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ABSTRACT 
Detailed ridership analytics requires refined data on transit ridership to understand factors affecting 

ridership (at the stop and/or route-level). However, detailed data for stop-based boarding and 

alighting information are not readily available for the entire bus system. Transit agencies usually 

resort to compiling ridership data on a sample of buses operating on the various routes. We propose 

an approach to infer stop-level ridership for transit systems that only compile route-level ridership 

information. A joint model structure of binary logit and fractional split model is proposed to 

estimate stop-level ridership data sourced from route-level ridership. The model is developed for 

the Greater Orlando region with ridership data for 8 quadrimesters (four-month time periods) from 

May 2014 through December 2016. In the presence of repeated data measures, panel version of 

the joint econometric models for boarding and alighting are estimated. The development of such 

an analytical framework will allow bus systems with only route-level ridership data to generate 

stop-level ridership data. The model results offer intuitive results and clearly supports our 

hypothesis that it is feasible to generate stop-level ridership with route-level ridership data. For 

transit agencies with ridership data at the stop-level, the proposed model can also be employed to 

understand how various stops along a route interact with one another toward affecting route-level 

ridership contributions. 

 
Keywords: Transit Ridership, Alighting, Boarding, Bus Stop, Route-Level, Joint Model, Binary 

Model, Fractional Split Model, Panel Joint Model.   



Rahman, Yasmin, and Eluru  3 

 

 

 

INTRODUCTION 
Transit ridership has declined consistently for the last few decades in most of the US metropolitan 

regions. Specifically, in 2017, transit ridership fell in 31 out of 35 major metropolitan areas in the 

US transit markets (1) while in 2018 public transit ridership reduced about 2% nationally (2). 

Transit agencies are investigating how these declines can be stopped and/or possibly reversed. 

Several agencies are considering additional investments in transit including adding newer bus 

routes, commuter/light rail facilities across the nation (1; 3; 4; 5). While these investments in 

transit are encouraging signs, there still needs to be a rigorous analysis of how these investments 

are influencing ridership and transit accessibility. An important analytical tool for analyzing 

ridership patterns is the development of statistical and econometric models. Specifically, the 

emphasis is on developing detailed analytics to understand factors affecting ridership (at stop 

and/or route-level) and drawing insights to enhance ridership based on these findings. The models 

developed in this manner have several advantages. First, these studies identify the factors that 

positively or negatively influence ridership allowing transit agencies to devise strategies to 

enhance ridership. Second, these frameworks provide a ridership demand prediction platform for 

newer routes under consideration or modifications to existing routes. Third, these models in 

simulation mode can be employed to generate estimates of bus occupancy by route in continuous 

time (6; 7). Bus occupancy estimates allow us to identify the ridership peaks and troughs that are 

useful for determining vehicle fleet allocation and estimation of bus emissions at a fine spatial and 

temporal resolution.  

Not surprisingly, such detailed ridership analytics platform requires refined data on transit 

ridership. However, depending on the vehicle fleet, ticketing platforms and system size obtaining 

detailed ridership data for a transit system is far from straightforward. Consider the example of 

New York City, the largest transit service provider in the US. The transit agency generally provides 

bus system ridership numbers at the route-level. However, details at a finer resolution of stop-

based ridership information (or bus occupancy) are not readily available for the entire bus system. 

To be sure, the unavailability of such data is typically due to the cost associated with acquiring 

such data for various bus systems. Some transit systems such as Montreal (in Quebec, Canada) 

and Orlando (in Florida, USA) do compile stop-level bus ridership. Such data compilation is quite 

expensive and hence, these transit agencies usually resort to compiling such data on a sample of 

buses operating on the various routes (as opposed to collecting data for all bus stops across all bus 

routes). Subsequently, these sampled ridership numbers are weighted to obtain the ridership counts 

by time-of-day for weekdays and weekends. Montreal bus system, Société de transport de 

Montréal, conducts a sampling exercise that encompasses 15% of their bus fleet to obtain ridership 

numbers (6). The advances in ticketing technology (such as automated fare collection) and 

passenger ridership data collection (using automated passenger counts) and their adoption could 

further enhance ridership data collection across bus systems. However, until all transit systems are 

upgraded to modern ticketing technology there is a need for computing stop-level ridership for 

small to mid-range transit systems that typically only estimate route-level ridership.  

In this research effort, we propose an approach to infer stop-level ridership for transit 

systems that only compile route-level ridership information. The stop-level ridership inference will 

involve the estimation of boarding and alighting at a stop-level using stop-level data compiled in 

Orlando. The research framework estimates ridership by relating it to various exogenous variables 

such as headway (or frequency), land-use attributes, transportation and transit infrastructure 

attributes. The development of such an analytical framework will allow bus systems with only 

route-level ridership data to generate stop-level ridership data (as an alternative to resorting to 
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changes in current data collection schemes that could be prohibitively expensive). For transit 

systems that compile stop-level data across a sample of routes, the proposed model can serve as a 

framework to infer stop ridership across other routes and time periods that are not sampled. Finally, 

for transit systems that have complete data, the proposed framework can assist in understanding 

the relation between the contributions from various stops across a route.  

The proposed framework relates route-level ridership to stop-level ridership by developing 

a joint econometric model. In the joint system, the first component identifies stops with non-zero 

ridership employing a binary logit model. The second component adopts a fractional split structure 

to estimate the proportion of ridership for each of the non-zero stops (identified in the previous 

step) along the route. Specifically, we propose to consider a multinomial logit based fractional 

split formulation to examine the fraction of ridership. In our approach, stops along a route serve 

as alternatives for that specific route and the outcome to be studied is the fraction of ridership in 

each of those stops (
𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝 𝑎𝑙𝑜𝑛𝑔 𝑎 𝑟𝑜𝑢𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑒 𝑙𝑒𝑣𝑒𝑙 𝑟𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝
). The econometric framework recognizes that 

several common unobserved factors could influence the two components. To accommodate for 

this, a joint model structure of the proposed binary logit and fractional split model is built. In some 

studies, such joint models are also referred to as hierarchical models with two levels.  

The proposed model framework is estimated using data from Greater Orlando region for 8 

quadrimesters (four-month time periods) from May 2014 to December 2016. A total of 58 routes 

are considered for our analysis. Further, given that we have multiple repetitions of data, a panel 

joint econometric model is developed. In the panel model estimation, several exogenous variables 

including route-level variables, stop-level attributes, transportation infrastructure variables, transit 

infrastructure variables, land-use and built environment attributes and sociodemographic variables 

in the vicinity of the bus stop are considered. The proposed model can be employed by transit 

agencies without stop-level data to estimate stop-level ridership metrics.  

