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ABSTRACT 
The current study undertakes a unique research effort to quantify the impact of various exogenous 

factors on crash severity over time. Specifically, we examine if over time, the impact of exogenous 

variables has changed and if so what is the magnitude of the change. The research contributes to 

driver injury severity analysis both methodologically and empirically by proposing a framework 

that addresses the challenges associated with pooled (or pseudo-panel) data. For our analysis, we 

draw data from the General Estimates System (GES) over a span of twenty-five years. The data is 

compiled for driver injury severity in single or two vehicle crashes from 1989 through 2014 in 5-

year increments (1989, 1994, 1999, 2004, 2009 and 2014). The alternative econometric 

frameworks considered for the analysis include ordered logit, generalized ordered logit, scaled 

generalized ordered logit and mixed generalized ordered logit models. A host of comparison 

metrics are computed to evaluate the performance of these alternative models in examining the 

pooled data. The model development exercise is conducted with a host of exogenous variables 

including driver characteristics, vehicle characteristics, roadway attributes, environmental factors, 

crash characteristics and temporal attributes. The model estimation results are further augmented 

by performing a detailed policy scenario analysis, probability profile representations and elasticity 

effects for different driving and situational conditions across different years. 

 

Keywords: Driver injury severity; Temporal instability; Pseudo-panel; Generalized ordered logit; 

Mixed Model; Scaled Model    
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INTRODUCTION 
The negative consequences of road traffic crashes have a significant impact on the emotional and 

financial well-being of the society. In the United States in 2015, roadway crashes were responsible 

for over 35,000 fatalities, while about 2.35 million individuals were injured or disabled. 

Financially, road traffic crashes cost the US nearly 230 billion annually. Given the magnitude of 

consequences of road traffic crashes, it is not surprising that road safety is a well-researched field. 

Earlier research has examined factors affecting crash occurrence using crash frequency models 

(see Yasmin and Eluru, 2016 for a review) and crash consequence in the event of a crash using 

crash severity models (see Yasmin and Eluru, 2013 for a review). The current study contributes to 

road safety literature by focusing on crash severity models. Earlier literature on severity modeling 

has identified several factors that significantly influence severity of vehicle occupants involved in 

traffic crashes including vehicle occupant age, restraint system use, driving under the influence of 

alcohol or drugs, vehicle age and type (such as sedan, van or pickup truck) of the vehicles involved, 

and collision type (such as head-on, rear-end and angle).  

To be sure, road safety in the US has improved over the years. The number of traffic 

fatalities have reduced from about 47,000 in 1965 to about 35,000 in 2015 (NHTSA, 2016). The 

fatality rate per 100 million vehicle miles travelled has dropped from 5.3 to 1.12 during the same 

period. The improvement in traffic crash associated fatalities can chiefly be attributed to: (1) design 

and enforcement of several policies such as mandatory seat belt use, vehicle regulations requiring 

airbags, child rear facing seats, (2) advances in vehicle technology to improve occupant safety and 

(3) concerted effort dedicated to educational awareness campaigns for different driver age groups 

to encourage safe driving behavior. However, in recent years (since 2000) instances of increase in 

the number of traffic fatalities compared to the previous year have occurred multiple times. Thus, 

in spite of the significant progress made over the years, there is further scope for improving road 

safety.  

The current study undertakes a unique research effort to quantify the impact of various 

exogenous factors on crash severity over time (see Mannering, 2018 for discussion on temporal 

instability). Specifically, we examine if over time, the impact of exogenous variables has changed 

and if so what is the magnitude of the change. For example, the injury severity of a vehicle 

occupant in a crash that occurred in 1995 was a function of the vehicle safety features available at 

the time. An observationally identical crash occurring in 2015 is likely to result in either the same 

level of injury severity or lower. This is an example of how improvement in vehicle technology 

has affected injury severity. In our study, we systematically attempt to identify exogenous 

variables that offer time-varying effects and quantify the change in their impact. For this purpose, 

we draw data from the General Estimates System (GES), over a span of twenty-five years. The 

data is compiled for driver injury severity in single or two passenger vehicle involved crashes from 

1989 through 2014 in 5-year increments (1989, 1994, 1999, 2004, 2009 and 2014). In our analysis, 

injury severity is classified in four levels as follows: no injury, possible injury, non-incapacitating 

injury, and incapacitating/fatal injury. 

The data compiled is a pooled dataset obtained from stitching together 6 cross-sectional 

datasets providing us with a pseudo-panel data. Such data pooling of different observations across 

multiple years offers unique methodological challenges. The modeling methodology should 

recognize the differences across multiple time points adequately since the outcome process for the 

observations in a year might be influenced by various observed and unobserved attributes (Anowar 

et al., 2016; Train, 2009). For illustrative purposes, consider the possibility that airbags were made 

mandatory in vehicles only in 2000. The data compiled after this time period would possibly 
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experience lower injury severity for crashes relative to the years prior due to the installation of 

airbags. This is an example of an observed attribute affecting either one or more cross-sections of 

data in the overall pooled dataset. On the other hand, consider the possibility of a cultural 

phenomenon that encourages good driving behavior – such as wearing a seatbelt – happened 

between 1995 and 2000. As a result, more drivers wear seatbelts after 2000, thus potentially 

reducing injury severity consequences for cross-sections compiled later. However, parsing the true 

impact of the cultural phenomenon in the model is quite challenging and usually remains hidden 

or unobserved for a long time. This is an example of how an unobserved effect specific to one-

time period or multiple time periods can affect severity outcomes. In our study, we implement 

modeling approaches that simultaneously accommodate for the influence of observed and 

unobserved attributes on driver injury severity across multiple time points. 

Given the inherent ordering of the data, we adopt a generalized ordered logit (GOL) model 

kernel structure for severity analysis. The GOL framework relaxes the restrictive assumption of 

the traditional ordered outcome (Ordered logit/probit) models (monotonic effect of exogenous 

variables) while simultaneously recognizing the inherent ordering of the injury severity variable - 

information that unordered model alternatives fail to consider (see Eluru et al., 2008; Eluru and 

Yasmin, 2015; Yasmin and Eluru, 2013). Further, to incorporate the effect of observed and 

unobserved temporal effects, we specifically consider two versions of the GOL model – the mixed 

GOL model and the scaled GOL model. The two variants differ in the way they incorporate the 

influence of unobserved attributes within the outcome process. The mixed GOL model captures 

unobserved heterogeneity by allowing the variable effects (including the constant) influencing 

injury severity to be distributed across the observations, while the scaled model accommodates for 

common unobserved heterogeneity by allowing the variance of the unobserved component to vary 

by time period. The two approaches also vary in how they accommodate for heteroscedasticity 

across observations. We estimate both models and employ data fit comparison metrics to 

determine the appropriate model structure. The model specification is undertaken to quantify how 

the impact of exogenous variables has altered over the 25-year period on driver injury severity. 

The model development exercise is conducted with a host of exogenous variables including driver 

characteristics, vehicle characteristics, roadway attributes, environmental factors, crash 

characteristics and temporal attributes. In summary, the current research effort contributes 

empirically by identifying if the impact of any exogenous factors has varied over time, and if so, 

quantifying the change in magnitude. Methodologically, the research contributes to driver injury 

severity analysis by proposing a framework that addresses the challenges associated with pooled 

(or pseudo-panel) data.  

