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ABSTRACT 

 

In this research, we contrast different modeling frameworks that offer alternative ways of capturing 

observed/unobserved heterogeneity. The model systems compared are: ordered logit, residential 

location cluster based ordered logit model (exogenous segmentation), mixed ordered logit, latent 

segmentation based ordered logit model, and a joint copula based self-selection clustering model. 

While the comparison across single dependent variable models is straight forward, the comparison 

with the copula based model requires post-processing to generate marginal distribution for the 

choice of interest. The comparison exercise is conducted in the vehicle ownership context using 

O-D survey data of Greater Montreal Area (GMA), Canada. The performance of the alternative 

frameworks is examined in the context of model estimation and validation (at the aggregate and 

disaggregate level) using a host of comparison metrics. In all cases, the superior performance of 

the ordered part of the joint copula based model indicates that employing information from an 

additional dependent variable (such as residential location choice in our case) allows us to better 

understand and predict the main dimension of interest (vehicle ownership).  

 

Keywords: vehicle ownership, copula models, latent class models, residential self-selection, 

mixed ordered logit, residential clustering, observed heterogeneity, unobserved heterogeneity  
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1. INTRODUCTION 

 

1.1 Methodological Context 

Discrete choice models form an important analytical tool for analyzing choice behavior in various 

fields including transportation, bio-statistics, epidemiology, marketing, and health. Specifically, in 

transportation, several travel behavior related choices (such as travel mode choice, vehicle 

ownership, travel frequency, residential location, and destination location) are investigated using 

discrete choice models. Based on the nature of the dependent variable, either an ordered or 

unordered model structure is employed for model development. Traditional models such as 

ordered logit (OL)/probit (OP) model (for ordinal variables) and multinomial logit (MNL) model 

served as the workhorses for model development in the transportation field up to 2000. These 

models, implicitly restrict the impact of exogenous variables on the choice process to be the same 

across the entire population – referred to as the homogeneity assumption. The assumption, when 

violated, could potentially result in biased model parameter estimates (see Chamberlain, 1980; 

Bhat, 2015).   

Several approaches have been proposed to relax the homogeneity assumption (Mannering 

et al., 2016). We discuss four approaches relevant to our study context. First and probably the 

most straight forward approach suggested to address the restrictive homogeneity assumption is 

clustering of the population based on exogenous variables (for instance, transportation 

infrastructure attributes, built environment measures, and/or travel behavior characteristics) and 

developing cluster specific models (Salon, 2015; Jacques and El-Geneidy, 2014; Song and Knaap, 

2007; Damant-Sirois et al., 2014; Jacques et al., 2013; Bachand-Marleau et al., 2011). However, 

based on the number of exogenous candidate variables of interest, the number of mutually 

exclusive sample clusters could increase very rapidly; thus increasing the number of models to be 

developed (see Eluru et al., 2012a for more discussion). Further, small number of observations in 

some of the clusters might cause model estimation and interpretational problems.  

A second approach to address homogeneity is to allow for the impact of exogenous 

variables to follow a distributional assumption (generally normal, log-normal, triangular, or 

uniform) as opposed to restricting the impact to a single value across the population. The approach, 

often referred to as mixed discrete choice models, accommodates for unobserved heterogeneity 

across the population and improves parameter accuracy. Several research efforts in transportation 

have employed these models (see Bhat et al., 2008 for a detailed review). In general, these 

approaches are focused on the unobserved component of the model and usually require extensive 

simulation for model estimation. In a frequentist approach, Maximum Simulated Likelihood 

(MSL) methods are used while in the Bayesian realm, Markov Chain Monte Carlo (MCMC) 

methods are employed. However, one disadvantage of these methods is that model improvement 

is not sought through incorporating heterogeneity within observed utility component (systematic 

heterogeneity).  

A third approach to accommodate heterogeneity is to undertake an endogenous 

segmentation or develop finite mixture model. It was introduced by Kamakura and Russel (1989) 
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and after its introduction, the model and its different variants are applied to varied empirical 

contexts including mode choice (Bhat, 1997), vehicle ownership (Anowar et al., 2014), lifestyle 

preferences (Walker and Li, 2007), air carrier choice (Drabas and Wu, 2013; Wen and Lai, 2010), 

and residence and workplace location (Waddell et al., 2007). Rather than allocating observations 

exclusively, the probability of belonging to different segments is computed, and segment-specific 

choice models are estimated. The model estimation process begins with two segments and the 

number is increased one segment at a time until no improvement in data fit can be obtained with 

the additional segment. In this framework, the segment membership is a function of multivariate 

set of exogenous variables (as opposed to a select subset) within a closed form approach. The 

model estimation can be undertaken using Full Information Maximum Likelihood (FIML) or the 

Expectation Maximization (EM) approach (Sobhani et al., 2013). The approach is elegant and has 

received increasing attention in recent years (see Wafa et al., 2015; Xie et al., 2012; Eluru et al., 

2012a; Tang and Mokhtarian, 2009).  

Finally, a fourth approach addresses the homogeneity assumption by formulating 

joint/multivariate modeling frameworks. To enhance our understanding of the dependent variable 

of interest, in this approach, we draw additional information for an observation (usually an 

individual or household) by augmenting with another dependent variable. The approach is well 

recognized in the transportation literature for its application to residential self-selection. 

Specifically, choice dimensions (such as mode choice or vehicle fleet size) are studied in 

conjunction with residential location choice. The emphasis of the approach is on accounting for 

unobserved factors that affect these dimensions simultaneously allowing us to parse the influence 

of exogenous variables accurately. In fact, the approach can be visualized as an enhancement of 

the first approach discussed. In addition to the mutually exclusive sampling, the approach 

considers the choice mechanism for the clustering variable and couples it with the actual dependent 

variable of interest. For example, in the case of modeling travel mode choice or vehicle ownership, 

the decision is coupled with residential location choice (Pinjari et al., 2007; Bhat and Guo, 2007; 

Pinjari et al., 2011; Paleti et al., 2013) and examined as a joint residential location and mode 

choice/vehicle ownership. The well recognized switching regime model (see Bhat and Eluru, 

2009) also falls within this realm.  

 

1.2 Current Study Contributions 

While there have been multiple research efforts comparing and contrasting the first three 

approaches (Greene and Hensher, 2013; Shen, 2009; Greene and Hensher, 2003; Magidson and 

Vermunt, 2002), there is no effort to compare the fourth approach with the first three approaches. 

The rationale behind the comparison effort is to evaluate if adding additional complexity to the 

model system with additional dependent variables provides adequate improvement in data fit to 

warrant the additional dimensions and complexity that arises. To be sure, the comparison is not 

straightforward. Within the fourth approach, the estimated measures of fit are based on the joint 

distribution of dependent variables considered while in the other three approaches, the analysis is 

based on a single dependent variable. Hence, a detailed post-processing effort of is necessary to 
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generate comparable measures of fit across these approaches. In our study, we clearly elaborate on 

these measures and provide a comparison across the four approaches by computing a host of 

comparison metrics (since coefficients of the estimated models cannot be compared). The 

proposed comparison is undertaken for household vehicle fleet size decisions for Greater Montreal 

Area (GMA) region using a comprehensive set of explanatory variables.  

The remainder of the paper is organized as follows. Section 2 provides details of the 

econometric model frameworks used in the analysis. In Section 3, description of the data source 

and sample formation procedures are presented. Model Estimation results are discussed in Section 

4. In Section 5, comparison results for both estimation and validation samples are provided. The 

policy evaluation results are also presented in Section 5. Finally, Section 6 concludes the paper. 

   

2. ECONOMETRIC FRAMEWORK 

In this section, we briefly provide the details of the econometric framework of the models 

considered for examining household vehicle ownership levels in our study. We introduce the 

traditional ordered logit (OL) model, then discuss the mixed ordered logit (MOL) model (approach 

2), latent segmentation based ordered logit (LSOL) model (approach 3), and copula based joint 

residential location (MNL) and vehicle ownership model (OL) (approach 4).  

 

2.1 Ordered Logit (OL) Model 

Let ℎ (ℎ = 1,2, … … , 𝐻) and 𝑗 (𝑗 = 1,2, … … , 𝐽) be the indices to represent decision makers 

(households) and vehicle fleet sizes, respectively. In the traditional OL model, vehicle ownership 

levels (𝑦ℎ) are assumed to be associated with an underlying continuous latent variable (𝑦ℎ
∗). This 

latent variable is typically specified as the following linear function:   

𝑦ℎ
∗ = 𝛼𝑧ℎ + 𝜀ℎ ,   𝑦ℎ = 𝑗, 𝑖𝑓 𝜏𝑗−1 < 𝑦ℎ

∗ < 𝜏𝑗  (1) 

where, 𝑦ℎ
∗  is the latent propensity for household ℎ choosing a vehicle ownership level 𝑗,  𝑧ℎ is a 

vector of exogenous variables, 𝛼 is a vector of coefficients to be estimated and 𝜀ℎ is a random 

disturbance term assumed to be standard logistic. The latent propensity 𝑦ℎ
∗  is mapped to the 

observed ownership levels 𝑦ℎ by 𝜏 thresholds (𝜏0 = −∞ , 𝜏𝐽 = +∞) with the following ordering 

conditions: (−∞ < 𝜏1 < 𝜏2 <  … … … < 𝜏𝐽−1 < +∞). Given these relationships across the 

different parameters, the resulting probability expression takes the following form: 

𝑃ℎ𝑗(𝑦ℎ = 𝑗) = Λ(𝜏𝑗 − 𝛼𝑧𝒉) − Λ(𝜏𝑗−1 − 𝛼𝑧ℎ) (2) 

where, 𝛬(. ) is the standard logistic cumulative distribution function (see Train, 2003; Greene and 

Hensher, 2010 for more details). 

 

2.2 Mixed Ordered Logit (MOL) Model 

Mixed OL model accommodates unobserved heterogeneity in the effect of exogenous variables on 

household vehicle ownership levels in the latent vehicle owning propensity function (see Train, 

2003; Greene and Hensher, 2010 for more details):  
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𝑦ℎ
∗ = (𝛼 + 𝛾)𝑧ℎ + 𝜀ℎ  (3) 

𝛾 is a vector of unobserved factors moderating the influence of attributes in 𝑧ℎ on the vehicle 

owning propensity for household ℎ. In the current paper, we assume that the 𝛾 elements are 

independent realizations from normal distribution. 