The remainder of the paper is organized as follows. A brief overview of earlier research is 

described in the literature review section. The methodology section briefly outlines the 

econometric framework considered. The data section presents data source, data preparation for 

modeling and in model estimation results section, we discuss the model results and validation. The 

policy analysis results are discussed in next section. Finally, the conclusion section identifies 

potential applications for the proposed model and discussed potential research avenues for the 

future. 

 

LITERATURE REVIEW 
 

Earlier Research 
As described earlier, the major objective of the proposed research effort is to develop a modeling 

framework to estimate stop-level ridership from route-level ridership data. However, in our review 

of earlier work, we did not find any studies focused on this conversion task. Hence, our review is 

organized along two streams of earlier research that offer useful insights for our study exercise. 

The first stream of earlier research focuses on studies that analysed ridership at route-level or stop-

level to identify factors that are likely to influence the split of route-level ridership to stop-level 

boarding and alighting. The second stream of earlier research is concentrated on methodological 

approaches suited for our analysis.  
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Route/Stop-level ridership 

Several research efforts have examined the important factors that affect stop/route-level transit 

ridership for urban regions. Based on their findings, factors affecting stop/route-level ridership can 

be classified as stop/route-level attributes, transportation infrastructure variables, land-use and 

built environment characteristics, and sociodemographic variables. Among stop/route-level 

attributes, headway (or frequency) is identified as an important variable. Reducing headway 

typically contributes to higher ridership (8-17). Other stop/route-level variables such as presence 

of other bus stops, bus route length, and presence of shelter affect ridership (9; 15-18). 

Transportation infrastructure variables (such as roadway characteristics, sidewalk length, bike lane 

length) and road network characteristics also significantly affected bus ridership (9; 15; 16; 19).  

Earlier research has also found significant influence of sociodemographic variables on 

ridership. Specific variables such as household (HH) income level, HH car ownership level, gender 

and age distributions in the vicinity of the stop/route are likely to impact bus ridership of that 

region (9; 14-16; 20). Land-use and built environment attributes surrounding the bus stop (such as 

land-use mix, residential area, recreational area, institutional area, and office area) also affect bus 

ridership (9; 12; 14-17; 19; 20). 

 

Appropriate Research Methodology  

The analysis approach in our research requires determining stop-level boarding and alighting while 

ensuring that the overall boarding and alighting sums to the total route-level ridership. Thus, the 

variable to be estimated – stop-level boarding/alighting for all stops on the route – should add up 

to an observed value (route-level ridership). For such a constrained dependent variable, traditional 

approaches such as linear (or log-linear) regression or count models are not directly applicable as 

these approaches do not ensure that stop-level variable estimates sum to the total route-level 

ridership. Hence, we consider an alternative approach, referred to as the fractional split model for 

our analysis (21; 22). The fractional split modeling approach was proposed by Papke and 

Wooldrigde (22) in 1996. In the fractional split approach, ridership proportions at a stop are 

directly associated with exogenous variables. For example, a stop with the presence of bus shelter 

has inclination for a larger proportion of ridership (relative to stop without shelter). The approach 

has received attention in the transportation field in recent years for analyzing crash frequency, 

crash severity, vehicle speed analysis and aggregate mode choice analysis (23-27). While 

fractional split models have been developed earlier there has been no attempt to develop a model 

framework that accommodates for repeated measures for fractional split models with multiple 

dependent variables.  

 

Current Study in Context 
As described earlier, the proposed research objective of converting route-level ridership to stop-

level ridership has not been examined before. The modeling approach has two steps. In the first 

step, we examine if the stop will have any ridership or not by using a binary logit model. In the 

second step, for stops with ridership, a fractional split model is developed to identify the proportion 

of route-level ridership to be allocated to the stop-level ridership. The allocation is undertaken 

separately for boarding and alighting dimensions. The independent variables in our model 

components are drawn from the extensive literature review discussed in the previous section. The 

model development and estimation are conducted using data from the Greater Orlando region. To 

develop the model, we selected Orlando region which already has stop-level data. Once stop-level 

data is available, we can easily reconstruct true route-level ridership data. Once the model is 
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developed for a region, it can be applied for other transit systems without stop-level data by making 

subtle corrections (described later). The ridership data for 8 quadrimesters between May 2014 to 

December 2016 for 58 routes in the Orlando region is employed. The estimated model developed 

is validated using holdout sample data of one time period (September to December 2016). The 

utility of the framework developed is illustrated through a well-designed policy analysis. It is 

important to highlight here that the proposed joint panel binary logit-fractional split model 

implementation in the current paper is the first of its kind in transportation and even in econometric 

literature. 

 

ECONOMETRIC METHODOLOGY 
 

Model Structure 

In this section, we provide a formulation of the proposed econometric structure of joint binary logit 

– fractional split model (BLFS). The focus of the joint model is to simultaneously model 

“probability of non-zero ridership” and “proportion of ridership” at each stop for a specific route. 

In the current study context, zero vs. non-zero ridership is modeled by using a binary logit (BL) 

formulation. Further, the fractional split component of the joint model is examined by using 

multinomial logit based formulation to examine proportion of ridership in each stop for a specific 

route. Let 𝑡(𝑡 = 1, 2, … , 𝑇; 𝑇 = 7) be the index for different time period (quadrimester), 𝑞 (𝑞 =
1, 2, … , 𝑄) be an index to represent bus stops and 𝑟 (𝑟 = 1, 2, … , 𝑅; 𝑅 = 58) be an index to 

represent route. Hence, 𝑞𝑟(𝑞 = 1𝑟 , 2𝑟 , … , 𝑄𝑟) is an index to represent bus stops specific to route 

𝑟 (𝑟 = 1, 2, … , 𝑅; 𝑅 = 58).  