The remainder of the paper is organized as follows. Section 2 provides a brief literature 

review. Section 3 briefly outlines the econometric frameworks that are considered. Section 4 

presents data preparation steps for the modeling exercise. In section 5, we discuss the model 

results. Section 6 presents a summary of policy analysis. Finally, Section 6 provides the summary 

and concludes our findings. 

 

LITERATURE REVIEW 
Several research efforts have examined driver injury severity in safety literature. It is beyond the 

scope of the paper to provide a detailed review (see Savolainen et al., 2011; Yasmin and Eluru, 

2013 for a detailed review). Based on earlier literature, the most important factors influencing 

injury severity by attribute group are presented below with emphasis on factors contributing to or 

reducing injury severity outcome in the event of a crash.  
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  Driver Characteristics: Driver characteristics including old driver indicator, female driver, 

alcohol impairment, aggressive driving and not wearing seat-belt are found to increase probability 

of serious crashes (Valent et al., 2002; Yasmin et al., 2014). Young driver, male driver and wearing 

seat belt are predominantly found in safety literature to be associated with lower crash injury 

severity outcomes (Donmez and Liu, 2015; Eluru et al., 2010; Fredette et al., 2008). 

Vehicle Characteristics: Among different vehicle characteristics, vehicle type and vehicle 

age are the two most common attributes considered in evaluating injury severity. Higher vehicle 

age and car are likely to result in higher injury severity outcomes (Kockelman and Kweon, 2002; 

Xie et al., 2009). On the other hand, heavy passenger vehicles, such as pickup, utility vehicle and 

light truck are found to decrease higher severity outcomes for the occupants of these vehicles 

(Srinivasan, 2002; Wu et al., 2016). 

Roadway Attributes: Non-intersection related crashes and higher speed limits are roadway 

attributes which increase likelihood of injury severity outcomes (Al-Ghamdi, 2002; Yasmin et al., 

2015). On the other hand, crash at a traffic signal, increase in traffic flow and protected left turn 

phase variables are found to reduce severe crash likelihood (Christoforou et al., 2010; Quddus et 

al., 2009; Rifaat et al., 2011; Wang and Abdel-Aty, 2008). 

Environmental Factors: Rainy weather, peak hour, daylight and snowy road surface 

decreases the likelihood of severe crashes (Anderson and Hernandez, 2017; Chen et al., 2016;  

Huang et al., 2008)  while night-time crash, darkness with no road lighting condition result in 

higher crash severity outcomes (Huang et al., 2008; Khattak, 2001). 

Crash Characteristics: Collision type is often considered as an important crash 

characteristic in evaluating injury severity outcomes (Yasmin et al., 2014). Among different 

collision types, rollover, single vehicle crash, head-on crash, angular crashes are associated with 

higher injury severity outcome (Eluru and Bhat, 2007; Krull et al., 2000), while rear-end crash and 

same direction sideswipe crash result in lower crash severity outcome (Obeng, 2008; Ouyang et 

al., 2002). 

 While earlier research has identified the impact of several attributes there has been limited 

research conducted to explore temporal evolution of exogenous variables on injury severity. Two 

studies conducted temporal stability analysis of injury severity estimates. Behnood and Mannering 

(2015) conducted a detailed study of parameter stability over time using data from Chicago for the 

years 2004 through 2012. The authors employed a mixed multinomial logit model and estimated 

separate models by year. To compare model parameters across years they computed marginal 

effects and presented graphical comparisons of these effects. In another study Dabbour (2017) 

examined stability of injury severity models for data of North Carolina from 2007 through 2013 

within a logistic regression framework. The study estimated separate models for each year and 

compared the mode estimates as well as the odds ratios of the parameters. While these two studies 

offer insights on temporal parameter stability, their approaches to parameter comparison do not 

yield conclusive evidence on the change in parameters. To elaborate, while marginal effects were 

compared, there is no consideration for the confidence band of these marginal effects. Without 

these confidence bands, it is not possible to conclude if the differences in marginal effects is a true 

difference or a random occurrence. In addition, the parameter differences was considered 

separately and information on how the parameters vary in time cannot be generated based on the 

separate model for each year. Further, the year range considered in these studies is between 7 to 9 

years. While the timeframe is significantly large, it is still not adequate to capture very long term 

trends in parameter evolution.  
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The current study makes multiple contributions by building on the work of Behnood and 

Mannering (2015) while explicitly addressing some of the salient aspects highlighted in Mannering 

(2018). First, we expand the time span of parameter stability analysis by compiling data from 6 

time points over a 25-year span from 1989 through 2014. Second, instead of estimating separate 

models for each year, we stitch the data together to obtain a pseudo-panel of crash records. The 

pseudo-panel data is examined using two generalized versions of the GOL model that can control 

for year specific effects as well as unobserved factors: (1) scaled GOL and (2) mixed GOL. In the 

current study context, scaled GOL model is specified by allowing the variance of the unobserved 

component to vary across different years, while the mixed GOL model is specified by allowing 

the unobserved component to vary across different observations. The scaled GOL has a closed 

form expression and does not require simulation for model estimation in accommodating for 

temporal unobserved heterogeneity. On the other hand, the mixed GOL model requires adoption 

of maximum simulated likelihood approach for estimation. In estimating pooled models, variables 

representing “time elapsed from 1989” which is the time difference between the analysis year 

(1989, 1994, 1999, 2004, 2009, and 2014) from the base year (1989) considered in the current 

study context. Moreover, interaction of exogenous variables with the time elapsed variable are 

utilized to control for time varying variable effects. As a result, it would be possible to identify 

how the parameters vary in time based on a single pooled model rather than making inferences 

from separate year-specific models. In addition to enhancing variable inference, the approach also 

makes it easier to evaluate marginal effects across multiple years. The pooled approach for model 

estimation will provide conclusive evidence of changes to the model parameters when interacted 

with time indicator variable. If the interaction term is insignificant, we can conclude that there is 

no temporal variability. Finally, we employ parametric forms of parameter estimate differences 

across multiple points allowing us to extrapolate the parameters into the future.  

 

ECONOMETRIC FRAMEWORK 
In this section, we provide a brief description of the methodology of all the models considered for 

examining driver injury severity in our research. For the ease of presentation, we describe the 

general mathematical structure first and then identify the different modeling structures for various 

models in the subsequent discussion. We will first introduce the traditional ordered logit (OL) 

model, then discuss about the generalized ordered logit (GOL) model, scaled generalized ordered 

logit (SGOL) model, and finally present the mixed version of the generalized ordered logit 

(MGOL) model. 

