.251 -0.025 -2.128 -0.103 -6.621 -- --     

Built environment characteristic 

No. of restaurant 0.226 8.275 0.222 8.124 0.318 11.882 0.102 6.062 0.292 11.228 0.212 9.009 

No. of shopping 

center 
0.074 2.842 0.067 1.721 -- -- -- -- -- -- -- -- 

                                                 
6 Please see Table 3 for variable definitions and units 
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Socio-demographic characteristics 

Population density 0.148 15.432 0.127 16.045 0.129 11.311 0.027 3.675 0.105 14.110 0.126 11.010 

Non-motorist 

commuter 
0.037 2.096 -- -- 0.055 2.381 -- -- -- -- 0.041 1.770 

Proportion of 

household without 

vehicle 

-0.463 -1.683 -- -- -0.646 -1.871 -- -- -- -- 2.508 6.609 

Over dispersion 0.943 36.926 0.729 23.693 0.946 20.026 0.491 20.471 0.557 18.801 0.427 9.019 

Total number of parameters = 89, Log-likelihood: -44,791.53;    AIC: 89,761.07;    BIC:90,317.02 
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TABLE A.2 Model 2: Panel Model with Same Specification as Model 1 

Variables7 

(Base in Overall Crash 

Risk Component) 

Overall 

 Crash Risk 

Deviation 

Rear End 

(1) 

Angular 

(2) 

Sideswipe 

(3) 

All single 

 Vehicle 

(4) 

Other 

Multiple 

Vehicle  

(5) 

 

Non-motorized 

(6) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Constant 
-3.390  

(-22.411) 

2.617 

(13.917) 

2.091 

(11.546) 

1.229 

(6.025) 

2.778 

(15.951) 

2.129 

(11.989) 
-- 

Roadway Characteristics 

Proportion of  

arterial roads (1) 

0.232 

(3.969) 
--* 

-0.118 

(-1.287) 

-0.110 

(-0.927) 

-0.464 

(-5.913) 
N/I** 

0.033 

(0.336) 

Number of intersections 

(6) 

0.243 

(5.228) 
N/I 

-0.008 

(-0.126) 
N/I N/I 

-0.156 

(-2.541) 
-- 

Variance of speed (1) 
0.037 

(2.633) 
-- 

0.003 

(0.159) 

0.038 

(1.639) 

-0.016 

(-0.890) 

0.005 

(0.260) 
N/I 

Length of divided roads 

(1) 

0.476 

(1.723) 
-- 

-0.117 

(-0.278) 

-0.112 

(-0.235) 

0.034 

(0.093) 

-0.016 

(-0.046) 
N/I 

Signal intensity (3) 
-0.752 

(-2.821) 
N/I N/I -- 

0.122 

(0.368) 
N/I N/I 

Average outside 

shoulder width (1) 

-0.421 

(-6.389) 
-- 

0.286 

(3.513) 

0.100 

(1.040) 
N/I 

0.349 

(4.038) 
N/I 

Roads length over 

55mph (1) 

0.903 

(5.407) 
-- 

-1.328 

(-5.063) 

0.261 

(0.862) 

0.343 

(1.179) 
N/I 

-1.367 

(-4.487) 

Sidewalk width (1) 
0.105 

(3.629) 
-- N/I N/I N/I N/I 

-0.176 

(-6.962) 

Traffic Characteristic 

VMT (2) 
0.060 

(5.128) 
N/I -- 

0.128 

(6.975) 

-0.170 

(-6.620) 

0.035 

(1.911) 

-0.002 

(-0.071) 

Truck VMT (1) 
0.183 

(15.736) 
-- N/I N/I 

0.142 

(4.699) 
N/I N/I 

Land-use Attributes 

Urban area (1) 0.170 -- -0.053 -0.038 -0.106 -0.087 -0.012 

                                                 
7  
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(13.060) (-2.620) (-1.746) (-5.839) (-5.139) (-0.418) 

Office area (1) 
0.201 

(10.952) 
-- 

0.025 

(1.327) 

0.020 

(0.833) 

-0.114 

(-4.775) 

-0.044 

(-1.811) 

-0.044 

(-1.612) 

Institutional area  

(1) 

0.046 

(2.675) 
-- 

0.034 

(1.156) 
N/I N/I 

0.008 

(0.330) 

0.068 

(2.318) 

Residential area (1) 
-0.063 

(-5.321) 
-- 

0.038 

(2.098) 

-0.040 

(-1.212) 
N/I N/I N/I 

Built Environment Characteristic 

No. of restaurant (1) 
0.226 

(5.106) 
-- 

0.003 

(0.044) 