For the joint approach, the non-zero ridership propensity component takes the following 

form: 

𝜈𝑡𝑞𝑟
∗ = {(𝜶 + 𝜸𝑡𝑞𝑟

)𝒛𝑡𝑞𝑟
+ 𝜀𝑡𝑞𝑟

+ 𝜓𝑡𝑞},      𝑢𝑡𝑞𝑟
= 1 𝑖𝑓 𝜈𝑡𝑞𝑟

∗ > 0, 𝑢𝑡𝑞𝑟
= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (1)  

where, 𝜈𝑡𝑞𝑟
∗  represents the propensity for non-zero ridership at stop 𝑞 specific to route 𝑟 in time 

period t; 𝑢𝑡𝑞𝑟
 is 1 if stop 𝑞𝑟 specific to route 𝑟 has non-zero ridership for time period 𝑡 and 0 

otherwise. 𝑧𝑡𝑞𝑟
 is a vector of attributes associated with stop 𝑞𝑟 for time period 𝑡. 𝛼 is the vector of 

corresponding mean effects. 𝛾𝑡𝑞𝑟
 is a vector of unobserved factors on non-zero ridership 

probability of stop 𝑞𝑟 for time period 𝑡 and its associated characteristics assumed to be realization 

from standard normal distribution: 𝛾𝑡𝑞𝑟
~𝑁(0, 𝜍𝑡𝑞𝑟

2 ). 𝜀𝑡𝑞𝑟
 is an idiosyncratic error term assumed to 

be identically and independently standard logistic distributed. 𝜓𝑡𝑞 term generates the time period 

specific stop-level correlation between equations for non-zero ridership and fraction of ridership.  

In the fractional split component of the joint model, the dependent variable is the proportion 

of ridership in each stop specific to a route for a time-period instead of the actual ridership. The 

sum of the proportions across each route for a time-period is equal to unity and the fraction of 

ridership ranges between zero and one. Let 𝑦𝑡𝑞𝑟
 be the fraction of ridership for stop 𝑞𝑟 specific to 

route 𝑟 in time period 𝑡. Thus, the functional form of the econometric specification for fractional 

split model can be expressed as: 

0 ≤ 𝑦𝑡𝑞𝑟
≤ 1,          ∑ 𝑦𝑡𝑞𝑟

= 1

𝑡,𝑄𝑟

𝑡,𝑞𝑟=1

 (2)  
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𝐸[𝑦𝑡𝑞𝑟
|𝑑𝑡𝑞𝑟

] = 𝐺𝑡𝑞𝑟
(. ) (3)  

0 < 𝐺𝑡𝑞𝑟
(. ) < 1                   ∑ 𝐺𝑡(. ) = 1

𝑡,𝑄𝑟

𝑡,𝑞𝑟=1

 (4)  

where, the ridership fraction 𝑦𝑡𝑞𝑟
 be a function of a vector 𝑑𝑡𝑞𝑟

 of relevant explanatory variables 

associated with attributes of stop 𝑞𝑟 for time period 𝑡. 𝐺𝑡𝑞𝑟
(. ) (𝑞𝑟 = 1𝑟 , 2𝑟 , … , 𝑄𝑟) is a 

predetermined function. The properties specified in Equation 4 for 𝐺𝑡𝑞𝑟
(. ) warrant that the 

predicted fractional ridership will range between 0 and 1; and will add up to 1 for each route over 

a time period.  

In the current study context, we assume a categorical discrete outcome structure for 𝐺𝑡𝑞𝑟
 

in the fractional split model of Equation 4 (following (28)). Thus, Equation 4 can be rewritten as: 

𝐸[𝑦𝑡𝑞𝑟
|𝑑𝑡𝑞𝑟

] = {(𝛽 + 𝛿𝑡𝑞𝑟
)𝑑𝑡𝑞𝑟

+ 𝜉𝑡𝑞𝑟
± 𝜓𝑡𝑞}  (5)  

where, 𝑑𝑡𝑞𝑟
 is a vector of attributes, 𝛽 is the corresponding vector of coefficients to be estimated 

for ridership fraction. 𝛿𝑡𝑞𝑟
 is a vector of unobserved factors assumed to be a realization from 

standard normal distribution: 𝛿𝑡𝑞𝑟
~𝑁(0, 𝜈𝑡𝑞𝑟

2). 𝜉𝑡𝑞𝑟
 is the random component assumed to follow 

a Gumbel type-I distribution. The ± sign in front of common correlation term 𝜓𝑡𝑞 in Equation 5 

indicates that the correlation in unobserved factors between non-zero ridership and fraction of 

ridership in each route may be positive or negative. A positive sign implies that stop specific to a 

route with non-zero ridership are intrinsically more likely to incur higher proportions of ridership 

for that specific stop. On the other hand, negative sign implies that stop specific to a route with 

non-zero ridership are intrinsically incurring lower ridership for that specific stop. To determine 

the appropriate sign, one can empirically test the models with both ′ + ′ and ′ − ′ signs 

independently. The model structure that offers the superior data fit is considered as the final model. 

It is important to note here that the unobserved heterogeneity between non-zero ridership 

component and ridership proportions component can vary across stops for a given time period. 

Therefore, in the current study, the correlation parameter 𝜓𝑡𝑞 is parameterized as a function of the 

observed attributes as follows: 

𝜓𝑡𝑞 = 𝛩𝑡𝑞𝜚𝑡𝑞 (6)  

where, 𝜚𝑡𝑞 is a vector of exogenous variables, 𝛩𝑡𝑞 is a vector of unknown parameters to be 

estimated (including a constant). 

 

Model Estimation 

In examining the model structure of non-zero ridership and proportions of ridership, it is necessary 

to specify the structure for the unobserved vectors 𝛾, 𝛿 and 𝛩 represented by Ω. In this paper, it is 

assumed that these elements are drawn from independent realization from normal population: 

Ω~𝑁(0, (𝜍2, 𝜈2, ℵ2)). Thus, the equation system for modeling the probability of non-zero ridership 

takes the following form (conditional on 𝜸𝑡𝑞𝑟
 and 𝜓𝑡𝑞): 
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𝑃𝑡𝑞𝑟
= 𝑃(𝑢𝑡𝑞𝑟

)|(𝜸𝑡𝑞𝑟
, 𝜓𝑞) =

𝑒𝑥𝑝{(𝜶 + 𝜸𝑡𝑞𝑟
)𝒛𝑡𝑞𝑟

+ 𝜀𝑡𝑞𝑟
+ 𝜓𝑡𝑞}

1 +  𝑒𝑥𝑝{(𝜶 + 𝜸𝑡𝑞𝑟
)𝒛𝑡𝑞𝑟

+ 𝜀𝑡𝑞𝑟
+ 𝜓𝑡𝑞}

 (7)  

The corresponding probability for zero ridership is computed as  

𝑄𝑡𝑞𝑟
 = 1 −  𝑃𝑡𝑞𝑟

 (8)  

Similarly, the probability for fractional split component takes the form (conditional on 𝛿𝑡𝑞𝑟
 

and 𝜓𝑡𝑞):  