Let us assume that 𝑞 (𝑞 = 1,2, … , 𝑄) be the index for driver and 𝑘 (𝑘 = 1,2, … , 𝐾) be the 

index for injury severity categories. In this empirical study, 𝑘 takes the value of ‘no injury’ (𝑘 =
1), ‘possible injury’ (𝑘 = 2), ‘non-incapacitating injury (𝑘 = 3), and ‘incapacitating injury/fatal 

injury’ (𝑘 = 4). In the traditional ordered outcome model, the discrete injury severity levels (𝑦𝑞) 

are assumed to be associated with an underlying continuous latent variable (𝑦𝑞
∗). This latent 

variable is typically specified as the following linear function:     

𝑦𝑞
∗ =  𝛼′𝑥𝑞 +  𝜀𝑞 ,           𝑦𝑞 = 𝑘         𝑖𝑓 𝜓𝑘−1 < 𝑦𝑞

∗ < 𝜓𝑘 (1) 

where 𝑦𝑞
∗ is mapped to the injury severity level 𝑦𝑞 by the 𝜓 thresholds (𝜓0 = −∞ and 𝜓𝑘= ∞) in 

the usual ordered-outcome fashion. 𝑥𝑞 is a column vector of attributes (not including a constant) 

that influences the propensity associated with injury severity outcome. 𝛼′ is a corresponding 

column vector of coefficients and 𝜀𝑞 is an idiosyncratic random error term assumed to be 
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identically and independently standard logistic distributed across driver q. Given these 

relationships across the different parameters, the resulting probability expressions for individual 𝑞 

and alternative 𝑘 for the OL take the following form: 

𝑃𝑞(𝑘) = Λ(𝜓𝑘 − 𝛼′𝑥𝑞) − Λ(𝜓𝑘−1 − 𝛼′𝑥𝑞) (2) 

where Λ(. )represents the standard logistic cumulative distribution function (cdf). 

GOL is a flexible form of the traditional OL model that relaxes the restriction of constant 

threshold across population. The GOL model represents the threshold parameters as a linear 

function of exogenous variables (Eluru et al., 2008; Srinivasan, 2002). In order to ensure the 

ordering of observed discrete injury severity levels (−∞ < 𝜓𝑞,1 < 𝜓𝑞,2 < ⋯ … … < 𝜓𝑞,𝑘−1 <

+∞), we employ the following parametric form followed by Eluru et al. (2008): 

𝜓𝑞,𝑘 = 𝜓𝑞,𝑘−1 + 𝑒𝑥𝑝(𝛾𝑞𝑘 + 𝛿𝑞𝑘 
′ 𝑍𝑞𝑘) (3) 

where, 𝑍𝑞𝑘 is a set of explanatory variables associated with the 𝑘𝑡ℎ threshold (excluding a 

constant), 𝛿𝑞𝑘 
′ is a vector of parameters to be estimated and 𝛾𝑞𝑘 is a parameter associated with 

injury severity level 𝑘. The remaining structure and probability expressions are similar to the OL 

model. For identification reasons, we need to restrict one of the 𝛿𝑘 
′ vectors to zero. 

For both OL and GOL models, the probability expression of Equation 2, is derived by 

assuming that the variance in propensity over different injury severity levels across different years 

is unity. However, we can introduce a scale parameter (𝜆), which would scale the coefficients to 

reflect the variance of the unobserved portion of the utility for each time point. Thus, the 

probability expression can be written as: 

𝑃𝑞(𝑘) = Λ [
(𝜓𝑘 − 𝛼′𝑥𝑞)

𝜆
] − Λ [

(𝜓𝑘−1 − 𝛼′𝑥𝑞)

𝜆
] (4) 

where 𝜆 is the scale parameter of interest and is parameterized as  exp(σti) and 𝑡𝑖 is a time elapsed 

variable which is the time difference between the analysis year (1989, 1994, 1999, 2004, 2009, 

and 2014) from the base year (1989) considered. Thus the variable takes the form of an ordered 

variable ranging from 0 (for 1989) to 25 (for 2014). This yields the SGOL model. If the 𝜎 

parameters are not significantly different from 0, the expression in equation (4) collapses to the 

expression in equation (2) yielding either the OL or GOL model depending on the threshold 

characterization. The reader would note that the scale parameter also relaxes the homoscedasticity 

assumption implicit within the OL and GOL formulations.  

The mixed GOL accommodates unobserved heterogeneity in the effect of exogenous 

variables on injury severity levels in both the latent injury severity propensity function and the 

threshold functions (Eluru et al., 2008; Srinivasan, 2002). The equation system for MGOL model 

can be expressed as: 

𝑦𝑞
∗ = (𝛼′ + 𝛽′)𝑥𝑞 + 𝜀𝑞 (5) 

𝜓𝑞,𝑘 = 𝜓𝑞,𝑘−1 + 𝑒𝑥𝑝 [(𝛿𝑞𝑘 
′ + 𝜃𝑞𝑘

′ )𝑍𝑞𝑘] (6) 
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We assume that 𝛽′and 𝜃𝑞𝑘
′  are independent realizations from normal distribution for this 

study. The proposed approach takes the form of a random coefficients GOL model thus allowing 

us to capture the influence of exogenous variables and year specific error correlation through 

elements of 𝑥𝑞 and 𝑍𝑞𝑘. This approach is analogous to splitting the error term (𝜀𝑞) into multiple 

error components (analogous to error components mixed logit model). The parameters to be 

estimated in the MGOL model are the mean and covariance matrix of the distributions of 𝛽′and 

𝜃𝑞𝑘
′ . In this study, we use the Halton sequence (200 Halton draws) to evaluate the multidimensional 

integrals (see Eluru et al., 2008 for a similar estimation process). In our analysis, xq vector includes 

the year of the data collection allowing us to estimate observed and unobserved variations with 

respect to time.  

 

DATA 
 

Data Source and Data Description 
The data for the current study is sourced from the “General Estimates System (GES)” database for 

the years 1989, 1994, 1999, 2004, 2009, and 2014. The GES database is a nationally representative 

sample of road crashes collected and compiled from about 60 jurisdictions across the United States. 

The data is obtained from the U. S. Department of Transportation, National Highway Traffic 

Safety Administration’s National Center for Statistics and Analysis (ftp://ftp.nhtsa.dot.gov/GES/). 

The data includes information on reports compiled by police officers for crashes involving at least 

one motor vehicle traveling on a roadway and resulting in property damage, injury or death to the 

road users. For the six years, the crash database has a record of 286,490 crashes involving 493,249 

vehicles and 789,576 individuals. A five-point ordinal scale is used in the database to represent 

the injury severity of individuals involved in these crashes1: 1) No injury; 2) Possible injury; 3) 

Non-incapacitating injury; 4) Incapacitating injury and 5) Fatal injury. Further, the dataset 

compiles information on a multitude of factors (driver characteristics, vehicle characteristics, 

roadway attributes, environmental factors, and crash characteristics) representing the crash 

situations and events. A number of crash-related factors are extracted from this database in order 

to explore the variables that might influence the driver injury severity. 

 

Data Assembly and Data Preparation 
The focus of this study is on injury severity of drivers of passenger vehicles (passenger car, sport 

utility vehicle, pickup or van). Thus, the following criteria were employed for sample formation: 

(1) The crashes that involve only non-commercial (private) passenger vehicle drivers are selected 

(to avoid the potential systematic differences between commercial and non-commercial driver 

groups). (2) The passenger vehicle crashes that involve another passenger vehicle or a fixed object 

are examined. The crashes that involve more than two vehicles are excluded from the analysis. 