 

2.3 Latent Segmentation based Ordered Logit (LSOL) 

Let us consider 𝑆 homogenous segments of households (the optimal number of 𝑆 is to be 

determined). In this approach, households are probabilistically assigned to the segments for the 

segmentation model. The utility for assigning a household ℎ (1, 2, … , … , 𝐻) to segment 𝑠 is 

defined as: 

 𝑈ℎ𝑠 = 𝛽𝑠𝑧ℎ + 𝜉ℎ𝑠 (4) 

𝑧ℎ is a column vector of attributes that influences a household’s propensity of belonging to segment 

s, 𝛽𝑠 is a corresponding column vector of coefficients, and 𝜉ℎ𝑠 is an idiosyncratic random error 

term assumed to be identically and independently Type 1 Extreme Value distributed across 

households ℎ and segment 𝑠. Then the probability that household ℎ belongs to segment 𝑠 is given 

as:  

 𝑃ℎ𝑠 =  
𝑒𝑥𝑝(𝛽𝑠𝑧ℎ)

∑  𝑒𝑥𝑝(𝛽𝑠𝑧ℎ)𝑠
 (5) 

Within the latent segmentation approach, the unconditional probability, 𝑃ℎ(𝑗) of household ℎ 

choosing auto ownership level 𝑗 is given as:  

 𝑃ℎ(𝑗) =  ∑(

𝑆

𝑠=1

𝑃ℎ(𝑗)|𝑠)(𝑃ℎ𝑠) (6) 

The log-likelihood (LL) function for the entire dataset with appropriate conditional probability, 

𝑃ℎ(𝑗)|𝑠 (in our case, 𝑃ℎ(𝑗)|𝑠 =  Λ(𝜓𝑠𝑘
− 𝛼𝑠𝑥ℎ) − Λ(𝜓𝑠𝑘−1

− 𝛼𝑠𝑥ℎ) where 𝜓 represents 

thresholds) for ordered regime is provided below: 

 𝐿 = ∑ log(𝑃ℎ(𝑗))

𝐻

ℎ=1

 (7) 

 

2.4 Copula based Joint MNL-OL Model 

In our empirical analysis, in addition to vehicle ownership, we considered another dependent 

variable – residential location choice. The former is modeled using OL structure, and the latter is 

modeled using MNL structure. These two dependent variables are jointly analyzed using a copula 

approach (see Yasmin et al., 2014; Rana et al., 2010; Portoghese et al, 2011 for a similar modeling 

technique in a different context). The copula approach is gaining wide applicability in recent years 
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amongst travel behavior researchers (Rashidi and Mohammadian, 2016; Ermagun et al., 2015; Zou 

et al., 2014). 

 

2.4.1 Residential Location Model Component 

Let 𝑟 (𝑟 = 1,2, … … , 𝑅) be the index representing residential location choice of households 

ℎ (1, 2, … , … , 𝐻). Following random utility theory, the propensity of a household ℎ choosing a 

residential location 𝑟 takes the form of: 

𝑢ℎ𝑟
∗ = 𝛽𝑟𝑥ℎ𝑟 + ξℎ𝑟 (8) 

where, 𝑥ℎ𝑟 is a vector of exogenous variables, 𝛽𝑟 is a vector of unknown parameters specific to 

residential location 𝑟 and 𝜉ℎ𝑟 is an idiosyncratic error term (assumed to be standard type-I extreme 

value distributed) capturing the effects of unobserved factors on the propensity associated with 

residential location 𝑟. A household ℎ is assumed to choose location type 𝑟 if and only if the 

following condition holds: 

𝑢ℎ𝑟
∗ > max

𝑙=1,2,…,𝑟,   𝑙≠𝑟
𝑢ℎ𝑙

∗  (9) 

The condition presented in Equation (9) can be equivalently represented as a series of binary 

outcome models for each location choice, 𝑟 (see Lee, 1983). For example, let 𝜂ℎ𝑟 be a dichotomous 

variable with 𝜂ℎ𝑟 = 1 if a household ℎ ends up choosing residential location 𝑟 and 𝜂ℎ𝑟 = 0 

otherwise. Now, let us define 𝑣ℎ𝑟 as follows: 

𝑣ℎ𝑟 = ξℎ𝑟 − { max
𝑙=1,2,…,𝑟,   𝑙≠𝑟

𝑢ℎ𝑙
∗ } (10) 

By substituting the right side for 𝑢ℎ𝑟
∗  from Equation (8) in Equation (9), we can write: 

𝜂ℎ𝑟 = 1  if  𝛽𝑟𝑥ℎ𝑟 + 𝑣ℎ𝑟 > 0 (11) 

An assumption of independent and identical Type 1 Gumbel distribution for 𝜉ℎ𝑟 results in a logistic 

distributed 𝑣ℎ𝑟. Consequently, the probability expression for the corresponding residential location 

model resembles the multinomial logit probability expression: 

𝛬𝑟(𝛽𝑟𝑥ℎ𝑟) = 𝑃𝑟(𝑣ℎ𝑟 > −𝛽𝑟𝑥ℎ𝑟) =
∑ 𝑒𝑥𝑝 (𝛽𝑟𝑥ℎ𝑙)𝑙≠𝑟

𝑒𝑥𝑝 (𝛽𝑟𝑥ℎ𝑟) + ∑ 𝑒𝑥𝑝 (𝛽𝑟𝑥ℎ𝑙)𝑙≠𝑟
 (12) 

 

2.4.2 Vehicle Ownership Model Component 

Considering the vehicle ownership levels to be ordered, the probability expression for household 

ℎ owning vehicle fleet size 𝑗 in a residential location 𝑟 takes the following form: 

𝑃𝑟(𝑦ℎ𝑟 = 𝑗𝑟) = 𝛬𝑟(𝜏𝑟,𝑗 − 𝛼𝑟𝑧ℎ𝑟) − 𝛬𝑟(𝜏𝑟,𝑗−1 − 𝛼𝑟𝑧ℎ𝑟) (13) 

where, 𝛬𝑟(. ) is the standard logistic cumulative distribution function.  
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2.4.3 The Joint Model 

The vehicle ownership and residential location component discussed in the previous two 

subsections may be brought together in the following equation system: 

𝜂ℎ𝑟 = 1  if 𝛽𝑟𝑥ℎ𝑟 > 𝑣ℎ𝑟 

𝑦ℎ𝑟
∗ = 𝛼𝑟𝑧ℎ𝑟 + 𝜀ℎ𝑟 ,   𝑦ℎ𝑟 = 1[𝜂ℎ𝑟 = 1]𝑦ℎ𝑟

∗  
(14) 

In constructing the copula dependency, the random variables (𝑣ℎ𝑟 and 𝜀ℎ𝑟) are transformed into 

uniform distributions by using their inverse cumulative distribution functions, which are then 

coupled or linked as a multivariate joint distribution function by applying the copula structure. Let 

us assume that 𝛬𝑣𝑟(. ) and 𝛬𝜀𝑟(. ) are the marginal distribution of 𝑣ℎ𝑟 and 𝜀ℎ𝑟, respectively and 

𝛬𝑣𝑟,𝜀𝑟(. , . ) is the joint distribution of 𝑣ℎ𝑟 and 𝜀ℎ𝑟. Subsequently, a bivariate distribution 

𝛬𝑣𝑟,𝜀𝑟(𝑣, 𝜀) can be generated as a joint cumulative probability distribution of uniform [0,1] 

marginal variables 𝑈1 and 𝑈2 as below: 

𝛬𝑣𝑟,𝜀𝑟(𝑣, 𝜀) = 𝑃𝑟(𝑣ℎ𝑟 < 𝑣, 𝜀ℎ𝑟 < 𝜀) 

= [𝛬𝑣𝑟
−1(𝑈1) < 𝑣, 𝛬𝜀𝑟

−1(𝑈2) < 𝜀 ] 

= [𝑈1 < 𝛬𝑣𝑟(𝑣), 𝑈2 < 𝛬𝜀𝑟(𝜀) ] 

(15) 

The joint distribution (of uniform marginal variable) in Equation (15) can be generated by a 

function 𝐶𝜃ℎ(. , . ) (Sklar, 1973), such that: 

𝛬𝑣𝑟,𝜀𝑟(𝑣, 𝛿2) = 𝐶𝜃ℎ
(𝑈1 = 𝛬𝑣𝑟(𝑣), 𝑈2 = 𝛬𝜀𝑟(𝜀)) (16) 

where 𝐶𝜃ℎ
(. , . ) is a copula function and 𝜃ℎ the dependence parameter defining the link between 

𝑣ℎ𝑟 and 𝜀ℎ𝑟.  