𝑅𝑡𝑞𝑟
= 𝐺𝑡𝑞𝑟

(𝑦𝑡𝑞𝑟
)|(𝛿𝑡𝑞𝑟

, 𝜓𝑡𝑞) =
𝑒𝑥𝑝{(𝛽 + 𝛿𝑡𝑞𝑟

)𝑑𝑡𝑞𝑟
+ 𝜉𝑡𝑞𝑟

± 𝜓𝑡𝑞}

∑ 𝑒𝑥𝑝{(𝛽 + 𝛿𝑡𝑞𝑟
)𝑑𝑡𝑞𝑟

+ 𝜉𝑡𝑞𝑟
± 𝜓𝑡𝑞}

𝑡,𝑄𝑟
𝑡,𝑞𝑟=1

       (9)  

Further, conditional on Ω, the likelihood function for the joint probability can be expressed 

as: 

ℒ𝑟 = ∫ ∏ [ ∏ {(𝑃𝑡𝑞𝑟
∗ (𝑅𝑡𝑞𝑟

)
𝑦𝑡𝑞𝑟  

)
𝑢𝑡𝑞𝑟

∗ (𝑄𝑡𝑞𝑟
)

(1−𝑢𝑡𝑞𝑟)
}

𝑡,𝑄𝑟

𝑡,𝑞𝑟=1

]

𝑇,𝑟

𝑡=1,𝑟Ω

𝑓(Ω)𝑑Ω (10)  

𝑦𝑡𝑞𝑟
 is the fraction of ridership for stop 𝑞𝑟 specific to route 𝑟 in time period 𝑡. 𝑢𝑡𝑞𝑟

 is 1 if stop 𝑞𝑟 

specific to route 𝑟 has non-zero ridership for time period 𝑡 and 0 otherwise, Finally, the log-

likelihood function is:    

ℒℒ = ∑ 𝐿𝑛(𝐿𝑟)

𝑟

 (11)  

All the parameters in the model are estimated by maximizing the logarithmic function ℒℒ 

presented in Equation 11. The parameters to be estimated in the joint model are: 𝛼, 𝜍, 𝛽, 𝜈 and ℵ. 

To estimate the proposed joint model, we apply Quasi-Monte Carlo simulation techniques based 

on the scrambled Halton sequence to approximate this integral in the likelihood function and 

maximize the logarithm of the resulting simulated likelihood function across individuals (see (29; 

30) for examples of Quasi-Monte Carlo approaches in literature). The model estimation routine is 

coded in GAUSS Matrix Programming software. 

 

EMPIRICAL ANALYSIS 
The main public transit service in the Greater Orlando region is provided by the Lynx system that 

serves an area of approximately 2,500 square miles within Orange, Seminole, Osceola and Polk 

Counties in Central Florida. The bus system operates 77 daily routes with an average weekday 

ridership of around 105,000. Out of 77 daily routes, 58 routes are considered for our analysis as 

they provided complete ridership information. Figure 1 shows the study region and 58 routes 

network in the Orlando region.  

 

Dependent Variable Generation 
For the selected 58 routes, we obtained data from Lynx transit authority for 8 quadrimesters 

between May 2014 through December 2016. The data provided average daily weekday boarding 

and alighting information. The reader would note that we are using a transit system that already 

has stop-level data for our analysis. The final sample consists of 38,432 records (4,804 stops × 8 
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quadrimesters). We set aside data for one time period (September through December 2016) for 

model validation.  

 

 
Figure 1: Lynx Bus Network (Selected 58 Routes) 
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The dependent variable in our analysis is the fraction of ridership at stops along a bus route. 

The fraction was computed as the ratio of stop-level ridership specific to a route and total route-

level ridership. The data we obtained from Lynx provided us total stop-level ridership (boarding 

and alighting). Employing these data, we determined route-level ridership. Then, the ratio of stop-

level ridership variables to the route-level ridership variables was computed to generate the 

proportion variables. In cases where a stop was part of multiple routes, we allocated stop-level 

ridership to the route in the ratio of their headway i.e. stops with lower headway were allocated a 

higher proportion of ridership. The proportion variable for boarding (alighting) ranges from 0 (0) 

to 1.00 (1.00) across the 58 routes. The reader would note that percentage of zero proportion stops 

for boarding (alighting) are 7.0% (6.2%). Given the reasonably high share of zero proportion stops, 

a binary logit model was introduced to identify stops with non-zero ridership prior to developing 

the fractional split model.  

 

Independent Variable Generation 
Several independent variables were compiled for our analysis. The number of bus stops and bus 

route length was calculated by using Lynx GIS shapefiles. For creating independent variables, we 

have considered several buffer distances (800m, 600m, and 400m) for each bus stop. The sources 

of independent variables include 2010 US census data, American Community Survey, Florida 

Geographic Data Library, and Florida Department of Transportation databases. The attributes 

considered in our study can be divided into five broad categories: (1) Stop-level attributes (such 

as headway), (2) Transportation and transit infrastructure variables (secondary highway length, 

rail road length, local road length, sidewalk length, Lynx bus route length, presence of shelter and 

distance of bus stop from central business district (CBD)), (3) Built environment and land-use 

attributes (such as institutional area, residential area, recreation area, and office area) (4) 

sociodemographic variables in the vicinity of the stop (income, vehicle ownership, and age and 

gender distribution) for each time period and (5) SunRail (commuter rail of Orlando) effect. The 

descriptive statistics of exogenous variables are presented in Table 1.  

The final specification of the model development was based on removing the statistically 

insignificant variables in a systematic process based on statistical confidence (95% confidence 

level). The specification process was also guided by prior research and parsimony considerations. 

In estimating the models, several functional forms and variable specifications are explored. The 

functional form that provided the best result is used for the final model specifications. In 

determining the appropriate buffer sizes, each variable for a buffer size was systematically 

introduced (starting from 800m to 400m buffer size) and the buffer variable that offered the best 

fit was considered in the final specification. 
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Table 1: Descriptive Statistics of Exogenous Variables 1 

Variable Name Variable Description Percentage Minimum Maximum Mean 

Stop-Level Attributes  

Headway Ln (Headway in minutes) - -6.908 7.272 4.064 

Transportation Infrastructure Around the Stop 

Bus route length in (800m buffer) 
Bus route length in kilometers (Bus route length in 800 m 

buffer/10) 
- 0.000 8.710 1.146 

Sidewalk length in (400m buffer) Sidewalk length in kilometers in 400m buffer - 0.000 20.234 3.844 

Secondary highway length (800m 

buffer) 
Secondary highway length in kilometer in 800 m buffer / 10 - 0.000 4.278 0.998 

Local road length in (800m buffer) Local road length in kilometer in 800 m buffer / 10 - 0.000 6.048 2.188 