The final dataset of non-commercial driver of passenger vehicles from all years, after removing 

records with missing information for essential attributes consisted of about 251,701 records – with 

31,012 records for the year 1989; 42,858 records for the year 1994; 45,959 records for the year 

1999; 46,889 records for the year 2004; 31,408 records for the year 2009 and 53,575 records for 

                                                 
1 Injury severity levels are defined and considered based on NHTSA (2015). Specifically, in the pooled dataset, “no 

injury and non apparent injury” are defined as no injury, “non-incapacitating evident injury and suspected minor 

injury” are defined as non-incapacitating injury; “incapacitating injury and suspected serious injury” are defined as 

incapacitating injury. The definition of possible and fatal injury are same across all years. 
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the year 2014. From this dataset, a sample of 2000 records from each year is sampled out for the 

purpose of analysis. Thus, the final estimation sample has 12,000 data records. Table 1 presents 

the sample share for different severity levels in the estimation sample across different years 

considered. From the table, we can see that the injury severity shares remain reasonably stable 

over the years, however for 2004 and 2009, the incapacitating and fatal crash shares are higher 

relative to other years. In this final sample, the percentage of fatal crashes sustained by drivers is 

extremely small (0.5%). Therefore, both the fatal and incapacitating injury categories are merged 

together to ensure a representative share for each alternative crash level. In the final estimation 

sample, the distributions of driver injury severities are: no injury 70.7%, possible injury 13.3%, 

non-incapacitating injury 10.0% and incapacitating/fatal injury 6.1%.  

 

MODEL ESTIMATION RESULTS 
 

Variable Considered 
In road crash reporting system, the definition of independent variables and the reporting approach 

may vary across different years. The Analytical User’s Manual of GES data has detailed 

information on the label of each variables reported in the GES database from 1988 to 2014 

(NHTSA, 2015). From the report it is quite evident that there are variations in variable 

documentation across different years. However, the variables should be uniform for all years in a 

pooled dataset for estimating a single pooled model. Therefore, in our current study, to estimate 

models using pooled data, we prepared the datasets such that all years have exactly the same set 

of independent variables with same number of levels in each category. To reiterate, we have 

considered only the common attributes present in different years and did not consider the variables 

which were omitted or added in the crash database across years. In our study, we considered a host 

of exogenous variables and divided those into six broad categories: Driver characteristics 

(including driver gender, driver age, alcohol consumption and restraint system use), Vehicle 

characteristics (including vehicle type and vehicle age), Roadway attributes (including roadway 

class, road location and traffic control device), Environmental factors (including time of day, day 

of week, lighting condition and road surface condition), and Crash characteristics (including 

collision object and manners of collision). Finally, in terms of Temporal variables, we introduced 

a variable called “time elapsed from 1989” which is the time difference between the most recent 

years (1994, 1999, 2004, 2009, and 2014) from the base year (1989) considered in the current 

study context. Both linear and square effects of the time elapsed were tested. Moreover, interaction 

of exogenous variables with the time elapsed variable (linear and square) were utilized to control 

for time varying variable effects. As a result, it would be possible to apply the developed models 

for future year scenarios. Table 2 offers a summary of the sample characteristics of the categorical 

exogenous factors in the estimation dataset. The only continuous variable considered in our study 

is vehicle age which has a mean of 7.45 years for different years considered. The final specification 

was based on a systematic process of removing statistically insignificant variables (90% 

confidence level) and combining variables when their effects were not significantly different. The 

specification process was also guided by prior research, intuitiveness and parsimony 

considerations. 

 

Overall Measures of Fit 
The empirical analysis involves the estimation of four models: (1) the ordered logit (OL) model, 

(2) the generalized ordered logit (GOL) model, (3) the scaled generalized ordered logit (SGOL) 
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model, and (4) the mixed generalized ordered logit (MGOL) model. Prior to discussing the 

estimation results, we compare the performance of these models in this section. The log-likelihood 

values at convergence for the various frameworks are as follows: (1) OL (with 31 parameters) is -

10463.112; (2) GOL (with 47 parameters) is -10384.608, (3) SGOL (with 49 parameters) is -

10380.072, and (4) MGOL (with 51 parameters) is -10380.468. The corresponding value for the 

“constant only” model is -10963.882. To undertake the comparison, we employ a two-step process. 

In the first step, we use the likelihood-ratio (LR) test to determine the two superior models among 

all the models estimated (The ordered models (OL, GOL, SGOL and MGOL) are nested version 

of each other and hence LR test is appropriate). Subsequently, we compare the selected two models 

by using several information criteria to determine the best fitted models.  

The LR test statistic is computed as 2[𝐿𝐿𝑈 − 𝐿𝐿𝑅], where 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood 

of the unrestricted and the restricted models, respectively. The computed value of the LR test is 

compared with the ℵ2 value for the corresponding degrees of freedom (dof). The resulting LR test 

values for the comparison of OL/GOL, OL/SGOL, OL/MGOL, GOL/SGOL and GOL/MGOL 

models are 157.008 (16 dof), 166.080 (18 dof), 165.288 (20 dof), 9.072 (2 dof) and 8.280 (4 dof), 

respectively. The LR test values indicate that MGOL and SGOL outperform both OL and GOL 

models indicating that MGOL and SGOL offer superior fit compared to both OL and GOL models. 

To further evaluate the performance of SGOL and MGOL models, we employ different 

information criterion including: 1) Bayesian Information Criterion (BIC), 2) Akaike Information 

Criterion (AIC) and 3) Akaike Information Criterion corrected (AICc). These measures can be 

computed as: 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) 

𝐴𝐼𝐶 =  2𝐾 − 2𝑙𝑛 (𝐿𝐿) 

𝐴𝐼𝐶𝑐 =  2𝐾 − 2𝑙𝑛 (𝐿𝐿)  +
2 𝐾(𝐾 + 1)

(𝑄 − 𝐾 − 1)
 

(7) 

where 𝐿𝐿 is the log-likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 is the 

number of observations. The BIC (AIC; AICc) values for the final specifications of the SGOL and 

MGOL models are 21218.807 (20858.144; 20858.554) and 21243.865 (20862.936; 20863.380), 

respectively. The comparison exercise clearly highlights the superiority of the SGOL model, in 

current study context, in terms of data fit compared to all the other models. 

 

Estimation Results 
In presenting the effects of exogenous variables in the model specification, we will restrict 

ourselves to the discussion of the SGOL model. Table 3 presents the estimation results. In SGOL 

model, when the threshold parameter is positive (negative), the result implies that the threshold is 

bound to increase (decrease); the actual effect on the probability is quite non-linear and can only 

be judged in conjunction with the influence of the variable on propensity and other thresholds. In 

the following sections, the estimation results are discussed by variable groups. 
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Temporal Variables 

With respect to time elapsed variables, both linear and square effects of the time elapsed variables 

are found to be significant determinants of driver injury severity outcomes. The linear specification 

of time elapsed variable is significant in the propensity and in both thresholds. The effect in the 

propensity for the time elapsed variable indicates that driver injury severity in recent times are 

likely to be severe. But the impact of time elapsed variable on the thresholds indicate that the 

temporal effect on severe crash categories are crash and driver-specific. The square specification 

of time elapsed variable implies negative effect on driver injury severity with an overall less 

likelihood of incapacitating/fatal crash outcomes (as indicated by second threshold). Therefore, 

we can argue that the net effect of time elapsed on driver injury severity can be identified based 

on combination of both linear and square specifications of the variable with their impact in 

propensities and thresholds. To have a better understanding of time elapsed variable on driver 

injury severity outcome, we plot the injury severity probabilities for different years. The plot is 

presented in Figure 1. From Figure 1, we can see that no injury probability has increased 

substantially over time while other injury severity outcomes have decreased over time. The overall 

improvement in injury severity outcomes may be attributed to improvement in technology, 

infrastructure, enforcement and education. It is also evident from the figure that the higher injury 

severity outcomes have shown a slight increase in recent years, which might be attributed to 

distracted driving – a topic of concern highlighted within the safety community.. 