 

2.4.4 Estimation Procedure 

The joint probability that the household ℎ residing in a residential location type 𝑟 and owning a 

fleet size of 𝑗, from Equation 9 and 14, can be written as:  

𝑃𝑟(𝜂ℎ𝑟 = 1, 𝑦ℎ𝑟 = 𝑗𝑟) 

= 𝑃𝑟 {(𝛽𝑟𝑥ℎ𝑟 > 𝑣ℎ𝑟), ((𝜏𝑟,𝑗−1 − 𝛼𝑟𝑧ℎ𝑟) < 𝜀ℎ𝑟 <  (𝜏𝑟,𝑗 − 𝛼𝑟𝑧ℎ𝑟))}   

= 𝑃𝑟 ((𝛽𝑟𝑥ℎ𝑟 > 𝑣ℎ𝑟), (𝜀ℎ𝑟 < 𝜏𝑟,𝑗 − 𝛼𝑟𝑧ℎ𝑟))

−  𝑃𝑟 ((𝛽𝑟𝑥ℎ𝑟 > 𝑣ℎ𝑟), (𝜀ℎ𝑟 < 𝜏𝑟,𝑗−1 − 𝛼𝑟𝑧ℎ𝑟)) 

= 𝛬𝜀𝑟(𝜏𝑟,𝑗 − 𝛼𝑟𝑧ℎ𝑟) −  𝛬𝜀𝑟(𝜏𝑟,𝑗−1 − 𝛼𝑟𝑧ℎ𝑟) − (𝑃𝑟[𝑣ℎ𝑟 < −𝛽𝑟𝑥ℎ𝑟 , 𝜀ℎ𝑟 <

 (𝜏𝑟,𝑗 − 𝛼𝑟𝑧ℎ𝑟)] − 𝑃𝑟[𝑣ℎ𝑟 < − 𝛽𝑟𝑥ℎ𝑟 , 𝜀ℎ𝑟 <  (𝜏𝑟,𝑗−1 − 𝛼𝑟𝑧ℎ𝑟)] ) 

(17) 

The joint probability of Equation (17) can be expressed by using the copula function as: 

𝑃𝑟(𝜂ℎ𝑟 = 1, 𝑦ℎ𝑟 = 𝑗𝑟)

= 𝛬𝜀𝑟(𝜏𝑟,𝑗 − 𝛼𝑟𝑧ℎ𝑟) −  𝛬𝜀𝑟(𝜏𝑟,𝑗−1 − 𝛼𝑟𝑧ℎ𝑟)

−  [𝐶𝜃ℎ(𝑈ℎ,𝑗
𝑟 , 𝑈ℎ

𝑟) − 𝐶𝜃ℎ(𝑈ℎ,𝑗−1
𝑟 , 𝑈ℎ

𝑟)]  

(18) 
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where 𝑈ℎ,𝑗
𝑟  = 𝛬𝜀𝑟(𝜏𝑟,𝑗 − 𝛼𝑟𝑧ℎ𝑟), 𝑈ℎ

𝑟 = 𝛬𝑣𝑟(−𝛽𝑟𝑥ℎ𝑟) . 

Thus the likelihood function with the joint probability expression in Equation (18) for vehicle 

ownership and residential location outcomes can be expressed as: 

𝐿 = ∏ [∏ ∏{𝑃𝑟(𝜂ℎ𝑟 = 1, 𝑦ℎ𝑟 = 𝑗𝑟)} 𝜔ℎ𝑟𝑗

𝐽

𝑗=1

𝑅

𝑟=1

]

𝐻

ℎ=1

  (19) 

where, 𝜔ℎ𝑟𝑗 is dummy with 𝜔ℎ𝑟𝑗 = 1 if the household ℎ resides in residential location 𝑟 and own 

vehicle fleet size of 𝑗 and 0 otherwise. All the parameters in the model are then consistently 

estimated by maximizing the logarithmic function of 𝐿. The parameters to be estimated in the 

model are: 𝛽𝑟 in the MNL component, 𝛼𝑟 and 𝜏𝑟,𝑗 in OL component.  In our analysis, we employ 

six different copulas structure - the Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) 

copula, and a set of Archimedean copulas including Frank, Clayton, Joe and Gumbel copulas (a 

detailed discussion of these copulas is available in Bhat and Eluru, 2009). Once the parameters are 

obtained, the equation for calculating the probability (as marginal of the joint distribution) for the 

𝑗𝑡ℎ alternative from the joint model is as follows: 

𝑃(𝑗) =  ∑ 𝑃𝑟(𝜂ℎ𝑟 = 𝑟, 𝑦ℎ𝑟 = 𝑗)

∀𝑟

 (20) 

In our case, equation (20) is a summation of as many terms as the number of residential location 

alternatives for each vehicle fleet size (j). Please note that restricting the copula structure to have 

no correlation between the error terms of residential location and vehicle ownership choices would 

result in a residential location cluster based ordered logit or exogenous segmentation based ordered 

logit (ESOL) model. All the parameters in all the models are consistently estimated by maximizing 

the log-likelihood function, which is accomplished using the GAUSS matrix programming 

language. 

 

3. CASE STUDY  

 

3.1 Endogeneity in Vehicle Ownership 

Private automobile ownership (fleet size and composition) and residential location choice are two 

household decisions that have significant impact on transportation outcomes. The interrelationship 

between these two decision processes is well established in the extant travel behavior literature (de 

Abreu e Silva et al., 2012a; Rashidi et al., 2011; van Acker and Witlox, 2010) and has received 

considerable attention from the transportation community over the years. One stream of studies 

assumes one-way causal relationship between vehicle ownership and residential location and treats 

land use characteristics as purely exogenous factors in models of vehicle ownership (see Anowar 

et al., 2016; Kowald et al., 2016; Anowar et al., 2014; Scott and Axhausen, 2006).  The other 

stream of studies argues that considering residential location as merely an exogenous variable may 

provide erroneous indications of the true impacts of land use on vehicle ownership. This might be 
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due to a phenomenon referred to as self-selection or residential sorting where households with a 

proclivity towards certain lifestyle (for example, desire or lack of desire to own vehicles), choose 

to “self-select” or reside in a location conducive to their preferred lifestyle and travel inclinations 

(de Vos and Witlox, 2016; Chatman, 2014; Chen and Lin, 2011). In other words, vehicle ownership 

levels of households might be endogenous to their choice of location of residence. In econometric 

theory, the endogeneity bias occurs from the common unobserved factors affecting the two choice 

processes. To accommodate for the interdependency, researchers have jointly modeled residential 

location choice and vehicle ownership levels. Bhat and Guo (2007) and Pinjari et al. (2008) both 

used multidimensional models to capture endogeneity between vehicle ownership and other 

decision processes.  

 A list of studies investigating endogeneity between vehicle ownership and residential 

location choice is presented in Table 1(a) and 1(b). Table 1(a) includes studies that explicitly 

consider residential location as a decision variable to address the endogeneity issue while Table 

1(b) contains studies that examine endogeneity by considering the interaction of built environment 

and vehicle ownership. Both tables provide information on the study area, methodology employed, 

measures of endogenous travel behavior investigated, and the exogenous variable categories 

considered in the analysis. The only difference between the tables is in terms of explanatory 

variables; policy variable category is included in Table 1(a) while Table 1(b) includes 

attitude/lifestyle variable. The following observations may be made from the tables. First, most of 

the evidence comes from North America, particularly USA. Very few studies are in the Asian, 

European, and South American contexts. Second, majority of the studies are cross-sectional in 

nature, with Cao et al. (2007) and Aditjandra et al. (2012) being the only two exceptions (quasi-

longitudinal). Third, for addressing the self-selection issue, the two most prevalent methodologies 

employed in the studies are the multidimensional models and the Structural Equation Models 

(SEM). Fourth, examination of these studies further revealed that residential location choice 

options incorporated in the models are of two types. The choices are formulated by either 

considering the smallest available geographic unit, such as the traffic analysis zones (TAZ) or the 

census tract (CT) (Bhat and Guo, 2007; Salon, 2009) or aggregating the city neighborhoods, based 

on selected attributes, into a small number of interpretable geographic units (Bhat et al., 2013; 

Guerra, 2015). For example, Bhat et al. (2013) and Bhat et al. (2014) used density of the census 

blocks in which the household resides to create seven location choice alternatives while Bhat and 

Eluru (2009) used factor and cluster analysis to classify TAZs into neo-urbanist and conventional 

neighborhoods. 

 

3.2 Data Source and Preparation 

Montreal is the second largest Census Metropolitan Area (CMA) in Canada characterized by a 

diverse urban form and a unique heterogeneous multimodal transportation system comprised of 

metro, commuter train, and an extensive bus service. The city has a relatively high share of transit 

ridership (for a North American city) (Eluru et al., 2012b). With 500 km of recreational and on-

street bicycle paths, Montreal is also one of North America’s top destinations for urban cycling. 
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The urban region size with its land use mix, fairly well-developed public transportation system, 

and active transportation infrastructure and culture makes Montreal an ideal subject to investigate 

the issue of residential self-selection in the context of household vehicle ownership levels. 

 The primary data source used in the current analysis is the 2008 cross-sectional Origin-

Destination (O-D) survey of Greater Montreal Area (GMA). The O-D surveys are conducted every 

five years and they are the primary source of information on individual mobility patterns in the 

GMA region. Several socioeconomic characteristics of both individuals and households are 

recorded, including age, gender, work status, license status, and number of household members. 

The O-D data was augmented with a host of secondary GIS data sources and Census data. The 

sample employed in the empirical analysis was prepared in several steps. From the 66,124 records, 

a random sample was drawn which comprised approximately 16,000 households, of which 10,214 

data records were used for estimation and 5,455 data records were set aside for model validation. 

The sampling exercise was undertaken primarily to reduce the data compilation burden using 

ArcGIS. Additionally, considering large data samples for model estimation could also result in 

inflated parameter significance. The random sampling process was carefully undertaken to ensure 

that estimated sample dependent variable distribution matched with the full sample dependent 

variable distribution.   

 

3.3 Residential Cluster Generation 

GMA is comprised of 878 census tracts (CT). Based on a thorough review of previous literature, 

a comprehensive list of urban form and land use variables were generated using ArcGIS platform 

for each of these tracts. Then, residential location alternatives for the households were created by 

clustering these CTs using k-means clustering technique since there was no existing 

urban/suburban/rural typology provided in the survey data (similar technique was used in Salon, 

2015; Manaugh et al., 2010; Pinjari et al., 2008). k-means cluster analysis groups each tract into 

one of a pre-determined number of clusters based on selected variables such that internal similarity 

is maximized while similarities between groups are minimized. The variables used to define 

clusters are: (1) population density (population per acre), (2) job density (number of jobs per 15-

65 year aged population), (3) number of detached households in CT, (4) number of transit, bike, 

and walk commuters, and (5) number of dwelling units built before 1946. The selection of the 

clustering variables was guided by their significance in similar previous research in creating 

neighborhood typologies (Salon, 2015; Patterson et al., 2014; Miranda-Moreno et al., 2012; 

Harding et al., 2014). Population density is a good indicator of urbanity and land use mix while 

job density captures labor demand (Hastings, 2003). Share of single-detached dwellings in a tract 

is a good marker of homogeneity/heterogeneity of land use developments. The share of active and 

transit mode users is included as a proxy for accessibility to transit. Finally, the share of dwellings 

built before 1946 provides an indication of historical core of the city (de Vos and Witlox, 2016; 

Patterson et al., 2014). Moreover, researchers have reported that percentage of buildings built 

before Second World War is likely to be correlated with urban form variables (Boarnet and 

Sarmiento, 1998; Vance and Hedel, 2007). 
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The clustering procedure was carried out in SPSS. After classifying the tracts, using 

ArcGIS, visual inspection of the clustering result was conducted as a “sanity check” for obvious 

misclassification or dubious classification, which might simply be due to inadequate number of 

clusters specified (Lin and Long, 2008). In our case, the optimal number of cluster categories 

extracted was found to be 4 (see Figure 1). Then households were assigned to these clusters based 

on which CT they fall in geographically. After reviewing these clusters (local knowledge of the 

region was very useful in this regard), each cluster was labelled to represent its characteristics. A 

brief description of each of the final clusters is provided below: 

 Cluster 1: Urban Core – represents mostly the downtown core and central neighborhoods, 

with the highest values in each of the five input variables. This includes the historic core city, 

and a very heterogeneous land use mix. 