0.092 

(1.651) 

-0.124 

(-2.424) 

0.067 

(1.758) 

-0.014 

(-0.279) 

No of shopping center 

(1) 

0.074 

(1.802) 
-- 

-0.007 

(-0.105) 
N/I N/I N/I N/I 

Socio-demographic Characteristics 

Population density (1) 
0.148 

(10.789) 
-- 

-0.021 

(-1.107) 

-0.019 

(-0.750) 

-0.121 

(-7.447) 

-0.043 

(-2.534) 

-0.022 

(-1.121) 

Non-motorist 

commuters (1) 

0.036 

(2.494) 
-- N/I 

0.019 

(0.401) 
N/I N/I 

0.005 

(0.145) 

Proportion of household 

without vehicle (1) 

-0.437 

(-1.730) 
-- N/I 

-0.213 

(-0.267) 
N/I N/I 

2.935 

(4.606) 

Over dispersion -- 
0.943 

(32.137) 

0.729 

(24.060) 

0.946 

(21.171) 

0.491 

(23.583) 

0.557 

(21.641) 

0.427 

(9.987) 

Total number of parameters = 89, Log-likelihood: -44,791.53;    AIC: 89,761.07;    BIC:90,317.02 

Note: *-- defines the base; ** N/I denotes that the variable does not have any impact on the particular crash types 
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TABLE A.3 Model 3: Parsimonious Model Specification Dropping Insignificant Variables from Model 2 

Variables8 

(Base in Overall Crash 

Risk Component) 

Overall 

 Crash Risk 

Deviation 

Rear End 

(1) 

Angular 

(2) 

Sideswipe 

(3) 

All single 

 Vehicle 

(4) 

Other 

Multiple 

Vehicle  

(5) 

 

Non-motorized 

(6) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Estimate  

(t-stat) 

Constant 
-3.448  

(-33.249) 

2.699 

(24.465) 

2.113 

(16.499) 

1.245 

(8.111) 

2.867 

(22.165) 

2.187 

(15.938) 
-- 

Roadway Characteristics 

Proportion of  

arterial roads (1-3,6) 

0.179 

(9.674) 
--* -- -- 

-0.403 

(-7.413) 
N/I** -- 

Number of intersections 

(2,6) 

0.242 

(9.471) 
N/I -- N/I N/I 

-0.159 

(-3.273) 
-- 

Variance of speed 

(1,2,4,5) 

0.032 

(7.566) 
-- -- 

0.044 

(2.389) 
-- -- N/I 

Length of divided roads 

(1-5) 

0.451 

(9.257) 
-- -- -- -- -- N/I 

Signal intensity (3-4) 
-0.685 

(-6.538) 
N/I N/I -- -- N/I N/I 

Average outside 

shoulder width (1,3) 

-0.351 

(10.229) 
-- 

0.223 

(3.895) 
-- N/I 

0.278 

(4.712) 
N/I 

Roads length over 

55mph (1,3,4) 

1.109 

(21.579) 
-- 

-1.489 

(-9.475) 
-- -- N/I 

-1.494 

(-4.487) 

Sidewalk width (1) 
0.076 

(3.088) 
-- N/I N/I N/I N/I 

-0.151 

(-6.958) 

Traffic Characteristic 

VMT (2,6) 
0.060 

(7.079) 
N/I -- 

0.126 

(8.932) 

-0.175 

(-7.508) 

0.035 

(2.332) 
-- 

Truck VMT (1) 
0.186 

(18.694) 
-- N/I N/I 

0.141 

(5.173) 
N/I N/I 

Land-use Attributes 

                                                 
8 Please see Table 3 for variable definitions and units 
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Urban area (1,6) 
0.174 

(17.160) 
-- 

-0.056 

(-3.283) 

-0.049 

(-2.531) 

-0.113 

(-8.161) 

-0.092 

(-6.200) 
-- 

Office area (1-3) 
0.216 

(31.945) 
-- -- -- 

-0.132 

(-8.670) 

-0.061 

(-3.337) 

-0.061 

(-2.784) 

Institutional area  

(1,2,5) 

0.063 

(9.772) 
-- -- N/I N/I -- 

0.068 

(2.318) 

Residential area (1,3) 
-0.079 

(-13.480) 
-- 

0.059 

(4.234) 
-- N/I N/I N/I 

Built Environment Characteristic 

No. of restaurant (1,2,6) 
0.219 

(14.863) 
-- -- 

0.099 

(2.336) 