  

Driver Characteristics 

The demographics of driver involved in the collision has significant influence on crash severity. 

The result related to driver gender indicates that compared to the male drivers, the latent injury 

propensity is higher for female drivers. The result is perhaps indicating that females are less 

capable of bearing physical and mental trauma compared to males (Chen and Chen, 2011; Sivak 

et al., 2010). The estimates associated with driver age, suggest a reduction in the likelihood of 

severe injuries for the young drivers (age<25) compared to middle-aged drivers (age 25 to 64). 

The lower probability of severe injury among young adults may reflect the higher physiological 

strength of young drivers in withstanding crash impacts (Castro et al., 2013; Xie et al., 2012). 

Further, a negative impact of the interaction term between the young driver and time elapsed 

(square specification) is observed in our analysis. Consistent with earlier studies (Bédard et al., 

2002; Kim et al., 2013), we also find that old drivers (age≥65) involved in crashes are less likely 

to evade serious injury relative to other adult individuals. Further, the negative sign of threshold 

of old driver demarcating the possible and non-incapacitating injury indicates a higher likelihood 

of non-incapacitating and incapacitating/fatal injuries for this group of drivers. As expected, 

drivers under the influence of alcohol are likely to have a higher injury risk propensity compared 

to the sober drivers. Negative sign of the threshold demarcating the possible and non-

incapacitating shows a higher likelihood of non-incapacitating and incapacitating/fatal injury. The 

impact of use of restraint system does not affect propensity, however, a positive impact of the 

interaction term between unrestrained and time elapsed is found significant in the threshold 

demarcating the possible injury and non-incapacitating injury. On the other hand, the unrestrained 

variable with the interaction of time elapsed with square specification is found significant with 

negative signs in both thresholds. The actual effect is non-linear and can only be judged in 

conjunction with the influence of the variable with both the linear and square specifications of time 

elapsed effect.  
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Vehicle Characteristics 

With respect to vehicle characteristics, vehicle type and vehicle age are found to be significant 

determinates of driver injury severity. The driver’s vehicle type indicators reveal that the drivers 

of pickup, van, light truck and utility vehicles have lower injury risk propensity relative to car, 

perhaps due to the larger weight of these vehicles (see Eluru et al., 2010; Xie et al., 2009 for similar 

results). At the same time, the negative values of the first thresholds of pickup reflects an increase 

in non-incapacitating injury probability. On the other hand, the positive sign in the threshold 

specific to van implies lower likelihood of non-incapacitating and other severe injury categories. 

The contrasting effect of propensity and threshold for pickup implies that the effect of pickup on 

the non-incapacitating and incapacitating/fatal injury categories is crash and driver-specific; for 

some contexts, the minor injury probability can increase with a concomitant decrease in the 

serious/fatal injury probability, while for other contexts the reverse can hold. This highlights the 

advantage of a GOL framework that allows for flexible exogenous variable impacts. The vehicle 

age estimate demonstrates that drivers are more likely to be severely injured if they drive older 

vehicles while involved in a road crash. Several previous studies have also demonstrated such 

impacts of older vehicles on the outcome of driver injury severity (Islam and Mannering, 2006; 

Kim et al., 2013). 

 

Roadway Attributes  

With respect to the roadway class, the model estimates show that the likelihood of severe injury 

increases for the driver of passenger vehicles when the crash occurs on an interstate highway. From 

the result of the interaction of interstate highway with time elapsed variable (square specification), 

we observe that with time, injury severity for crashes occurring on interstate highway is 

decreasing. The result is perhaps indicating better roadway design over years. Among other 

roadway attributes, road location and type of traffic control device have significant influence of 

driver injury severity profiles. Specifically, intersection related, or driveway access or other 

roadway location related crashes are less likely to result in severe injuries to the drivers in the 

event of a crash relative to non-intersection and intersection locations. The intersection related 

variable is also found to have significant effects in both thresholds with positive signs. The net 

implication is that intersection related crashes have a lower probability of resulting in fatal crashes. 

Crashes in the presence of stop-sign seem to decrease injury severity likelihood relative to other 

traffic control systems.  

 

Environmental Factors  

Several environmental factors considered in our model are found to be significant determinants of 

driver injury severity in the final model specification. The likelihood of severe injury is lower 

during evening peak period compared to other time of day. The lower crash severity outcome of 

evening peak may be attributed to higher traffic volume and slow driving speeds during this period 

of the day. The estimation results also reveal that drivers are likely to evade severe injury during 

weekends relative to weekday. The lighting condition effect shows a higher probability of severe 

injury crashes during dark-unlighted conditions, perhaps due to reduced visibility and higher 

reaction time during darkness. The indicator variable also reveals an overall exacerbating effects 

on severe crash outcomes as indicated by the negative sign of the first threshold. The surface 

condition effects indicate that if collisions occur on a wet or other road surface (relative to dry 

surface conditions), the drivers are more likely to evade injury; possibly because of cautious 

driving during adverse weather condition. 
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Crash Characteristics 

Collision with large object (building, concrete traffic barrier, wall, tree, bridge, snow bunk) has a 

positive effect on the propensity of injury severity, while also demonstrating a higher likelihood 

of non-incapacitating injury (related to collision with small object and moving vehicle). The result 

is in line with several previous studies (Holdridge et al., 2005; Yamamoto and Shankar, 2004). 

With regards to manner of collision, the results in Table 3 related to sideswipe-same direction 

collisions are likely to result in lower injury risk propensities relative to other collision types. On 

the other hand, the impacts of the indicator variable on the first threshold is negative, which implies 

that the effects of sideswipe-same direction collision on different injury categories are crash and 

driver-specific. Overall, the results suggest an increased probability of possible injury category. 

The result associated with a head-on collision reflects an increased likelihood of severe 

crash outcome. The pre-impact speed vectors of motor vehicles are directed in opposing directions 

during a head-on collision, resulting in greater dissipation of kinetic energy and heavier 

deformation of motor vehicle bodies, resulting in higher risk of injury (Gårder, 2006; Tay and 

Rifaat, 2007). The effect of head-on collision type is also negative in the threshold demarcating 

non-incapacitating and incapacitating/fatal injury which indicates higher likelihood of 

incapacitating/fatal injury outcomes. From the result of the interaction of head-on collision with 

time elapsed variable (linear specification), we observe that with time, injury severity resulting 

from head-on crashes is decreasing, which can be attributed to better safety protection designs of 

vehicles over time2. The positive sign of propensity associated with angular collision reflects 

higher likelihood of severe injury, which can be attributed to the greater force of impact in an 

angular collision (Tay and Rifaat, 2007).   