 Cluster 2: Inner Suburb – this is the intermediate residential location type with all values of 

the clustering variables being equal or very close to the average. 

 Cluster 3: Outer Suburb – where all attributes have values slightly below the average. 

 Cluster 4: Suburban/Rural – characterized by the lowest values in all categories, which is 

also referred to as the periphery. 

Table 2 lists the characteristics that were used to classify census tracts together with their average 

values in each resulting neighborhood type. 

 

3.4 Independent Variables and Descriptive Statistics 

In the current study, a comprehensive set of exogenous attributes were considered to examine 

vehicle ownership levels and residential location choices of households. The independent variables 

can be broadly classified into three categories: (1) household socio-demographic characteristics, 

(2) land use and built environment characteristics, and (3) transit accessibility measures. To 

account for the impact of worker’s transit accessibility at work locations on household’s vehicle 

fleet size decision, we created the interaction of the number of worker variable with varying 

degrees of transit accessibility (no access, low, medium, and high access). In addition to the 

regional land use characteristics, the local attributes in the vicinity of the location of the household 

were also compiled for our analysis. This was achieved by creating 600m circular buffer1 around 

household residential location. The list of the variables and their definitions are presented in Table 

3(a). 

 Car ownership levels were classified as no car, one car, two cars, and three or more cars. 

The distribution of auto ownership levels in the estimation sample were as follows: 20.6% of the 

households were carless, 43.1% owned one car, 29.1% owned two cars, and 7.2% of the 

households had a fleet size in excess of two cars. Distribution of households in terms of residential 

location were as follows: 26.8% resided in the urban core, 25.1% in the inner ring area, 28.8% in 

the outer ring area, and 19.3% in the suburban area. Moreover, the auto ownership descriptive 

                                                 
1 Buffers were established around household geocoded locations with 600m radius. In the earlier literature, the 

acceptable walking distance to transit stops and stations is often assumed to be 400m (Larsen et al., 2010). We 

employed a larger buffer than 400m to allow for the low-density developments in Canadian cities that might require 

people to walk further to reach transit stations from their households. 
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analysis indicated an average ownership of 1.27 vehicles per household. Vehicle ownership 

distribution across residential location clusters are presented in Figure 2. From the figure, it can be 

observed that households with larger fleet sizes live predominantly in the suburbs while 

households in the central areas have fewer cars. Some other salient characteristics of the sample 

are: the majority of the households (60.8%) reside in medium income CTs, two-thirds have at least 

one male adult (67%), one full-time employed member (64.6%), about three-quarters have at least 

one part-time worker, nearly one-third of the households have at least one child and one-third of 

the households have at least one retiree. We can also observe from Table 3(b) that the proportions 

of different variables vary substantially across different outcomes of the residential location and 

auto ownership decisions. Note that the percentages sum to 100% for each exogenous variable 

across the vehicle ownership columns and across residential location clusters columns. 

 

4. EMPIRICAL ANALYSIS 

  

4.1 Model Specification and Overall Measures of Fit 

The empirical analysis involved a series of model estimations. To analyze household vehicle 

ownership, we estimated five models: (1) traditional ordered logit (OL) model, (2) exogenous 

segmentation residential location cluster based ordered logit model (ESOL) – 4 cluster specific 

OL models, (3) mixed ordered logit (MOL) model, (4) latent segmentation based ordered logit 

model with two (LSOLII), and three (LSOLIII) segments, (5) a copula based joint residential 

location and vehicle ownership model. The estimation process is relatively straightforward for 

models (1), (2) and (3). The log-likelihood (parameters) for these models are as follows: OL [–

9101.60 (27)], ESOL [–9075.30 (67)], and (3) MOL [–9096.12 (28)]. Estimation of models (4) 

and (5) involve multiple steps. For the latent segmentation modeling approach, the model 

estimation process began with a model considering two segments. The final number of segments 

was determined by adding one segment at a time until further addition did not enhance intuitive 

interpretation and data fit. Finally, the number of segments corresponding to the lowest value of 

Bayesian Information Criterion (BIC)2 was considered as the appropriate number of segments. 

However, it should be noted that the decision regarding the optimal number of classes should be 

made considering the significance of the number of parameters and the interpretability of the 

model. The BIC (number of parameters estimated) values for the LSOL model with two and three 

segments were, 18104 (42) and 18266 (43), respectively. Therefore, we selected two segments as 

the appropriate number of segments. From here on latent segmentation model refers to the two 

segment latent class model.  

                                                 
2 The Bayesian Information Criterion (BIC) for a given empirical model is equal to [– 2 (LL) + K ln (Q)], where (LL) 

is the log-likelihood value at convergence, K is the number of parameters, and Q is the number of observations. BIC 

is found to be the most consistent Information Criterion (IC) for correctly identifying the appropriate number of 

segments in latent segmentation models (see Nylund et al., 2007). Moreover, several research studies have employed 

BIC to compare models because the test statistic accommodates data fit and number of parameters in identifying the 

best model (Burnham and Anderson, 2004; Kuha, 2004). 
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For the joint copula based MNL-OL model, we estimated models considering six different 

copula structures: (1) Gaussian, (2) FGM, (3) Clayton, (4) Gumbel, (5) Frank and (6) Joe. Copula 

models that allow for different dependency structures for different residential location choice and 

vehicle ownership level combinations were also estimated. The lowest BIC value was obtained for 

a combination model of Joe-FGM copulas. The log-likelihood value at convergence for the Joe-

FGM model structure was found to be -21677.79 (81) while the log-likelihood at convergence for 

the independent model structure that ignores any potential copula dependency was -22052.23 (99). 

The BIC values for the Joe-FGM model and the independent model were 44103 and 45018, 

respectively. The results support the presence of common unobserved factors influencing location 

and vehicle ownership choice processes. In terms of dependency, note that a positive parameter 

indicates that the dependencies caused by the common unobserved factors for the specific location 

clusters are positive, and a negative parameter indicates that the dependencies are negative. In our 

model, Joe copula dependency structure is associated with urban core and inner ring 

neighborhoods while FGM dependency structure is associated with outer ring and suburban 

locations. Joe copula structure can only account for positive dependence and offers a stronger right 

tail dependence. The magnitude of dependence decreases from the urban core location to the inner 

ring location. FGM can accommodate both positive and negative values. The parameter for FGM 

copula was found to be at the negative limit implying that weak dependency was captured using 

this copula. The result suggests that a household that makes a choice to reside in urban core is also 

likely to own more vehicles. The result might seem counterintuitive at first glance. However, it 

might be attributed to, among other things, unobserved factors characterizing households who 

enjoy the amenities and activities that a city core like Montreal has to offer but at the same time, 

enjoy the social status of owning a large vehicle fleet despite living in an area with high transit 

accessibility. Similar results were reported by Li et al. (2010), Cullinane and Cullinane (2003), 

Innocenti et al. (2013), Sanko et al. (2014), and Bhat and Eluru (2009). 

We can compare the four models of vehicle ownership that are non-nested using the BIC 

values. The BIC values for each of the four models are: OL [18452], ESOL [18409], MOL [18450], 

and LSOLII [18104]. From these comparisons, clearly the latent segmentation framework 

outperforms all other approaches. The BIC value for joint copula model is not comparable to the 

other models because it has two dependent variables in the computation of LL and BIC. Hence, 

based on the final set of convergence estimates, using Equation (20), we generated the marginal 

for vehicle ownership dimension based on the joint probability prediction. The LL generated was 

–8481.99 and the corresponding BIC value was 17472. Clearly, the numbers indicate that the 

vehicle ownership component estimated from the joint copula based model outperforms all other 

frameworks.  

 

4.2 Model Results  

We present the results of MOL model in Table 4, ESOL model is Table 5, LSOLII model in Table 

6, and copula based model in Table 7(a) (residential cluster choice) and Table 7(b) (vehicle 

ownership). Note that we are estimating four different model systems and each system is 



Anowar & Eluru 15 

 

 

 

comprised of different components. For example, in the MOL model, we estimate the household 

level disturbance of the mean effects. The LSOLII model has two parts – the segmentation 

component where households are assigned to different segments based on exogenous attributes 

and segment specific vehicle ownership component. In the copula based model, we have 

residential cluster choice and the corresponding vehicle ownership components. In addition, we 

also estimate dependence effects between the two choice components. For the sake of brevity, we 

provide only brief explanation of the different components of all the models, and discuss the 

vehicle ownership component of all of these models together. The model estimation process began 

with the same explanatory variables data pool and the final specification was based on a systematic 

process of removing statistically insignificant variables at 95% confidence level and combining 

variables when their effects were not significantly different. 

 

4.2.1 Segmentation Component of Latent Segmentation Based Ordered Logit (LSOLII) Model 

From the segment shares, it is observed that the likelihood of households belonging to segment-2 

is the highest (68%). Further, the car ownership probabilities for households, conditional on their 

belonging to a particular segment, indicate that the two segments exhibit very distinct car 

ownership profiles. For example, the households belonging to segment 1 are less likely to own 

zero cars (only 12%), while households assigned to segment 2 are less likely to own 3 or more cars 

(only 8%). The probability that a household belongs to either one of these two segments is found 

to be influenced by land use variables including area of the census tract where the household is 

located, land use mix, number of detached, rented households in the CT, and urban core residential 

cluster.  