Presence of shelter in bus stop (1 = Yes and 0 = No) 25.999% - - - 

Built Environment Around the Bus Stop  

Residential area (800m buffer) Proportion of the Residential area = Residential /Total area - 0.000 0.924 0.410 

Institutional area (800m buffer) Proportion of the Institutional area = Institutional /Total area - 0.000 0.710 0.043 

Recreational area (800m buffer) 
Proportion of the Recreational area = Recreational /Total 

area 
- 0.000 0.547 0.011 

Office area (800m buffer) Proportion of the office area = Office/Total area - 0.000 0.941 0.190 

Central business district (CBD) 

distance (4~8 miles) 
(Central business area distance in km from bus stop)/10 23.897% - - - 

Sociodemographic Variables in Census Tract  

Female population  Total number of female population in Census Tract/1000 - 0.615 10.526 3.057 

High income (>100k) Percentage of High income HH (>100k) 13.052% - - - 

SunRail Effects 

Square distance of SunRail 

Square distance of SunRail = (summation of distance of 

SunRail stations from all bus stops which are within the 

influence area of SunRail stations in km)^2  

- 0.000 1005.098 6.618 

2 
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MODEL ESTIMATION RESULTS 1 

 2 

Model Specification and Overall Measures of Fit 3 

The empirical analysis involves estimation of two different models: 1) an independent binary logit-4 

fractional split (BL-FS) model system, and 2) joint panel BL-FS model with correlation 5 

parameterization. These models are estimated for boarding and alighting separately. The 6 

independent models (separate BL and FS models) were estimated to establish a benchmark for 7 

comparison. Prior to discussing the estimation results, we compare the performance of these 8 

models in this section.  9 

We employ the likelihood-ratio (LR) test to determine the best model between independent 10 

and joint models. The LR test statistic for a given empirical model is computed by below equation: 11 

𝐿𝑅 = 2[𝐿𝐿𝑈 − 𝐿𝐿𝑅] (12) 

 where, 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood of the unrestricted and the restricted models, 12 

respectively.  13 

The log-likelihood values at convergence for the models estimated are as follows: (1) For 14 

boarding model: (1.1) Independent BL-FS (with 19 parameters) is -8,649.96 and (1.2) joint panel 15 

BL-FS model with correlation parameterization (with 20 parameters) is -8,614.86 and (2) For 16 

alighting model: (2.1) Independent BL-FS (with 19 parameters) is -7,794.13 and (2.2) joint panel 17 

BL-FS model with correlation parameterization (with 20 parameters) is -7,740.93. The computed 18 

value of the LR test is compared with the χ2 value for the corresponding degrees of freedom (dof). 19 

The resulting LR test values for the comparison of independent BL-FS and joint panel BL-FS 20 

model is 70.20 (1 dof) and 106.40 (1 dof) for boarding and alighting model, respectively. The LR 21 

test values indicate that the joint model outperforms the independent model at any level of 22 

significance for both boarding and alighting dimensions. The comparison exercise clearly 23 

highlights the superiority of the joint models with the correlation parameterization in terms of data 24 

fit compared to the independent models. 25 

 26 

Variable Effects 27 

In presenting the effects of the exogenous variables, we will restrict ourselves to the discussion of 28 

the joint model with the correlation parameterization. Table 2 presents the estimation results of the 29 

joint model of the BL and FS model for boarding and alighting, respectively. Also, the correlation 30 

and random component results are shown in the table. The effects of the exogenous variables in 31 

the model specification are described in this section for BL and FS components. For the two model 32 

components, the parameter estimates are discussed by variable groups. In the BL component, the 33 

positive (negative) sign indicates the increasing (decreasing) propensity of non-zero stop-level 34 

ridership in Orlando. For the FS model component, the positive (negative) coefficient value 35 

indicates increased (decreased) proportion of ridership value categories (i.e. stop-level ridership 36 

proportion is increasing (decreasing)). The two models for boarding and alighting offer very 37 

similar results for the two model components. Hence, for simplicity we discuss the results together 38 

as ridership (as opposed to separately for boarding and alighting).  39 
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Table 2 Joint Panel BL-FS Model Results  1 

Variable Name 

Alighting Model Boarding Model 

BL component FS Component BL component FS Component 

Estimates t-stat Estimates t-stat Estimates t-stat Estimates t-stat 

Constant 6.621 42.520 - - 6.222 47.202 - - 

Stop-Level Attributes 

Headway (Ln of Headway) -0.949 -35.717 - - -0.876 -40.726 - - 

Presence of shelter in bus stop - - 1.061 5.925 - - 1.283 7.329 

Headway*Presence of Shelter 0.121 10.650 - - 0.099 9.282 - - 

Presence of Shelter*Bus route length in 800m 

buffer 
- - -0.210 -1.828 - - -0.247 -2.214 

Transportation Infrastructures  

Bus route Length in an 800 m buffer -0.107 -3.728 0.147 3.309 -0.135 -5.631 0.231 6.137 

Sidewalk length in an 800 m buffer 0.041 3.392 - - 0.035 3.274 - - 

Secondary road length in an 800 m buffer 0.320 5.925 - - 0.238 4.981 - - 

Local road length in an 800 m buffer - - 0.245 2.633 - - 0.189 2.511 

Built environment and land use attributes 

Land use area type in an 800m buffer         

Institutional area -1.113 -2.921 - - -1.564 -4.868   

Residential area 1.243 8.792 - - 1.451 11.074   

Office area - - 1.991 4.776 - - 1.403 3.396 

Recreational area -2.476 -4.212 2.842 2.534 -2.589 -4.897 2.614 2.300 

Central business district (CBD) distance         

CBD distance category 2 (4~8 miles) -0.346 -5.999   -0.352 -6.691   

Sociodemographic variables  

Female Population in the Census Tract - - 0.195 6.227 - - 0.173 5.527 

Percentage of high income population -2.420 -10.892 - - -2.598 -13074 - - 

SunRail effects 

Square distance of SunRail -0.002 -10.152 - - -0.003 -13.505 - - 

Correlation Parameters 

Variable Estimate t-stat Estimate t-stat 

Constant (from BL component) and Route 

Length in 800m buffer (from FS component) 
0.401 9.179 9.179 6.507 

2 
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Stop-Level Attributes 1 

Transit headway is a significant factor affecting ridership (boarding and alighting). As expected, 2 

our model results for the BL component indicate that stops with lower headway are unlikely to 3 

have zero ridership. As headway increases, the probability of zero ridership increases. The 4 

interaction of headway and presence of shelter variable provides an interesting finding. We find 5 

that, in the presence of shelter, the impact of headway reduces i.e. if a stop has a shelter; it is less 6 