 

Scale Parameter 

As indicated earlier, in SGOL model specification, we introduce a scale parameter to reflect the 

variance of the unobserved portion for each time point. In current study context, we use time 

elapsed (linear specification) variable as scale parameter and from Table 3, we can see that the 

variable effect is significant. The scale parameter indicates significant variation in the unobserved 

factors across the years. Specifically, there is an increased influence of unobserved factors on 

injury severity with time relative to the first time period. The higher scale value can be attributed 

to increased influence of variables not considered in our models such as vehicle technology and 

roadway infrastructure improvements, and education and enforcement campaigns. The result 

supports our hypothesis that there is significant variability in the variance of the unobserved 

component of driver injury severity propensity across different time periods.  

 

POLICY ANALYSIS 
Model Illustration 
The exogenous variable coefficients do not directly provide the magnitude of impacts of variables 

on the probability of different injury severity levels. Moreover, the impacts of coefficients of the 

SGOL framework might not be readily interpretable due to the interactions between propensity, 

threshold and scale parameters. Hence, to provide a better understanding of the impacts of 

exogenous factors, we compute disaggregate level changes in driver injury severity levels. 

Specifically, we focus on a hypothetical scenario (based on the variables found significant in the 

final model specifications).  

                                                 
2 In severity analysis, collision type is often endogenous to severity outcomes (see Rana et al., 2010 and Yasmin et 

al., 2014). However, in our current study, it is beyond the scope to examine for such endogeneity. 
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Let us consider a driver involved in an intersection related crash, during evening peak 

period on a wet road surface condition. For this hypothetical condition, we generate probability 

profiles for a young driver (aged less than 25) for different years by changing other crash attributes. 

The probability profile would allow us to understand the variation in injury severity profile over 

time and across different situations. In generating the probability profile, we consider the following 

conditions: 

1) Driver condition 1: Young driver, driving a pickup which is 7-year-old, driver is not 

wearing seat belt and driving while impaired by alcohol 

2) Driver condition 2: Young driver, driving a pickup which is 2-year-old, driver is not 

wearing seat belt and driving while impaired by alcohol 

3) Driver condition 3: Young driver, driving a pickup which is 2-year-old and the driver is 

not wearing seat belt, while not impaired by alcohol 

4) Driver condition 4: Young driver, driving a pickup which is 2-year-old and the driver is 

wearing seat belt while not impaired by alcohol 

5) Driver condition 5: Young driver, driving an utility passenger vehicle which is 2-year-old 

and the driver is wearing seat belt while not impaired by alcohol 

6) Driver condition 6: Young driver, driving a car which is 2-year-old and the driver is 

wearing seat belt while not impaired by alcohol 

For these driver conditions, the probability plots are generated for all six years considered in the 

analysis (1989, 1994, 1999, 2004, 2009 and 2014) along with a future year (2019) and these plots 

are presented in Figure 2. The reader would note that the probability plots provided are only a 

sample of the various illustrations that can be generated based on the independent variables in the 

models. 

In Figure 2, predicted probabilities (Z-axis) identified based on SGOL model estimation 

results are depicted by 3-dimensional (3D) bar plots as a function of the injury severity levels (X-

axis), the year (Y-axis) and probability (Z-axis). Overall, from the plots we can observe that 

probability of serious injury severity outcomes of young driver for alcohol impairment and not 

wearing seat belt conditions are greater in recent years. A similar trend is also observed for old 

vehicle indicator variable as well. As is expected, among three unsafe conditions explored (old 

vehicle, alcohol impaired and not wearing seat belt), alcohol impairment has greater impact on 

serious crash outcome for young driver – evident by the drop-in incapacitating/fatal bars from 

driving condition 2 to 3. For newer vehicle, the severity profiles are almost similar across different 

passenger vehicles (pickup, utility and car). However, it is interesting to note that driving newer 

vehicles are likely to have deteriorating impacts on severe crash outcomes for the interim years 

considered (1999, 2004, 2009), and in recent years the positive impacts of newer vehicles appear 

to be restored. The generated probability plots clearly show that over the years the safety trends 

have changed. The development of such injury severity profiles could be helpful for the policy 

makers to identify problematic conditions and identifying countermeasures for improving driver 

safety.  

 

Elasticity Effects 
The model illustration section provides a representation of how overall injury severity profiles 

vary over time. However, to identify the impact of various exogenous variables, we compute the 

aggregate level “elasticity effects” for independent variables (see Eluru and Bhat, (2007) for a 

discussion on the methodology for computing elasticities). We present the elasticity effects for a 

set of variables – Female, Under the influence of alcohol, Unrestrained, Pickup, On interstate 
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highway, Dark-unlighted, Collision with large object and Head on collision. The elasticity effects 

are presented by severity categories for different years considered in the analysis along with the 

mean elasticity effects and confidence interval of effects at 90% level. The results in the table can 

be interpreted as the percentage change (increase for positive sign and decrease for negative sign) 

in the probability of the crash severity categories due to the change in that specific exogenous 

variable. 

The following observations can be made based on the elasticity effects of the variables 

presented in Table 4. First, among the variables considered for elasticity computation, the most 

significant variables in terms of increase in incapacitating/fatal injury are head on collision, 

collision with large object and driving under the influence of alcohol. These variables are also the 

most significant contributors to incapacitating/fatal injury in the most recent year (2014) 

considered. Second, from base year to the most recent year considered, the effect of head on crash 

and crashes on interstate highway on incapacitating/fatal injury have decreased significantly. On 

the other hand, the effect of driving while unrestrained has increased significantly with regards to 

incapacitating/fatal injury. Third, the effects of under the influence of alcohol and unrestrained 

driving on serious injury severity categories (non-incapacitating/incapacitating/fatal injury) have 

seen significant increase over the years considered. Fourth, there are substantial differences in the 

elasticity effects across different years considered. Finally, the confidence interval generated for 

the mean elasticity highlights the presence of relatively narrow bands for all variables across 

various severity categories. The elasticity analysis conducted provides an illustration on how the 

proposed model can be employed to identify the most crucial issues in improving overall driver 

safety and in understanding the critical factors contributing to driver injury severity over time. 

 

CONCLUSION 
The current study undertook a unique research effort to quantify the impact of various exogenous 

factors on crash severity over time. Specifically, we examined if over time, the impact of 

exogenous variables has changed and if so what is the magnitude of the change. In our study, we 

systematically identify exogenous variables that offer time-varying effects and quantify the change 

in their impact. For this purpose, we drew data from the General Estimates System (GES) database, 

over a span of twenty-five years. The data was compiled for driver injury severity in single or two 

vehicle (passenger vehicle only) crashes from 1989 through 2014 in 5-year increments (1989, 

1994, 1999, 2004, 2009 and 2014). In our analysis, injury severity was classified in four levels as 

follows: no injury, possible injury, non-incapacitating injury, and incapacitating/fatal injury. The 

data compiled is a pooled dataset obtained from stitching together 6 cross-sectional datasets 

providing us with a pseudo-panel data. Such data pooling of different observations across multiple 

years offers unique methodological challenges. The modeling methodology should recognize the 

differences across multiple time points adequately since the outcome process for the observations 

in a year might be influenced by various observed and unobserved attributes. Towards that end, in 

our study, we implemented modeling approaches that simultaneously accommodate for the 

influence of observed and unobserved attributes on driver injury severity across multiple time 

points. 