 

4.2.2 Residential Cluster Choice Component of Copula based MNL-OL Model 

In presenting the effects of the exogenous variables in the MNL-OL joint model specification, we 

will restrict ourselves to the discussion of the Joe-FGM specification. We found that households 

with children are more likely to locate themselves in lesser density neighborhoods. Similar 

residential location choice preference was also observed for households with higher number of 

retirees and driving license holders. Moreover, households comprised of workers with reduced 

transit accessibility at work, are attracted to peripheral location (outer ring and suburban) while 

workers with high transit accessibility prefer high density areas. On the other hand, households 

with higher number of male adults or young adults or students or part-timers are more likely to 

choose high density areas for residing. These results suggest that households composed of 

members from these demographic groups might be interested in urban lifestyles and are more 

environmentally cautious.  

 

4.2.3 Vehicle Ownership Component (All Models) 

All the variables in the vehicle ownership component have similar signs in MOL, ESOL, LSOLII, 

and Copula OL models. The same factors were often found to influence the vehicle ownership 

decision across all models. For example, larger households (those with higher number of male 
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adults or with adults between the age of 19-64 years) have a higher propensity to own more 

vehicles, presumably to reduce the vehicle resource constraints on members, particularly if the 

household is located outside of urban core (similar results were reported in Beige and Axhausen, 

2008). Irrespective of location, households with higher number of full- and part-time workers are 

more likely to own more cars. Some variables were only significant in one of the segments. For 

instance, presence of teenaged children (15-19 years of age), number of female adults, and number 

of middle-aged adults had a positive effect on vehicle owning propensity in Segment-1. At 18, 

teenagers are allowed to drive alone and thus, households might acquire extra cars to allow them 

to drive independently (Prillwitz et al., 2006). Moreover, the impact of some of the exogenous 

variables varied both in sign and magnitude between the two segments highlighting the presence 

of population heterogeneity. For instance, we observed that households in Segment-1 have a higher 

likelihood of owning less cars with an increase in the number of retirees in the household while 

the opposite effect is observed for Segment-2. In the MOL and copula based models, number of 

retirees had similar effects. Households living in urban core have a higher likelihood of owning 

more vehicles if toddlers (0-4 years) are present. Households might enjoy the extra flexibility that 

personal automobiles offer in terms of traveling with children (for example, dropping children off 

to day-care, school and/or participate in wide variety of leisure activities) and hence, are more 

inclined towards owning more vehicles (Nolan, 2010), even when located in dense urban areas.  

 All of the land use measures negatively impacted vehicle ownership except number of 

driver commuters, number of detached households, and median income level of census tract. There 

are two plausible explanations for the impact of number of driver commuters in CT: these CTs 

have low population density and are not well served by transit; also, the accessibility at the job 

locations via non-auto mode for these commuters are poor, thereby increasing the likelihood of 

owning more cars (Chen et al., 2008; Salon, 2015). This is further corroborated by our own finding 

that households with workers who have little or no transit accessibility at their place of work tend 

to own multiple vehicles. For households located in high income CT, the propensity to own 

multiple vehicle is normally distributed with a mean of 0.463 and standard deviation of 0.0773. In 

addition to these variables, the results from the copula model indicated that increased population, 

job, and dwelling density have a negative impact on vehicle fleet size decision of households, 

particularly when they are located in the outlying areas. Our finding is in line with the results 

reported in the extant travel behavior literature - increased density helps reduce vehicle ownership 

levels (see Chen et al., 2008; Li et al., 2010; Schimek, 1996; Dargay and Hanly, 2007). 

 The transit attributes found significant was number of bus stops, bus destination diversity, 

and number of commuter rail stops within the household buffer. As expected, the effect was 

negative indicating that better transit service obviates the need to have large fleet size, more so if 

the households are located outside of urban core area.  

 

                                                 
3The estimates indicate the distribution is primarily positive as can be observed by the larger mean relative the standard 

deviation. 
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5. MODEL COMPARISON  

We evaluated the performance of the estimated models (MOL, ESOL, LSOLII (obtained from 

Step 1), and copula OL model (obtained from Step 2) using both aggregate and disaggregate 

measures of fit. At the aggregate level, Root Mean Square Error (RMSE) and Mean Absolute 

Percentage Error (MAPE) are computed by comparing the predicted and observed shares of 

vehicle ownership levels. The reader would note that aggregate level statistics are based on just 4 

values (aggregated predictions of the 4 vehicle ownership categories considered – 0 car, 1 car, 2 

cars, and 3 or more cars) and thus are useful to identify large scale errors only. At the disaggregate 

level, we used the log-likelihood at convergence (for estimation sample), predictive log-likelihood 

(for validation sample), and BIC. We compute these measures for the full as well as specific sub-

samples within the estimation and validation datasets. The subsamples were created based on the 

following variables: median income of census tract (medium), presence/absence of full-time 

worker, residential location cluster (urban core), and presence/absence of bus stops. Please note 

that similar to the estimation dataset, the validation was extracted using random sampling 

procedure from the base O-D survey data and was set aside during model estimation. 

 

5.1 Estimation Sample 

The validation results for the estimation sample are presented in Table 8. We can observe that the 

copula OL (Joe-FGM) model performs reasonably well at the disaggregate level for the entire 

sample (LL = -8481.99) and for specific subsamples compared to LSOLII, MOL, and ESOL 

models. The performance essentially provides support to the notion that adding additional 

dependent variables to predict the dependent variable of interest provides additional data fit. In our 

empirical context, the ordering of performance across model frameworks is as follows: copula 

based OL model, LSOLII model, ESOL model, and MOL model. On the other hand, the 

comparison of the models at the aggregate level is far from conclusive. We found that LSOLII and 

MOL models perform better in terms of RMSE and MAPE (only marginally). It is important to 

recognize that the validation at the disaggregate level is more critical to model comparison relative 

to the validation at the aggregate level. 

 

5.2 Validation Sample 

A validation experiment was also carried out in order to ensure that the statistical results obtained 

above are not a manifestation of over fitting to data. To undertake the validation exercise, we 

employ the final parameters of the models to predict alternative probabilities for the households in 

the hold-out sample. For testing the predictive performance of the models, 50 data samples, of 

about 2000 records each, are randomly sampled from the hold out validation sample consisting of 

5,455 records. We evaluate both the aggregate and disaggregate measure of predicted fit by using 

these 50 different validation samples. For these samples, we present the average measures from 

the comparison, and also the confidence interval (C.I.)4 of the fit measures at 95% confidence 

level. The results for the validation sample are presented in Table 9. The bands computed show 

                                                 
4 Confidence Interval (C.I.) = mean ± 1.96 × standard deviation / √(50) 
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that with an exception of one or two cases, at the disaggregate level, the ordered component of the 

Joe-FGM copula structure consistently outperformed the independent (ESOL), MOL, and LSOLII 

models. At the aggregate level, based on the point estimates the Joe-FGM copula did not offer the 

best fit, however, the confidence bands indicate that there is no statistically significant difference 

between Joe-FGM copula model and the ESOL model. Hence, there is enough evidence to suggest 

that copula based MNL-OL model performs significantly better in the empirical analysis compared 

to the three univariate models estimated in our analysis. 

 

5.3 Policy Analysis 

To further evaluate the performance of the alternative model structures, we conducted a policy 

analysis experiment. More specifically, the percentage changes in vehicle ownership levels were 

predicted for a unit level increase in the number of full-time workers, part-time workers, 10% 

increase in bike route length, in pedestrian/bike route length, and in the number of bus stops, within 

the household buffer. The results are presented in Table 10. The analysis is conducted for the 

parameter distributions represented by 20 sets of coefficient values to obtain a confidence band at 

the 95% confidence level (as opposed to only the point estimates). 

 In general, it is found that the vehicle fleet size changes provided by the copula OL model 

differ from that of the fleet size changes provided by MOL, ESOL, and LSOL models. The findings 

are based on the comparison of the 95% confidence level vehicle ownership change distributions 

(and not just point estimates). While some model prediction differences are small, there are some 

that are quite substantial (e.g., effect of increase in full-and-part-time workers on 3 or more car 

ownership levels), suggesting that ignoring dependency across choice dimensions could result in 

serious over- and/or under-estimation of impacts of changes in exogenous variables. An increase 

in bus stop numbers within the household buffer decreased multiple vehicle ownership by a small 

margin. Moreover, our results also suggest that increasing accessibility for both pedestrians and 

bicyclists by expanding pedestrian and bike routes has a greater impact on reducing vehicle 

ownership than just increasing bike route length.  

 

6. SUMMARY AND CONCLUSIONS 

In this paper, we propose a comparison of different model systems that relax the population 

homogeneity assumption using vehicle ownership as our case study. To be sure, in this context, 

several studies have compared and contrasted the single dependent variable model frameworks. 

However, there is no effort to compare the single dependent approaches with multiple dependent 

variable approaches. We aim to bridge this gap in the literature by comparing several single 

dependent variable approaches with a copula based joint modeling approach. The rationale behind 

the comparison effort is to evaluate if adding additional complexity to the model system with 

additional dependent variables provides adequate improvement in data fit to warrant the additional 

dimensions and complexity that arises with it.  