-0.117 

(-4.296) 

0.074 

(2.498) 
-- 

No of shopping center 

(1,2) 

0.076 

(6.523) 
-- -- N/I N/I N/I N/I 

Socio-demographic Characteristics 

Population density 

(1,2,3,6) 

0.134 

(34.649) 
-- -- -- 

-0.109 

(-11.870) 

-0.029 

(-2.412) 
-- 

Non-motorist 

commuters (1,3,6) 

0.043 

(5.163) 
-- N/I -- N/I N/I -- 

Proportion of household 

without vehicle (1,3) 

-0.476 

(-2.444) 
-- N/I -- N/I N/I 

3.044 

(6.321) 

Over dispersion -- 
0.948 

(32.462) 

0.731 

(24.381) 

0.951 

(21.434) 

0.490 

(23.749) 

0.557 

(21.905) 

0.433 

(10.217) 

Total number of parameters = 58, Log-likelihood: -44,808.32;    AIC: 89,732.64;    BIC:90,094.95 

Note: *-- defines the base; ** N/I denotes that the variable does not have any impact on the particular crash types 
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TABLE A.4 Model 4: Parsimonious Model Specification with Net Effect of Each Exogenous Variable from Model 3 

Variables9 
Rear End Angular Sideswipe 

All single  

vehicle 

Other multiple 

vehicle 
Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant -0.749 -8.787 -1.335 -16.767 -2.203 -25.154 -0.581 -11.104 -1.261 -17.328 -3.448 -33.249 

Roadway Characteristics 

Proportion of 

arterial roads 
0.179 9.674 0.179 9.674 0.179 9.674 -0.224 -4.996 --* -- 0.179 9.674 

Number of 

intersections 
-- -- 0.242 9.471 -- -- -- -- 0.083 2.651 0.242 9.471 

Variance of speed 0.032 7.566 0.032 7.566 0.076 4.888 0.032 7.566 0.032 7.566 -- -- 

Length of divided 

road 
0.451 9.257 0.451 9.257 0.451 9.257 0.451 9.257 0.451 9.257 

-- -- 

Signal intensity -- -- -- -- -0.685 -6.537 -0.685 -6.537 -- -- -- -- 

Average outside 

shoulder width 
-0.351 -10.231 -0.127 -3.228 -0.351 -10.231 -- -- -0.072 -1.742 

-- -- 

Road length over 

55mph 
1.109 21.584 -0.380 -2.902 1.109 21.584 1.109 21.584 -- -- -0.385 -1.666 

Sidewalk width 0.076 3.091 -- -- -- -- -- -- -- -- -0.075 -3.882 

Traffic Characteristic 

VMT -- -- 0.060 7.079 0.186 18.632 -0.115 -5.367 0.095 9.848 0.060 7.079 

Truck VMT 0.186 18.692 -- -- -- -- 0.327 13.070 -- -- -- -- 

Land-use attributes 

Urban area 0.174 17.153 0.118 9.913 0.125 8.902 0.061 8.189 0.082 8.483 0.174 17.153 

Office area 0.216 31.945 0.216 31.945 0.216 31.945 0.085 6.993 0.156 11.014 0.156 7.848 

Institutional area 0.063 9.777 0.063 9.777 -- -- -- -- 0.063 9.777 0.111 5.414 

Residential area -0.079 -13.484 -0.020 -1.944 -0.079 -13.484 -- -- -- -- -- -- 

Built environment characteristic 

No. of restaurant 0.219 14.860 0.219 14.860 0.318 9.567 0.103 4.997 0.293 14.170 0.219 14.860 

                                                 
9 Please see Table 3 for variable definitions and units 
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No. of shopping 

center 
0.076 6.523 0.076 6.523 -- -- -- -- -- -- -- -- 

Socio-demographic characteristics 

Population density 0.134 34.659 0.134 34.659 0.134 34.659 0.024 3.100 0.105 10.690 0.134 34.659 

Non-motorist 

commuter 
0.043 5.163 -- -- 0.043 5.163 -- -- -- -- 0.043 5.163 

Proportion of 

household without 

vehicle 

-0.476 -2.446 -- -- -0.476 -2.446 -- -- -- -- 2.568 6.599 

Over dispersion 0.948 32.464 0.731 24.381 0.951 21.434 0.490 23.749 0.557 21.905 0.433 10.217 

Total number of parameters = 58, Log-likelihood: -44,808.32;    AIC: 89,732.64;    BIC:90,094.95 

Note: *-- = attribute insignificant at 90% significance level 

 