Given the inherent ordering of the data, we estimated models by using generalized ordered 

logit (GOL), scaled generalized ordered logit (SGOL), and mixed generalized ordered logit 

(MGOL) model structures along with a traditional ordered logit model. These model development 

exercises were conducted with a host of exogenous variables including driver characteristics, 

vehicle characteristics, roadway attributes, environmental factors, crash characteristics and 
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temporal attributes and the focus of this study was injury severity of drivers of passenger vehicles 

(passenger car, sport utility vehicle, pickup or van). The comparison exercise based on log-

likelihood ratio test and different information criteria clearly highlighted the superiority of the 

estimated SGOL model in terms of data fit compared to all the other models. Further, effects of 

the elapsed time from the base year (1989) of data collection (and their interaction with other 

observed variables) were found significant which supported our hypothesis that there is variation 

in variable impacts on driver injury severity across the years. From the estimation results, we found 

that though the injury severity outcome had seen significant decrease over time, there were a slight 

increase in the categories of severe injury severities in recent years.  

In our research, to further understand the impact of various exogenous factors, we 

conducted a detailed policy analysis and 3-dimensional representation of injury severity profile 

considering different hypothetical driving and situational conditions across different years. The 

generated probability plots clearly indicated that over the years safety trends have changed. The 

development of such injury severity profiles could be helpful for the policy makers to identify 

problematic conditions and identifying countermeasures for improving driver safety. Further, we 

presented and discussed elasticities of different variables across different years to demonstrate the 

implications of the estimated model. From the elasticity effects, we found that the effect of head 

on crash and crashes on interstate highway on incapacitating/fatal injury have decreased 

significantly over time. On the other hand, the effects of under the influence of alcohol and 

unrestrained driving on serious injury severity categories (non-incapacitating/incapacitating/fatal 

injury) have seen significant increase over different years considered. These results warrant stricter 

enforcement to prevent driving under the influence of alcohol and without seat-belt in improving 

the overall driver safety. 

In our study, we estimated mixed GOL and scaled GOL model separately, while it is also 

possible to specify these models in a single framework by incorporating both unobserved effects 

by observations and by time period. In future, it might be interesting to examine crash injury 

severity by employing a GOL model that accounts for scale variation within a mixed GOL model. 

Moreover, it might be useful to specify the temporal effect as a combination of parametric and 

categorical design to capture further year-specific insights. In future, it might be interesting to 

examine crash injury severity by employing a scaled-mixed GOL model as a combination of 

parametric and categorical design of the temporal effect. Finally, while our proposed approach 

focused on severity propensity, it might be interesting, in a future effort, to evaluate for the 

potential influence of collision type endogeneity on severity propensity over time (see Rana et al., 

2010 and Yasmin et al., 2014).  
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FIGURE 1 Probability Plots of Driver Injury Severity Levels across Different Years 
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O = No injury, C = Possible injury, B = non-incapacitating injury and A/K = incapacitating/fatal injury 

FIGURE 2 Probability Plots of Driver Injury Severity Profiles across Different Years for 

Hypothetical Scenarios  
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     (a) Driver condition 1                  (b) Driver condition 2                (c) Driver condition 3 

 

     (d) Driver condition 4                  (e) Driver condition 5               (f) Driver condition 6 
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TABLE 1 Sample Characteristics of Injury Severity Levels  

Year 

Injury severity levels 

Total 
No injury Possible injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 
Fatal injury 

Percentage (within year) 

1989 73.60 12.25 10.10 3.75 0.30 100.00 

1994 71.30 15.15 8.35 4.95 0.25 100.00 

1999 71.40 14.35 9.70 4.30 0.25 100.00 

2004 68.05 12.75 10.55 7.90 0.75 100.00 

2009 67.90 12.35 10.85 8.00 0.90 100.00 

2014 71.70 13.05 10.15 4.65 0.45 100.00 
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TABLE 2 Crash Database Sample Statistics 

Explanatory variables 

Sample Share 

Frequency Percentage 

Driver characteristics 

 Driver gender 

  Male 6,699 55.80 

  Female 5,300 44.20 

 Driver age   

  Age less than 25 3,528 29.40 

  Age 25 to 64 7,452 62.10 

  Age more than 64 1,020 8.50 

 Influence of alcohol   

  Under the influence of alcohol 696 5.80 

  No alcohol involved 11,304 94.20 

 Restraint system use   

  Unrestrained 2,589 21.60 

  Restrained  9,411 78.40 

Vehicle characteristics 

 Vehicle type   

  Pickup 1,596 13.30 

  Vans 756 6.30 

  Light truck 1,392 11.60 

  Utility 384 3.20 

  Passenger car 7,872 65.60 

Roadway attributes 

 Roadway class   

  On interstate highway 935 7.80 

  Not on interstate highway 11,065 92.20 

 Road location   

  Not intersection 4,008 33.40 

  Intersection 4,248 35.40 

  Intersection related 1,896 15.80 

  Driveway access 1,116 9.30 

  Other crash location 732 6.10 

 Traffic control device   

  No traffic control 7,176 59.80 

  Traffic signal 3,096 25.80 

  Stop sign 948 7.90 

  Other traffic control device/sign 780 6.50 

Environmental factors 
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 Day of week   

  Weekdays 7,208 60.1 

  Weekends 4,792 39.90 

 Lighting conditions   

  Day light 8,868 73.90 

  Dark-unlighted 948 7.90 

  Dark-lighted 1,776 14.80 

  Dawn-dusk 408 3.40 

 Road condition   

  Dry 9,192 76.60 

  Wet 2,184 18.20 

  Other road condition 624 5.20 

Crash characteristics 

 Collision object   

  Collision with moving vehicle 10,356 86.30 

  Collision with large object 1,356 11.30 

  Collision with other object 288 2.40 

 Manner of collision   

  Rear-end 3,696 30.80 

  Head on 468 3.90 

  Angle 5,328 44.40 

  Sideswipe same direction 684 5.70 

  Other manner of collision 1,824 15.20 
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TABLE 3 Scaled Generalized Ordered Logit (SGOL) Model Results  

Variables 

Latent 

Propensity 

Threshold 

between Possible 

and Non-

Incapacitating 

Injury 

Threshold between 

Non-incapacitating 

and 

Incapacitating/Fatal 

Injury 

Estimates (S.E.*) Estimates (S.E.) Estimates (S.E.) 