likely to have non-zero ridership compared to another stop with the same headway without a 7 

shelter. The result is quite instructive of how passenger comfort in Orlando with extreme heat and 8 

rainfall can influence ridership choice behavior. The reader would note that the main effect of the 9 

shelter variable was not significant in the BL component.  10 

For the FS model, the reader would note we cannot employ the route specific headway 11 

variable directly for examining the proportion of ridership allocated at the stop-level. The headway 12 

variable does not change across the stops in a route and hence it cannot be employed as an 13 

independent variable. We tested the headway variable though several interactions (such as 14 

headway * presence of shelter). However, none of these variables was statistically significant in 15 

our models. Of the other stop-level attributes, the presence of shelter at the bus stop affected 16 

proportion of stop-level ridership. Specifically, in the presence of a shelter, stop-level ridership is 17 

likely to be higher than stops without a shelter along the same route. This is expected as people 18 

are more likely to wait at stops with shelters as they offer protection from the elements. Another 19 

variable that was considered in the analysis was the interaction of presence of shelter with route 20 

length. The result indicates with increasing length of the route in the buffer, the importance of 21 

shelter reduces. This is reasonable because with longer route length in the buffer, more bus routes 22 

exist and are likely to result in higher frequency of buses thus ensuring that waiting time is smaller 23 

(thus obviating the need for shelter).  24 

 25 

Transportation Infrastructure Characteristics 26 

Among transportation characteristics, bus route length, sidewalk length and secondary road length 27 

within an 800m buffer affect non-zero ridership propensity. The bus route length negatively 28 

impacts the boarding/alighting ridership and increases the zero ridership stop. The result is an 29 

indication of potential competition with multiple routes around the stop. The sidewalk length in 30 

800m buffer is positively associated with ridership. The presence of sidewalk encourages 31 

pedestrian activity and is possibly surrogate for accessible neighborhoods. The longer length of 32 

secondary roads in 800m buffer of the bus stop increases the probability of having less zero 33 

ridership stop. Among transportation infrastructure characteristics, bus route length around a stop 34 

is likely to increase the ridership proportion in the FS model component. A similar effect is 35 

observed with increasing local road length around the stop.  36 

 37 

Built Environment Characteristics 38 

Built environment characteristics around a bus stop have a major impact on ridership. The presence 39 

of higher institutional and recreational area within 800m buffer of the bus stop significantly 40 

increases zero ridership stops. The result is a representation of how individuals visiting 41 

institutional and recreational areas prefer automobile in the Orlando region. On the other hand, 42 

residential area within 800m buffer of a stop is likely to reduce zero ridership stops. The distance 43 

between central business district (CBD) was evaluated in multiple forms in the model. Of these 44 

structures, the distance categories provided most intuitive and statistically significant results. The 45 
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indicator variable for stops between 4 and 8 miles from CBD are likely to have increased 1 

propensity for zero ridership.  2 

Among built environment characteristics, office area and recreational area offered 3 

statistically significant impact on ridership proportion. Increased presence of office area and 4 

recreational area are likely to account for higher proportion of stop-level ridership. The result, 5 

particularly for the recreational area is counter intuitive because of the effect of recreational area 6 

estimated in the binary logit model. However, it is possible that the effect is meaningful. The 7 

results together indicate that not all stops with recreational area attract ridership. However, those 8 

stops that are likely to have ridership are more likely to have higher proportion of ridership. Further 9 

information of the type of recreational facilities (if available) could offer more insight on these 10 

findings.  11 

 12 

Sociodemographic Characteristics 13 

Several sociodemographic variables (including income, vehicle ownership, age and gender 14 

distribution) were considered in the BL component. Of these variables, only household income 15 

distribution affected non-zero ridership propensity. The increase of the proportion of high-income 16 

households around a stop are likely to increase zero ridership stops. The result is expected because, 17 

high income households have access to automobiles and are unlikely to adopt transit for their 18 

mobility in Orlando. Among sociodemographic variables considered, only number of female 19 

population at the census tract level affected ridership proportion. In particular, an increase in the 20 

female population variable is associated with a corresponding increase in the ridership proportion. 21 

The consideration of female population was associated with shorter commuting travel times by 22 

public transit in earlier literature (31).  The current finding could be a manifestation of gender 23 

differences among transit riders for proximity to bus stop location.  24 

 25 

SunRail Effects 26 

As SunRail was introduced during the analysis time period, we also considered the impact of 27 

SunRail in multiple forms. Of these forms, the square distance from all SunRail stations to the bus 28 

stop offered interesting result. The result indicates that with increasing distance from SunRail, the 29 

likelihood for zero propensity increases perhaps is indicating the effect of transit-oriented 30 

development within the vicinity of SunRail. The SunRail variables did not have any impact on 31 

ridership proportion.  32 

 33 

Unobserved Effects 34 

As discussed earlier, the joint panel model allows for (1) common unobserved factors affecting 35 

zero ridership propensity and ridership proportion and (2) common unobserved factors at the stop-36 

level for multiple time periods. In our estimation, we find that correlation between the two 37 

components are moderated by constant in the BL component and route length in the FS component 38 

for both boarding and alighting models. This supports our hypothesis that BL and FS components 39 

are correlated in nature. The correlation parameters are introduced with a " + " sign in the FS 40 

component (as described in econometric framework section) since it provided a substantially better 41 

fit compared to introducing it with a " − " sign. Overall, the results highlight that accommodating 42 

for common unobserved effects across the two model components improves the model fit 43 

substantially. 44 

 45 
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Model Validation 1 

The model developed was validated using a hold-out sample. For this purpose, we generated 2 

various measures for the hold-out sample with 4,804 stops (1 quadrimester data, December 2016). 3 

We calculated predictive log-likelihood, Bayesian information criterion (BIC), Akaike 4 

information criterion (AIC) and Corrected Akaike information criterion (AICc) measures to 5 

compare the independent and joint models for both boarding and alighting dimensions separately. 6 

The predictive log-likelihood value for the joint model and independent models for boarding 7 

(alighting) are -1,091.608 (-1,053.730) and -1,100.400 (-1,065.717), respectively. A similar 8 

relationship is observed for all information criterion measures as well. The results clearly highlight 9 

that the improvement in the joint model is not a manifestation of over fitting.  10 

 11 

POLICY ANALYSIS  12 

The estimates of the exogenous variables provided in Table 2, do not provide the magnitude of the 13 

effects on bus ridership changes over time. For this purpose, we compute the aggregate level 14 