 Using the 2008 Origin-Destination survey data of Greater Montreal Area (GMA), we 

estimated and compared five models: (1) traditional ordered logit (OL) model, (2) exogenous 
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segmentation residential location cluster based ordered logit model (ESOL) – 4 OL models, (3) 

mixed ordered logit (MOL) model, (4) latent segmentation based ordered logit model with two 

(LSOLII), and three (LSOLIII) segments, (5) a copula based joint residential location and vehicle 

ownership model. For the joint model system, in addition to vehicle ownership, we considered 

another dependent variable – residential cluster location choice which were generated using 

multivariate k-means clustering technique. In the univariate models, the residential location cluster 

information was used as an exogenous variable. This is a major difference between the univariate 

models and the multivariate copula model. In light of the difference, several post-processing steps 

were undertaken to generate comparable model fit measures across these approaches. The 

performance of the models was examined for set of full sample as well as for specific sub-samples 

of estimation and validation dataset. In our empirical context, with an exception of one or two 

cases, both at aggregate and disaggregate levels, the ordered component of the Joe-FGM copula 

structure consistently outperformed the ESOL, MOL, and LSOLII models. Even in the cases when 

the univariate models outperformed the copula OL, the difference was found to be marginal. The 

results indicate that the extra complexity necessary to study the two dependent variables does offer 

additional fit improvement. However, caution should be exercised in generalizing the study 

findings since the observation made is for data from one urban region. It would be interesting to 

test the hypothesis on another city data. Our study could be further enhanced by considering 

attitudinal factors within the modeling approach for examining residential location choices and 

decisions about vehicle ownership.  
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Figure 1: Residential Location Clusters 
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Figure 2: Vehicle Ownership Distribution across Residential Location Clusters 
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Table 1 (a): Literature on residential self-selection bias in the context of vehicle ownership (explicitly considering residential 

location as a decision variable) 

 

Study Study Area Methodology 

Choice Dimensions for 

which Endogeneity is 

Investigated 

Independent Variables  

Household 

Demographics 

Built 

Environment 

Transit 

Accessibility 

Policy 

Variables 

1. Guerra (2015) Mexico City, Mexico 
Mixed multinomial 

logit 

Vehicle ownership and 

residential location 
√ --- --- --- 

2. 
Bhat et al. 

(2014) 

San Francisco, 

Oakland, San Jose, 

USA 

Multidimensional 

choice model 

Vehicle ownership, 

residential location, 

number of motorized and 

non-motorized tours, and 

average tour distance  

√ √ --- --- 

3. 
He and Zhang 

(2014) 
Washington DC, USA 

Structural equation 

model 

Vehicle ownership, 

residential location, and 

vehicle mileage 

√ √ --- --- 

4. 
de Abreu e Silva 

(2014) 
Lisbon, Portugal 

Structural equation 

model 

Vehicle ownership, commute 

distance, number of trips, 

and time between first and 

last trips 

√ √ √ --- 

5. 
Paleti et al. 

(2013) 

San Francisco Bay, 

USA 

Mixed 

Multidimensional 

choice model 

Vehicle ownership, 

residential location, work 

location, and commute tour 

characteristics 

√ √ --- --- 

6. 
Bhat et al. 

(2013) 

San Francisco Bay, 

USA 

Bivariate 

multinomial probit 

Vehicle ownership and 

residential location 
√ --- --- --- 

7. 
Pinjari et al. 

(2011) 

San Francisco Bay, 

USA 

Mixed 

multidimensional 

choice model 

Vehicle ownership, 

residential location, bicycle 

ownership, and commute 

tour mode 

√ √ √ √ 

8. 
Weinberger and 

Goetzke (2010) 

Boston, Chicago, 

Philadelphia, San 

Francisco, Washington 

DC, USA 

Multinomial probit 
Vehicle ownership and 

residential location 
√ √ --- --- 
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9. Salon (2009) New York City, USA Multinomial logit  

Vehicle ownership, 

residential location and 

commute transport mode 

√ √ √ √ 

10. 
Senbil et al. 

(2009) 

Kei-Han-Shin, Japan; 

Kuala Lumpur, 

Malaysia 

Structural equation 

model 

Vehicle ownership, 

residential location, and 

vehicle use 

√  √ √ --- 

11. 
Bhat and Guo 

(2007) 

San Francisco Bay, 

USA 

Mixed 

multidimensional 

choice model 

Vehicle ownership and 

residential location 
√ √ √ √ 
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Table 1 (b): Literature on residential self-selection bias in the context of vehicle ownership (only considering the interaction of 

built environment and vehicle ownership) 

 Study Study Area Methodology 

Choice Dimensions for 

which Endogeneity is 

Investigated 

Independent Variables  

Household 

Demographic 

Built 

Environment 
Accessibility 

Attitude/ 

Lifestyle 

1. 
van Acker et al. 

(2014) 
Flanders, Belgium 

Structural equation 

model 

Vehicle availability and 

residential land use 

characteristics 

√ √ --- √ 

2. 
Cao and Cao 

(2014) 

Minneapolis-St. Paul, 

USA 

Ordered logit and 

Statistical control 

approach 

Vehicle ownership, attitude 

and preference, and transit 

oriented development 

√ √ √ --- 

3. 
Brownstone and 

Fang (2014) 
USA 

Bayesian 

multivariate ordered 

probit 

Vehicle ownership, usage 

and residential density 
√ --- √ --- 

4. 
de Abreu e Silva 

(2014) 
Lisbon, Portugal 

Structural equation 

model 

Vehicle ownership, 

residence and workplace 

land use, commuting 

distance, trip scheduling, and 

number of trips 

√ √ √ --- 

5. 
Aditjandra et al. 

(2012) 
Tyne and Wear, UK 

Dynamic structural 

equation model 

Changes in vehicle 

ownership and changes in 

driving behavior 

√ √ --- √ 

6. 
de Abreu e Silva 

et al. (2012a) 

Greater Montreal Area, 

Canada 

Structural equation 

model 

Vehicle ownership, 

residence and workplace 

land use, commuting 

distance, trip scheduling, and 

number of trips 

√ √ √ --- 

7. 
de Abreu e Silva 

et al. (2012b) 
California, USA 

Structural equation 

model 

Vehicle ownership, 

residence and workplace 

land use, commuting 

distance, trip scheduling, and 

number of trips 

√ √ √ --- 

8. 
van Acker and 

Witlox (2010) 
Ghent, Belgium 

Structural equation 

model 

Vehicle ownership and 

vehicle use 
√ √ √ --- 
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9. 

de Abreu e Silva 

and Goluias 

(2009) 

Lisbon, Portugal 
Structural equation 

model 

Residential location, 

workplace location, 

commuting distance and 

vehicle ownership 

√ √ √ --- 

10. 
Chen et al. 

(2008) 
New York, USA 

Simultaneous 

equation model 

Vehicle ownership and 

vehicle use 
√ √ √ --- 

11. 
Beckman et al. 

(2008) 
California, USA 

Latent class cluster 

analysis 

Vehicle ownership, 

residential location, 

immigration and commuting 

behavior 

√ √ --- --- 

12. 
Cao et al. 

(2007) 

Northern California, 

USA 

Structural equation 

model 

Changes in spaciousness, 

accessibility, attractiveness, 

driving behavior, vehicle 

ownership, and walking 

behavior 

√ √ --- √ 

13. 
de Abreu e Silva 

et al. (2006) 
Lisbon, Portugal 

Structural equation 

model 

Residential location, 

workplace location, 

commuting distance and 

vehicle ownership 

√ √ √ --- 
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Table 2: Average Characteristics of Census Tracts by Residential Neighborhood Types 

Attributes All Urban Core Inner Suburb Outer Suburb Suburban 

Population density (per ha) 22.79 43.74 24.23 9.91 5.60 

Job density 1.13 0.96 2.08 0.54 0.35 

# of detached households 638.73 83.16 183.42 1061.01 1988.25 

# of transit, walk, and bike commuters 558.64 942.69 448.42 393.88 437.32 

# of dwellings built before 1946 215.95 544.93 124.74 80.99 89.86 

Number of observations 878 226 289 251 112 
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Table 3(a): Sample Characteristics – Land Use and Transit Attributes 

Variable  Definition 
CT Level 

Minimum 

CT Level 

Maximum 

CT level  

Mean 

Connection ratio 
Ratio of # of intersections in CT to sum of # of intersections and # of dead 

ends in CT 
0 1.000 0.950 

Area Ln (total area of CT, Acre) 2.245 11.127 5.635 

Dwelling density Ln (ratio of # of dwellings to residential area in CT) -0.257 18.839 2.514 

Population density Ratio of total population to total area of CT in ha 0 183.467 23.250 

Job density Ratio of # of jobs to # of working age (15-65 years) population in CT 0 143.363 1.067 

# of schools # of schools in CT 0 10.000 1.876 

# of markets # of markets in CT 0 43.000 2.144 

# of rented households Ln (# of rented households in CT) 0 8.213 6.279 

# of detached households Ln (# of detached households in CT) 0 8.372 4.958 

# of low-rise apartments Ln (# of low-rise apartments in CT) 0 8.245 6.001 

Driver commuters Ln (# of driver commuters in CT) 0 8.588 6.853 

Transit commuters Ln (# of transit commuters in CT)  0 7.467 5.748 

Land use mix 

- ∑
[𝑝𝑘𝑙𝑛 𝑝𝑘]

ln (𝐾)𝑘 , 𝑝𝑘= proportion of developed land in the kth land use 

(residential, commercial, industrial, institutional and park facilities). It varies 

between 0 - 1; 0 = homogenous, 1 = perfectly heterogeneous mix 

0 0.870 0.447 

Bus destination diversity No of bus routes operating in a CT 0 122.000 5.872 
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Variable Frequency (%) 

Median Income level of CT 

Low income (< 40 K) 196 (22.8) 

Medium income (40K-80K) 529 (61.6) 

High income (> 80K) 134 (15.6) 

Variable Names Definition 

Household 

Level 

Minimum 

Household 

Level 

Maximum 

Household 

level  

Mean 

Bus stops # of bus stops in 600m buffer 0 92.000 24.401 

Commuter rail stops # of commuter rail stations in 600m buffer 0 2.000 0.041 

Bike route length Ln (bike route length in meters in 600m buffer) 0 8.734 2.472 

Pedestrian/bike street Ln (length of pedestrian/bike street in 600m buffer) 0 10.173 9.354 

Building footprint Ln (building footprint in square meters in 600m buffer) 0 13.009 10.150 

Distance to CBD Ln (distance to central business district in meter from household) 4.753 11.069 9.367 
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Table 3(b): Sample Characteristics – Household Characteristics 

 