Constant 1.452 (0.078) -0.012 (0.047) 0.342 (0.066) 

Temporal variables 

  Time elapsed (linear) 0.051 (0.009) -0.016 (0.006) -0.055 (0.013) 

  Time elapsed (square) -0.001 (0.0003) ---× 0.002 (0.0005) 

Driver characteristics 

 Driver gender (Base: Male) 

  Female 0.324 (0.045) --- --- 

 Driver age (Base: Age 25 to 64)    

  Age less than 25 -0.118 (0.061) --- --- 

  
Age less than 25*Time elapsed 

(square) 
-0.0003 (0.0002) --- --- 

  Age more than 64 0.164 (0.064) -0.297 (0.090) --- 

 Under the influence of alcohol 0.673 (0.087) -0.290 (0.103) --- 

 Restraint system use (Base: Restrained)    

  Unrestrained*Time elapsed (linear) --- 0.026 (0.014) --- 

  Unrestrained*Time elapsed (square) --- -0.0024 (0.001) -0.0007 (0.0003) 

Vehicle characteristics 

  Vehicle type (Base: Car)    

  
 Pickup -0.415 (0.066) -0.145 (0.085) --- 

  
 Vans -0.168 (0.078) 0.254 (0.092) --- 

  
 Light Truck -0.228 (0.124) --- --- 

  
 Utility -0.267 (0.060) --- --- 

  Vehicle age 0.015 (0.003) --- --- 

Roadway attributes  

 

Roadway class (base: Not on interstate 

highway) 
   

  On interstate highway 0.405 (0.111) --- --- 

 
 

On interstate highway*time elapsed 

(square) 
-0.0006 (0.0003) --- --- 

  

Road location (base: Not intersection 

and intersection) 
   

    Intersection related -0.217 (0.061) 0.137 (0.071) 0.212 (0.092) 

    Driveway access -0.375 (0.071) --- --- 

    Other crash location -0.241 (0.084) --- --- 

 

Traffic control device (Base: Not stop 

sign) 
   

  Stop sign -0.133 (0.068) --- --- 

Environmental factors  
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Time of day (Base: Other than evening 

peak) 
   

  Evening peak -0.098 (0.044) --- 0.163 (0.067) 

 Day of week (Base: Weekday)    

  Weekends -0.069 (0.037) --- --- 

  Lighting condition (Base: Day Light)    

    Dark-unlighted 0.145 (0.069) -0.187 (0.097) --- 

 Road surface condition (Base: Dry)    

  Wet -0.094 (0.048) --- --- 

  Other road condition -0.591 (0.103) --- --- 

Crash characteristics 

  

Collision object (Based: Collision with 

moving vehicle) 
   

    Collision with Large Object 0.739 (0.082) -0.407 (0.081) --- 

  Manner of Collision (Base: Rear-end)    

    Sideswipe same direction -0.639 (0.113) 0.324 (0.127) --- 

    Head on  1.436 (0.178) --- -0.294 (0.116) 

  Head-on*Time elapsed (linear) -0.031 (0.010) --- --- 

     Angle 0.367 (0.049) --- --- 

Scale parameter    

 Time elapsed (linear) 0.0105 (2.088) --- --- 
*S.E. = Standard Error 
×Variable is not significant at 90% confidence level



TABLE 4 Elasticity Effects 

Variables Injury severity levels 

Year Mean 

Elasticity 

Effect 

Confidence Interval 

1989 1994 1999 2004 2009 2014 Lower Limit Upper Limit 

Female 

No injury -8.05 -9.46 -10.05 -11.16 -11.81 -11.29 -10.27 -10.99 -9.55 

Possible injury 19.17 18.22 18.67 18.27 18.73 21.50 19.05 19.01 19.09 

Non-incapacitating injury 25.61 25.31 25.81 25.72 26.18 29.47 26.41 26.27 26.54 

Incapacitating/Fatal injury 31.04 31.60 32.92 33.60 34.70 37.69 33.80 33.36 34.25 

Under the 

influence of 

alcohol 

No injury -18.56 -21.56 -22.75 -25.21 -26.74 -26.05 -23.41 -24.99 -21.83 

Possible injury 10.29 5.79 5.88 2.97 2.50 7.64 5.77 4.55 7.00 

Non-incapacitating injury 88.07 83.53 81.48 78.05 77.20 89.12 82.85 81.39 84.30 

Incapacitating/Fatal injury 117.37 118.22 120.25 120.85 123.07 138.53 123.27 121.90 124.64 

Unrestrained 

No injury 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Possible injury 0.00 5.10 1.13 -11.85 -31.72 -53.04 -14.45 -19.88 -9.01 

Non-incapacitating injury 0.00 -5.46 -5.57 -2.57 -1.01 1.15 -2.14 -2.97 -1.31 

Incapacitating/Fatal injury 0.00 -3.36 5.43 26.09 57.61 113.59 35.89 29.92 41.85 

Pickup 

No injury 9.19 11.26 12.00 13.38 14.13 13.26 12.16 12.08 12.24 

Possible injury -30.79 -31.59 -32.58 -32.46 -33.03 -35.53 -32.63 -32.69 -32.58 

Non-incapacitating injury -21.11 -21.98 -22.97 -23.83 -25.02 -27.94 -23.93 -24.16 -23.71 

Incapacitating/Fatal injury -24.75 -26.66 -28.31 -30.04 -31.84 -34.63 -29.81 -30.59 -29.02 

On interstate 

highway 

No injury -10.69 -11.98 -11.08 -9.56 -6.11 -1.02 -8.43 -9.15 -7.71 

Possible injury 23.79 21.20 19.16 14.59 9.21 1.93 15.14 12.26 18.02 

Non-incapacitating injury 34.93 32.88 28.83 22.24 13.65 2.68 21.85 19.17 24.52 

Incapacitating/Fatal injury 44.83 43.41 38.83 30.53 18.64 3.46 28.57 26.18 30.96 

Dark-

unlighted 

No injury -3.66 -4.31 -4.56 -5.08 -5.40 -5.17 -4.68 -5.02 -4.35 

Possible injury -5.83 -6.70 -6.63 -7.24 -7.33 -6.02 -6.64 -6.85 -6.43 

Non-incapacitating injury 25.28 24.29 23.75 22.59 22.08 24.30 23.67 23.27 24.08 

Incapacitating/Fatal injury 30.52 30.31 30.38 29.68 29.32 31.36 30.17 30.12 30.23 

Collision 

with large 

object 

No injury -20.22 -23.60 -24.99 -27.58 -29.23 -28.56 -25.62 -25.76 -25.48 

Possible injury 3.24 -2.08 -2.02 -4.53 -4.40 -0.09 -1.72 -1.86 -1.59 

Non-incapacitating injury 102.95 97.42 95.50 90.92 90.14 103.60 96.67 96.51 96.83 

Incapacitating/Fatal injury 138.14 140.58 141.86 139.26 138.73 159.15 142.84 142.65 143.04 

Head on 

No injury -42.62 -42.56 -39.05 -36.63 -32.16 -25.00 -36.41 -36.53 -36.28 

Possible injury 69.57 53.10 48.65 41.46 37.11 38.27 47.99 47.93 48.05 

Non-incapacitating injury 105.31 78.42 60.57 47.84 37.64 36.45 59.73 57.37 62.09 

Incapacitating/Fatal injury 358.73 282.17 235.45 196.57 167.85 158.80 220.34 197.14 243.55 

 