“elasticity effects” for an independent variable (see (32) for a discussion on the methodology for 15 

computing elasticities) to illustrate how the proposed model can be used for policy analysis. In our 16 

analysis, we illustrate how the proposed model can be applied at the stop level to evaluate the 17 

changes in ridership in response to changes to independent variables. Specifically, we increase the 18 

presence of shelter from 25% to 40% of the stops and estimate its impact on ridership. We have 19 

generated the predicted fraction of ridership for all stops along the selected 58 routes. Percentage 20 

change in ridership (computed as [{
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
} ∗ 100]) are plotted and presented in 21 

Appendix A.1 and A.2. The boarding and alighting percentage changes are plotted by stop for each 22 

route. The reader would note that the number of stops vary by route ranging from 2 to 192 stops. 23 

To accommodate for the difference in the number of stops across routes, we have used white cells 24 

to represent the excess cells for that route. From the figures, we can observe that the percentage 25 

increase in boarding is usually slightly higher for a greater number of stops relative to the 26 

percentage increase in alighting. Also, the contribution in increased ridership is higher for more 27 

stops in boarding compared to alighting. We have also presented the ridership prediction results 28 

for enumerating stops where the ridership has increased along a specific route. The results are 29 

presented in Table 3. From Table 3, we can observe that presence of shelter has contributed 30 

towards higher boarding for more than 53% of stops, while it has contributed towards higher 31 

alighting for 29% of stops along these 58 routes. The result is intuitive since people are more likely 32 

to be waiting at stops for boarding and the shelter would be rather comfortable for waiting at stops. 33 

Further to show the relative change along a route, we have plotted the observed and predicted 34 

ridership for two routes: (1) Route 104 – University of Central Florida to Lynx Central Station via 35 

Colonial road and (2) Route 107 – Florida mall to Lynx central station (these routes are shown in 36 

Figure 1). The results from the policy for boarding and alighting for inbound and outbound 37 

directions are presented in Figure 2 (a through d) and Figure 3 (a though d). To be sure, these 38 

figures can be generated for all routes. However, we have selected two routes just for the 39 

representation purposes. The color palette provided on the right of the figure provides the range of 40 

ridership at each stop along the route. For example, In Figure 2a, the ridership at a stop level ranges 41 

from 0 to 50 as the color palette becomes dark. In these figures observed and predicted ridership 42 

with increased presence of shelter across stops are presented in the lower and upper row panels, 43 

respectively. The following observations can be made based on the elasticity effects presented in 44 

Figure 2 and Figure 3. Clearly, the addition of shelter for some of the stops results in substantial 45 

increase in ridership. The differences in observed and predicted ridership in response to changes 46 
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to shelter variable are substantial highlighting the importance of shelter at a bus stop in Orlando. 1 

The same approach can be employed to evaluate the impact of multiple variables for various routes 2 

in the region.  3 
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Table 3 Predicted Ridership for the Policy Scenario  1 

Route ID Total No of Stops 

Boarding (Stats for the stops where predicted 

boarding has increased) 

Alighting (Stats for the stops where predicted 

alighting has increased) 

% of Stops % Increase in Boarding % of Stops % Increase in Alighting 

1 57 5.26 142.60 5.26 192.41 

3 157 99.36 2.07 5.10 218.56 

6 74 1.35 139.05 1.35 188.37 

7 92 97.83 6.88 97.83 5.82 

8 183 43.17 44.70 43.17 62.50 

9 96 8.33 130.74 8.33 176.32 

10 109 7.34 135.61 7.34 183.73 

11 95 96.84 12.45 96.84 12.83 

13 157 99.36 1.94 4.46 183.94 

15 139 98.56 2.86 10.79 191.12 

18 192 98.96 6.19 98.96 4.47 

20 100 99.00 4.57 99.00 4.10 

21 145 98.62 7.27 19.31 118.26 

23 107 2.80 132.37 2.80 180.87 

24 47 2.13 62.93 2.13 84.72 

25 65 98.46 3.47 15.38 69.06 

26 66 4.55 164.39 4.55 225.14 

28 98 98.98 14.54 16.33 111.60 

29 105 99.05 15.05 20.95 120.06 

34 8 0.00 0.00 0.00 0.00 

36 71 98.59 6.88 98.59 6.35 

37 123 19.51 74.58 19.51 103.79 

38 2 50.00 115.03 50.00 138.31 

40 120 99.17 7.37 15.83 164.01 

42 140 18.57 48.39 18.57 68.51 

44 126 3.17 119.25 3.17 164.75 

45 53 3.77 156.03 3.77 213.03 

48 83 98.80 14.59 31.33 157.59 

49 91 98.90 16.00 31.87 166.42 
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50 31 29.03 81.40 29.03 98.74 

51 132 99.24 10.09 99.24 7.24 

54 69 8.70 146.41 8.70 193.19 

55 73 41.10 86.07 41.10 111.47 

56 45 44.44 55.84 44.44 82.48 

57 92 9.78 127.02 9.78 169.79 

58 17 11.76 70.70 11.76 94.45 

102 98 98.98 9.73 18.37 140.36 

103 55 5.45 145.06 5.45 199.34 

104 105 99.05 16.49 23.81 168.27 

105 59 98.31 23.40 33.90 172.87 

107 78 42.31 118.01 42.31 134.36 

111 53 11.32 69.20 11.32 95.50 

125 129 25.58 88.54 25.58 112.95 

300 12 0.00 0.00 0.00 0.00 

301 55 0.00 0.00 0.00 0.00 

302 102 0.00 0.00 0.00 0.00 

303 45 0.00 0.00 0.00 0.00 

304 102 0.00 0.00 0.00 0.00 

305 9 0.00 0.00 0.00 0.00 

306 3 0.00 0.00 0.00 0.00 

313 80 98.75 2.40 98.75 2.52 

319 73 97.26 19.46 97.26 15.98 

405 45 11.11 138.55 11.11 181.72 

426 68 5.88 154.77 5.88 206.55 

427 18 0.00 0.00 0.00 0.00 

434 127 3.15 150.40 3.15 204.51 

441 8 87.50 20.32 87.50 19.55 

443 120 13.33 119.84 13.33 158.65 

Total 4804 53.68% -- 29.45% -- 

1 
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 1 
(a) Route 104 - Boarding Ridership changes (Inbound direction – stops number are shown in the upper and lower panels along x-axis) 2 

 3 
(b) Route 104 - Boarding Ridership changes (Outbound direction - stops number are shown in the upper and lower panels along x-axis) 4 
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 1 
(c) Route 104 - Alighting Ridership changes (Inbound direction - stops number are shown in the upper and lower panels along x-axis) 2 