Residential Location Alternatives Vehicle Ownership Levels 

UC IR OR SU 0 1 2 3+ 

Overall share 26.8% 25.1% 28.8% 19.3% 20.6% 43.1% 29.1% 7.2% 

Household size         

 1 person 37.4% 30.7% 20.9% 11.0% 46.2% 49.5% 3.0% 1.3% 

 2 persons 25.1% 25.9% 29.9% 19.1% 14.2% 48.6% 34.0% 3.2% 

 ≥ 3 persons 19.7% 19.9% 34.3% 26.1% 6.2% 32.4% 45.3% 16.1% 

Presence of children         

 Kids 0-4 23.0% 22.6% 28.0% 26.5% 8.9% 37.2% 49.7% 4.1% 

 Kids 5-9 21.3% 19.6% 32.3% 26.8% 7.1% 37.8% 49.8% 5.4% 

 Kids 10-14 19.3% 17.9% 35.9% 26.9% 6.8% 35.9% 47.7% 9.6% 

 Kids 15-18 18.9% 20.1% 35.4% 25.6% 7.8% 33.2% 40.7% 18.4% 

# of workers         

 Full-time         

  0 29.6% 30.9% 26.2% 13.2% 37.4% 49.4% 11.3% 1.8% 

  1 29.1% 24.3% 27.0% 19.5% 17.3% 48.7% 28.6% 5.5% 

  ≥ 2 20.6% 19.1% 34.1% 26.2% 4.1% 29.3% 50.8% 15.8% 

 Part-time         

  0 26.6% 25.5% 28.7% 19.2% 21.2% 43.8% 28.3% 6.8% 

  1 28.4% 21.7% 30.2% 19.7% 15.4% 37.3% 36.4% 10.9% 

  ≥ 2 26.7% 25.0% 30.0% 18.3% 11.7% 41.6% 31.7% 15.0% 

# of students         

 0 28.3% 27.0% 27.1% 17.5% 24.9% 46.5% 23.9% 4.7% 

 1 27.5% 23.4% 29.0% 20.1% 14.4% 37.7% 36.2% 11.7% 

 ≥ 2 19.2% 18.3% 36.4% 26.1% 7.4% 33.6% 45.1% 13.9% 

# of retirees         

 0 27.8% 23.1% 28.5% 20.6% 15.9% 40.5% 34.8% 8.9% 

 1 27.6% 30.1% 26.9% 15.3% 38.9% 41.4% 14.9% 4.8% 

 ≥ 2 19.6% 27.6% 34.0% 8.8% 13.7% 60.7% 22.9% 2.7% 

Median Income         

 Low (<40K) 63.3% 36.7% 0.0% 0.0% 44.5% 43.0% 10.7% 1.8% 

 Medium (40K-80K) 21.1% 27.5% 35.4% 16.0% 17.7% 46.0% 29.1% 7.2% 

 High (>80K) 26.8% 25.1% 28.8% 19.3% 3.9% 32.7% 49.9% 13.5% 

UC= Urban Core; IR = Inner Ring; OR = Outer Ring; SU = Suburban 
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Table 4: MOL Estimation Results 

Variables Estimate t-stat 

Thresholds   

 Threshold 1 0.422 1.360 

 Threshold 2 3.674 11.726 

 Threshold 3 6.718 21.197 

Household Socio-Demographic Characteristics 

 # of household members 0.109 3.224 

 # of male adults 1.098 20.240 

 # of female adults 0.614 10.987 

 Presence of children (0-4 years) 0.205 2.091 

 Presence of children (15-18 years) 0.223 2.843 

 # of adults (35-64 years) 0.319 10.065 

 Full-time workers 0.818 19.033 

 Part-time workers 0.533 8.054 

 # of retirees 0.178 4.110 

 # of workers with no bus transit access at workplace 0.322 2.805 

 # of workers with low bus transit access at workplace 0.213 5.062 

 # of workers with high bust transit access at workplace -0.234 -4.625 

Land Use and Built Environment Characteristics 

Median Income Level of CT (Base: Low income) 

 Medium income (40-80K) 0.290 4.539 

 High income (>80K) 0.463 4.461 
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 Standard deviation 0.077 4.892 

 Connection ratio -0.922 -2.697 

 # of schools -0.039 -2.561 

 # of markets -0.030 -3.358 

 # of rented households -0.157 -4.475 

 Bike route length -0.018 -2.600 

 Driver commuters 0.328 6.502 

 Transit commuters -0.183 -5.230 

 Dwelling density -0.069 -2.670 

 # of detached households 0.089 5.141 

Transit Accessibility Measures 

 Bus stops -0.010 -4.089 

Log-likelihood at constants (N=10,214) -12637.56 

Log-likelihood at convergence (N=10,214) -9096.12 
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Table 5: ESOL Model Estimates 

Variables Urban Core Inner Ring Outer Ring Suburban 

Thresholds     

Threshold 1 0.277 (0.329) † -0.321 (-0.965) -1.995 (-6.215) 1.596 (1.079) 

Threshold 2 3.309 (3.922) 2.730 (8.057) 1.425 (4.479) 5.301 (3.572) 

Threshold 3 5.707 (6.662) 5.304 (14.925) 4.571 (13.872) 8.789 (5.884) 

Household Socio-Demographic Characteristics 

# of household members − 0.263 (5.924) 0.743 (7.122) 0.683 (5.267) 

Single person (Base: Multi-person) -0.511 (-3.883) − − − 

Presence of children (0-4 years) 0.474 (3.165) − -0.895 (-4.503) -0.757 (-3.143) 

# of male adults 0.852 (8.060) 0.694 (8.356) − − 

# of female adults 0.517 (4.761) − − − 

Full-time workers 0.767 (12.504) 0.986 (12.867) 0.645 (6.783) 0.911 (8.017) 

Part-time workers 0.240 (1.996) 0.589 (4.316) 0.731 (5.267) 0.659 (3.813) 

# of young adults (19-34 years) -0.453 (-7.280) − 0.683 (8.706) 0.828 (7.846) 

# of middle aged adults (35-64 years) − 0.303 (4.968) 0.753 (10.230) 0.901 (9.202) 

# of students − − -0.456 (-4.222) -0.432 (-3.225) 

# of retirees − 0.461 (6.249) 0.362 (3.510) 0.327 (2.576) 

# of workers with bus, metro and commuter train access at workplace − -0.299 (-2.045) − − 

# of workers with no bus transit access at workplace − 0.579 (2.038) − − 

# of workers with low bus transit access at workplace 0.566 (5.812) − 0.0661 (3.381) − 

# of workers with high bust transit access at workplace − − − -0.313 (-2.665) 
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Land Use and Built Environment Characteristics 

Population density − − -0.023 (-2.461) − 

Job density − − -0.086 (-2.081) − 

Driver commuters 0.483 (5.181) 0.734 (8.053) − 0.414 (2.171) 

Transit commuters − -0.256 (-3.326) -0.224 (-4.077) − 

# of single detached households − 0.083 (2.985) − − 

# of low-rise apartments -0.285 (-4.195) -0.124 (-2.894) − − 

Dwelling density -0.466 (-4.727) − -0.302 (-3.131) − 

# of rented dwellings − -0.305 (-3.304) − -0.201 (-3.416) 

Pedestrian/bike street − -0.229 (-4.881) − − 

Median Income Level of CT (Base: Low income)     

Medium income (40-80K) − − -0.227 (-2.410) − 

# of schools -0.051 (-2.226) − − − 

# of bars − − -0.164 (-2.888) − 

Transit Accessibility Measures 

Bus destination diversity  − -0.014 (-2.366) − − 

Bus stops − − − -0.036 (-6.272) 

Commuter rail stops − − -0.409 (-2.461) − 

# of observations 2734 2567 2946 1967 

Log-likelihood at constants -2895.23 -2954.16 -3495.51 -2191.04 

Log-likelihood at convergence -2403.54 -2363.21 -2628.77 -1636.67 

† The values in the parenthesis are t-stats 
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Table 6: LSOLII Estimation Results 

Segmentation Component 

Variables Segment 1 Segment 2 

 Estimate t-stat Estimate t-stat 

Constants − − 1.516 3.183 

Area − − -0.197 -4.045 

Land use mix − − 0.748 2.584 

# of detached households − − -0.191 -4.756 

# of rented households − − 0.132 2.494 

Residential Cluster (Base: Inner and outer ring) 

Urban core − − 0.457 2.626 

Vehicle Ownership Component 

Thresholds     

Threshold 1 -3.379 -2.097 0.712 1.564 

Threshold 2 1.133 0.730 4.108 8.882 

Threshold 3 7.066 4.708 6.244 13.595 

Household Socio-Demographic Characteristics 

# of household members − − 0.227 7.565 

Presence of children (15-18 years) 1.181 4.945 − − 

# of male adults 3.863 12.475 0.415 6.339 

# of female adults 2.837 10.839 − − 

Full-time workers 0.721 4.888 0.871 13.981 

Part-time workers 0.824 3.511 0.443 4.475 

# of adults (19-24 years) − − -0.196 -2.553 

# of adults (25-34 years) 0.662 3.762 0.309 6.029 
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# of adults (35-64 years) 0.644 5.346 − − 

# of retirees -0.396 -2.680 0.353 5.683 

# of workers with bus, metro and commuter train access at workplace -0.831 -3.344 − − 

# of workers with no bus transit access at workplace − − 0.389 2.111 

# of workers with high bust transit access at workplace − − -0.191 -2.488 

# of workers with low bus transit access at workplace − − 0.248 4.012 

Land Use and Built Environment Characteristics 

Driver commuters − − 0.446 7.166 

Transit commuters − − -0.307 -5.493 

Dwelling density − − -0.307 -5.259 

# of low-rise apartments -0.128 -2.871 − − 

Bike route length -0.051 -2.135 − − 

Building footprint − − -0.052 -2.887 

Distance to CBD -0.441 -2.823 − − 

# of schools − − -0.061 -3.053 

Median Income Level of CT (Base: Low income)     

Medium income (40-80K) − − 0.344 4.262 

High income (>80K) − − 0.670 4.965 

Transit Accessibility Measures 

Bus stops -0.047 -5.442 − − 

Log-likelihood at constants (N=10,214)  -12637.56 

Log-likelihood at convergence (N=10,214) -8858.49 
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Table 7(a): Copula MNL (Residential Cluster Choice) Model Estimation Results 

Variables Urban Core Inner Ring Outer Ring Suburban 

Constant − -0.213 (-4.775) † -1.190 (-19.460) -1.778 (-24.050) 

# of children − − 0.094 (3.909) 0.391 (8.753) 

# of male adults − − -0.269 (-6.293) -0.269 (-6.293) 

# of young adults (19-34 years) − -0.143 (-4.417) -0.384 (-10.045) -0.472 (-11.002) 

# of students − − − -0.349 (-7.226) 

# of retirees − 0.218 (7.286) 0.218 (7.286) − 

# of license holders − 0.074 (2.732) 1.141 (31.147) 1.359 (30.588) 

# of workers with no bus transit access at workplace − − 0.634 (6.574) 0.634 (6.574) 

# of workers with low bus transit access at workplace − 0.396 (9.605) 0.396 (9.605) 0.396 (9.605) 

# of workers with medium bus transit access at workplace − − -0.379 (-8.864) -0.548 (-10.481) 

# of workers with high bus transit access at workplace − -0.152 (-3.144) -0.644 (-10.794) -0.812 (-12.091) 

# of part-time workers 0.228 (3.274) − − − 

† The values in the parenthesis are t-stats 
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Table 7(b): Copula OL (Vehicle Ownership) Estimation Results 

Variables Urban Core Inner Ring Outer Ring Suburban 

Thresholds     

Threshold 1 1.849 (2.882) † 1.348 (5.772) -2.900 (-9.741) 0.218 (0.159) 

Threshold 2 4.293 (6.690) 3.570 (14.934) 0.245 (0.839) 3.582 (2.622) 

Threshold 3 6.438 (9.904) 5.716 (21.730) 3.118 (10.514) 6.705 (4.869) 

Household Socio-Demographic Characteristics 

Single person household (Base: Multi-person) -0.237 (-2.861) − − − 

Presence of children (0-4 years) 0.238 (2.130) − − − 

# of male adults 0.326 (5.357) 0.491 (8.325) − − 

# of full-time workers 0.655 (13.296) 0.656 (12.134) 0.995 (15.189) 1.009 (12.188) 

# of part-time workers 0.441 (4.187) 0.218 (2.265) 1.075 (9.071) 0.843 (6.225) 

# of adults (19-24 years) − − 0.842 (13.215) 1.008 (13.044) 

# of adults (25-64 years) − 0.111 (2.464) 0.865 (14.668) 1.001 (13.520) 

# of students − − 0.196 (4.613) 0.177 (3.300) 

# of retirees − 0.294 (5.313) 0.731 (11.051) 0.665 (8.351) 

Land Use and Built Environment Characteristics 

Population density − − -0.020 (-2.309) − 

Job density − − -0.074 (-2.562) − 

# of driver commuters 0.336 (4.635) 0.459 (7.054) − 0.360 (2.060) 

# of transit commuters − -0.146 (-2.684) -0.210 (-4.143) − 

# of detached households − 0.059 (3.097) − − 
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# of low-rise apartments -0.165 (-3.355) -0.090 (-2.930) − − 

Dwelling density -0.299 (-3.996) − -0.288 (-2.893) − 

# of rented dwellings − -0.161 (-2.521) − -0.175 (-3.262) 

Pedestrian/bike street − -0.153 (-4.746) − − 

Median Income Level of CT (Base: Low income)     

Medium income (40-80K) − − -0.180 (-1.968) − 

# of schools  -0.038 (-2.208) − − − 

# of bars − − -0.147 (-2.775) − 

Transit Accessibility Measures 

Bus destination diversity  − -0.009 (-2.204) − − 

# of bus stops − − − -0.034 (-6.143) 

# of commuter rail stops − − -0.366 (-2.344) − 

Copula Parameters 

Copula Joe Joe FGM FGM 

Correlation parameters 3.521 (13.199) 3.903 (13.052) -1.000 -1.000 

† The values in the parenthesis are t-stats 
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Table 8: Prediction Comparison (Estimation Sample, N = 10,214) 

Disaggregate Level 

Summary statistic MOL ESOL LSOLII Copula OL (Joe-FGM) 

# of parameters 28 67 42 55 

Log-likelihood at constants -12637.56 -12637.56 -12637.56 -12637.56 

Log-likelihood at convergence -9096.12 -9075.30 -8860.60 -8481.99 

BIC 18451 18769 18081 17472 

Aggregate Level 

Vehicle Ownership Levels/Measures of Fit Actual shares MOL ESOL LSOLII  Copula OL (Joe-FGM) 

0 Car 20.6 20.5 20.0 20.6 19.8 

1 Car 43.1 43.5 42.9 43.3 43.9 

2 Cars 29.1 28.7 28.7 28.7 28.8 

≥ 3 Cars 7.2 7.3 8.4 7.4 7.5 

RMSE − 0.29 0.71 0.24 0.60 

MAPE − 0.01 0.05 0.01 0.03 

No full time worker Log-likelihood − -3166.40 -3120.88 -3051.15 -2856.97 

Full-time worker present Log-likelihood − -6040.35 -5954.41 -5807.33 -5625.02 

Urban core Log-likelihood − -2542.93 -2414.98 -2400.92 -2258.88 

Medium income Log-likelihood − -5832.26 -5370.46 -5626.92 -5370.46 

No bus stops Log-likelihood − -575.01 -591.54 -543.67 -565.58 

Bus stops present Log-likelihood − -8631.75 -8483.76 -8314.81 -7916.41 
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Table 9: Prediction Comparison (Validation Sample) 

Disaggregate Level 

Summary statistic MOL ESOL LSOLII Copula OL (Joe-FGM) 

# of parameters 28 67 42 55 

Log-likelihood at constants 
-2154.2 

(-2167.8/-2140.6) †† 

-2154.2 

(-2167.8/-2018.3) 

-2154.2 

(-2167.8/-2018.3) 

-2154.2 

(-2167.8/-2018.3) 

Predictive log-likelihood 
1565.1 

 (-1576.5/-1553.6) 

1543.3 

 (-1554.6/-1532.1) 

-1531.05 

 (-1541.9/-1520.2) 

-1441.7 

 (-1452.3/-1431.1) 

BIC 
3339 

 (3316/3362) 

3586  

(3564/3609) 

3375 

 (3353/3397) 

3294 

 (3272/3315) 

Aggregate Level 

Vehicle Ownership Levels/Measures of Fit MOL ESOL LSOLII  Copula OL (Joe-FGM) 

0 Car 
20.1  

(20.0/20.3) 

19.6 

(19.5/19.7) 

20.5 

(20.3/20.6) 

19.4 

(19.2/19.5) 

1 Car 
43.5  

(43.3/43.6) 

42.9 

(42.8/43.0) 

43.3 

(43.2/43.5) 

44.0 

(43.9/44.1) 

2 Cars 
29.2  

(29.1/29.3) 

29.3 

(29.2/29.4) 

28.8 

(28.7/30.0) 

29.3 

(29.2/29.5) 

≥ 3 Cars 
7.2  

(7.1/7.3) 

8.2 

(8.1/8.3) 

7.4 

(7.2/7.4) 

7.3 

(7.2/7.4) 

RMSE 
0.97 

(0.88/1.06) 

0.76 

(0.67/0.85) 

1.11 

(1.01/1.21) 

0.86 

(0.77/0.96) 

MAPE 
0.04 

(0.04/0.05) 

0.04 

(0.03/0.04) 

0.05 

(0.05/0.06) 

0.04 

(0.03/0.04) 

No full-time worker present Predictive LL 
-505.4 

(-508.1/-496.7) 

-500.5 

(-506.3/-494.8) 

-497.7 

(-503.4/-492.0) 

-458.2 

(-463.6/-452.8) 

Full-time worker present Predictive LL 
-1062.6 

(-1072.5/-1052.8) 

-1042.8 

(-1052.1/-1033.5) 

-1033.4 

(-1042.6/-1024.1) 

-983.5 

(-992.2/-974.7) 
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Urban core Predictive LL 
-420.7 

(-427.2/-414.2) 

-402.8 

(-408.8/-396.8) 

-399.6 

(-405.6/393.6) 

-377.0 

(-382.9/-371.1) 

Medium income Predictive LL 
-1022.7 

(-1032.2/-1013.2) 

-1007.9 

(-1017.2/-998.6) 

-1003.4 

(-1012.3/-994.6) 

-943.0 

(-951.9/-934.2) 

No bus stops Predictive LL 
-101.7 

(-103.7/-99.6) 

-102.2 

(-104.2/-100.1) 

-98.5 

(-100.5/-96.4) 

-99.0 

(-101.0/-97.0) 

Bus stops present Predictive LL 
-1463.4 

(-1474.2/-1452.6) 

-1441.2 

(-1451.7/-1430.7) 

-1432.6 

(-1442.8/-1422.4) 

-1342.7 

(-1352.6/-1332.8) 

†† The values in the parenthesis are 95% confidence bands  
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Table 10: Policy Analysis Results† 

Explanatory 

Variables 

MOL ESOL LSOL Copula OL 

0 Car ≥ 3 Cars 0 Car ≥ 3 Cars 0 Car ≥ 3 Cars 0 Car ≥ 3 Cars 

# of full-time workers 

increased by 1 

-37.94 

(-38.64/-37.24) 

68.89 

(67.76/70.01) 

-38.62 

(-39.90/-37.37) 

62.13 

(59.83/64.37) 

-39.32 

(-40.64/-38.01) 

56.32 

(53.99/58.65) 

-44.55 

(-45.68/-43.42) 

85.22 

(83.27/87.18) 

# of part-time workers 

increased by 1 

-26.26 

(-27.46/-25.06) 

42.54 

(40.14/44.94) 

-23.85 

(-26.29/-21.47) 

45.45 

(40.41/50.36) 

-25.08 

(-27.34/-22.82) 

37.06 

(32.53/41.58) 

-28.75  

(-31.24/-26.26) 

65.53 

(60.30/70.76) 

# of bus stops increased 

by 10% 

1.49 

(1.35/1.63) 

-0.86 

(-0.94/-0.77) 

0.68 

(0.62/0.74) 

-0.62 

(-0.65/0.59) 

1.05 

(0.97/1.14) 

-1.07 

(-1.13/-1.01) 

0.76 

(0.69/0.83) 

-0.69 

(-0.72/-0.66) 

Bike route length 

increased by 10% 

0.31 

(0.26/0.36) 

-0.13 

(-0.15/-0.11) 
0 0 

0.11 

(0.0/0.13) 

-0.09 

(-0.11/-0.07) 
0 0 

Pedestrian/bike street 

increased by 10% 
0 0 

3.49 

(3.13/3.85) 

-2.93 

(-3.02/-2.83) 
0 0 

3.37 

(3.04/3.70) 

-2.16 

(-2.22/-2.11) 

† The values in the parenthesis are 95% confidence bands  
 

 