 3 
(d) Route 104 - Alighting Ridership changes (Outbound direction - stops number are shown in the upper and lower panels along x-axis) 4 

Figure 2: Policy Analysis (Route 104)5 
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 1 
(e) Route 107 - Boarding Ridership changes (Inbound direction - stops number are shown in the lower panel along x-axis) 2 

 3 
(f) Route 107 - Boarding Ridership changes (Outbound direction - stops number are shown in the lower panel along x-axis) 4 
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 1 
(g) Route 107 - Alighting Ridership changes (Inbound direction - stops number are shown in the lower panel along x-axis) 2 

 3 
(h) Route 107 - Alighting Ridership changes (Outbound direction - stops number are shown in the lower panel along x-axis) 4 

Figure 3: Policy Analysis (Route 107)5 

L
ab

el
: 

R
id

er
sh

ip
 (

D
ar

k
er

 c
o

lo
r 

in
te

n
si

ty
 r

ep
re

se
n
ts

 

h
ig

h
er

 r
id

er
sh

ip
) 

L
ab

el
: 

R
id

er
sh

ip
 (

D
ar

k
er

 c
o

lo
r 

in
te

n
si

ty
 r

ep
re

se
n
ts

 

h
ig

h
er

 r
id

er
sh

ip
) 



Rahman, Yasmin, and Eluru           24 

 

 

 

CONCLUSIONS 1 

By developing detailed data-driven and evidence-based analytics to understand factors affecting 2 

ridership (at the stop and/or route-level), we can offer insights to enhance ridership. But such 3 

detailed ridership analytics platform requires high resolution data on transit ridership. However, 4 

finer resolution of stop-based boarding and alighting information are not readily available for the 5 

entire bus system. Such data compilation is quite expensive and hence, transit agencies usually 6 

resort to compiling such data on a sample of buses operating on the various routes (as opposed to 7 

collecting data for all bus stops across all bus routes). In this research effort, we propose an 8 

approach to infer stop-level ridership for transit systems that only compile route-level ridership 9 

information.  10 

The proposed econometric model had two components each for boarding and alighting 11 

dimensions. The first component identified stops with non-zero ridership employing a binary logit 12 

model. The second component adopted a fractional split structure to estimate the proportion of 13 

ridership for each of the non-zero stops along the route. The econometric framework recognized 14 

that several common unobserved factors could influence the two components. To accommodate 15 

for this, a joint model structure of the proposed binary logit and fractional split model was built; 16 

the proposed model framework was estimated using a system with stop-level ridership data for 8 17 

quadrimesters from May 2014 to December 2016 from the Greater Orlando region. A total of 58 18 

routes were considered for our analysis. The model results offered intuitive results and clearly 19 

supported our hypothesis that it is feasible to generate stop-level ridership with route-level 20 

ridership data. A validation exercise using a holdout sample also highlighted the superior fit 21 

offered by the joint model. The utility of the proposed model is illustrated by generating ridership 22 

changes in response to changes to independent variables.  23 

The proposed model offers several advantages to transit policy makers. The main intent of 24 

the proposed model development is to employ this model for transit systems without any stop level 25 

ridership data. In our paper, the model was estimated in a region with known route level and stop 26 

level ridership information. However, given the generic nature of the stop level ridership utility 27 

characterization, the proposed approach can easily be transferred across transit systems. To 28 

elaborate, the proposed model can be employed to estimate the fraction of stop level ridership 29 

using the model estimates from our study analysis. Given the emphasis on the fraction (and not 30 

the actual ridership at the stop level), the results are likely to be more transferable across cities. 31 

Further, the proposed model system does not have any constants in the utility structure and thus 32 

would not be biased by any region-specific preferences. Of course, if the stability of model 33 

estimates is a substantial concern, transit agencies can collect stop level data for a small number 34 

of bus routes and use that data to calibrate the estimated model from the current paper. Thus, even 35 

in cases where calibration is necessary, the amount of data collection efforts is minimal in scope. 36 

For transit systems that compile stop level data across a sample of routes, the proposed model can 37 

serve as a framework to infer stop ridership across other routes and time periods that are not 38 

sampled. Finally, for transit systems that have complete data, the proposed framework can assist 39 

in understanding the relation between the contributions from various stops across a route. In this 40 

context, the proposed approach would assist in identifying important factors influencing ridership.  41 

While a comprehensive model structure has been considered in the current study, the paper 42 

is not without limitations. The proposed approach is unique and does not have an easy counterpart 43 

to evaluate model performance. Hence, developing additional measures of effectiveness to 44 

compare the proposed model system with log-linear models of proportion variables would be an 45 

avenue of research. It might be useful to incorporate the influence of observed and unobserved 46 
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spatial correlation across the two model components in future analysis. It might also be beneficial 1 

to develop an interconnected model system of boarding and alighting within a unified system. 2 

Finally, for high public transit usage regions, there might be value in developing these models by 3 

time period as the spatio-temporal patterns of ridership distribution are likely to vary substantially 4 

across the transit system. 5 
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Appendix A.1: Percentage Changes in Boarding for the Policy Scenario  1 

[Stop numbers vary across routes and white cells are used to represent excess cells for that route] 2 

[Each column panel represents a route in the order of - 1, 3, 6, 7, 8,9,10,11, 13, 15, 18, 20, 21, 23, 3 

24, 25, 26, 28, 29, 34, 36, 37, 38, 40, 42, 44, 45,48, 49, 50, 51, 54, 55, 56, 57, 58, 102, 103, 104, 4 

105, 107, 111, 125, 300, 301, 302, 303, 304, 305, 306, 313, 319, 405, 426, 427, 434, 441, 443 – 5 

from left to right]  6 

[Each row panel is a stop in the order of 1 as the top row panel to 192 as the bottom row panel] 7 
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Appendix A.2: Percentage Changes in Alighting for the Policy Scenario 2 

[Stop numbers vary across routes and white cells are used to represent excess cells for that route] 3 

[Each column panel represents a route in the order of - 1, 3, 6, 7, 8,9,10,11, 13, 15, 18, 20, 21, 23, 4 

24, 25, 26, 28, 29, 34, 36, 37, 38, 40, 42, 44, 45,48, 49, 50, 51, 54, 55, 56, 57, 58, 102, 103, 104, 5 

105, 107, 111, 125, 300, 301, 302, 303, 304, 305, 306, 313, 319, 405, 426, 427, 434, 441, 443 – 6 

from left to right]  7 

[Each row panel is a stop in the order of 1 as the top row panel to 192 as the bottom row panel] 8 
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