
Examining the Impact of Sample Size in the Analysis of Bicycle Sharing Systems 

 

 

 

 

Ahmadreza Faghih-Imani 

PhD Student 

Department of Civil Engineering and Applied Mechanics 

McGill University 

Ph: 514-398-6823, Fax: 514-398-7361 

E-mail: seyed.faghihimani@mail.mcgill.ca  

 

 

 

 

Naveen Eluru* 

Associate Professor 

Department of Civil, Environmental and Construction Engineering 

University of Central Florida 

Ph: 407-823-4815; Fax: 407-823-3315 

E-mail: naveen.eluru@ucf.edu 

 

 

 

 

August 6, 2016 

 

 

 

*Corresponding author 

  

mailto:seyed.faghihimani@mail.mcgill.ca
mailto:naveen.eluru@ucf.edu


Faghih-Imani & Eluru  1 

 

Abstract 

Given the growing installation of bicycle-sharing systems (BSS) across the world, there is a 

gradual increase in research on BSS over the past few years. Research efforts examining BSS 

employed a wide range of sample size depending on the temporal or spatial aggregation. The main 

objective of this paper is to investigate the impact of sample size on BSS analysis using data from 

New York City’s BSS (CitiBike). This paper proposes a systematic evaluation of the impact of 

sample size on model estimates, inference measures and predictive performance. We evaluate two 

major dimensions of BSS data: 1) system usage – impact of contributing factors on hourly arrival 

and departure rates at station level, 2) user destination choice – impact of factors on users’ 

preference of destination station choice. To examine the system usage, we employ the linear mixed 

model methodology while the user destination choice is studied using the Multinomial Logit 

Model (MNL). The model estimation exercises for system demand and destination choice are 

conducted on several samples of data. The performance of these sample models in terms of 

parameters, inference statistics and predictions relative to a base sample data is observed. The 

results would help the analysts to make decisions on sample size for accurately examining BSS 

usage. The analyses show that the impact of sample size on parameters estimated is stronger than 

that of the impact on prediction performance.  

Keywords: Sample size, bicycle sharing systems, CitiBike New York, linear mixed model, 

multinomial logit model, arrival and departure rates, destination choice, bicycle infrastructure, 

land use and built environment 
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1. INTRODUCTION 

1.1. Background 

In recent years, there has been growing attention on bicycle sharing systems (BSS) as an alternative 

and complementary mode of transportation (Shaheen et al. 2010; Faghih-Imani et al. 2014). A 

bicycle-sharing system provides increased flexibility to ride a bicycle without the costs and 

responsibilities associated with owning a bicycle (such as the need to secure their bicycles or 

perform regular maintenance). At the same time, the decision to make a trip can be made in a short 

time frame providing an instantaneously accessible alternative for a one-way or a round trip. These 

systems can enhance accessibility to public transportation systems by improving the last mile 

connectivity (Jäppinen et al., 2013). Moreover, BSS’s implementation in the city can motivate new 

segments of the society to cycle resulting in an increase in the overall bicycling mode share while 

also enhancing physical activity levels to obtain better health outcomes (Fuller et al. 2011; Buck 

et al., 2013; Fishman et al. 2015). Further, earlier research efforts observed that BSS were 

successful in normalizing the image of cycling while increasing driver awareness towards cyclists 

improving the safety of cyclists (Goodman et al., 2014; Murphy and Usher 2015). 

Cities, by installing bicycle-sharing systems, are focusing on inducing a modal shift to cycling, 

and subsequently, decrease traffic congestion and air pollution. There is significant evidence from 

the travel behavior data in the United States to support BSS installation in urban areas. According 

to data from the 2009 National Household Travel Survey (NHTS), about 37.6% of the trips by 

private vehicles in the United States are less than 2 miles long. The NHTS data also indicates that 

about 73.6% of bicycle trips in the US are less than 2 miles long. Even if a small proportion of the 

shorter private vehicle trips (around dense urban cores) are substituted with BSS trips it offers 

substantial benefits to individuals, cities, and the environment. Thus it is not surprising that more 

than 1000 cities around the world have installed or plan to install a bicycle-sharing system (Meddin 

and DeMaio, 2015). With the growing installation of BSS infrastructure across the world, there is 

a substantial interest in understanding how these systems impact the urban transportation system. 

Research efforts examining BSS employed a wide range of sample sizes depending on the 

temporal or spatial aggregation. While it is beneficial to use large sample sizes for analysis, an 

increase in sample sizes are associated with increased data preparation effort, and longer model 

run times. In this context, the main objective of this paper is to investigate the impact of sample 

size on BSS analysis using data from New York City’s BSS (CitiBike). Specifically, the research 

evaluates the impact of sample size on model parameter estimates, inference measures and 

prediction capabilities. The findings provide analysts and planners guidelines on the “minimum” 

and “ideal” size of data necessary for examining BSS.  

 

1.2. Bicycle-Sharing System Studies 

There is a gradual increase in the research on bicycle-sharing systems over the past few years (see 

Ricci (2015) and Fishman (2016) for a review of recent literature on BSS). Table 1 presents a 

summary of earlier research efforts that employed system or user level data from BSS around the 

world. The table provides information on the study, temporal aggregation, spatial aggregation, 

BSS details, sample size and modeling approach employed. From the table, it is evident that based 

on the temporal or spatial aggregation, the sample sizes can vary substantially. The majority of the 

research efforts are conducted at the system level with only 2 out of 10 reviewed here exploring 
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user level decisions. The methodologies considered for analysis include linear regression, linear 

mixed models, count models and multinomial logit models.  

Under the systems perspective, quantitative studies employed actual bicycle usage data to 

capture the determinants of BSS usage (Nair et al. 2013; Rixey 2013; Gebhart and Noland 2014; 

O’Brien et al. 2014; Faghih-Imani et al. 2014; Faghih-Imani and Eluru 2014; Rudloff and Lackner 

2014; Zhao et al., 2014; Wang et al. 2015). These studies typically postulate that BSS usage from 

a system perspective is influenced by various attributes such as BSS infrastructure (such as number 

of BSS stations and stations’ capacity), transportation network infrastructure (such as length of 

bicycle facilities, streets and major roads), land use and urban form (such as presence of metro and 

bus stations, restaurants, businesses and universities), meteorological data (such as temperature 

and humidity), and temporal characteristics (such as time of day, day of the week and month). 

These studies mostly characterized usage as the number of trips originated and destined to one 

station or divided the usage of one station in two rates: arrivals (depositing bicycle) and departures 

(removal of bicycles). These studies employed various levels of aggregation both temporally such 

as hourly, daily or monthly usage and spatially such as station level or TAZ (traffic analysis zone) 

level.  

The studies focussed on the user perspective contribute to the literature by studying user 

behavior in response to bicycle-sharing systems. These studies analyze how people integrate BSS 

with other urban transportation systems. Studies found that convenience offered by BSS is the 

main factor that significantly encouraged individuals to use the system (Fuller et al., 2011; 

Bachand-Marleau et al., 2012). Several studies highlighted the differences between BSS short-

term users and BSS annual members’ preferences towards the use of the system (Lathia et al., 

2012; Buck et al., 2013; Faghih-Imani and Eluru, 2015). Studies also found that BSS users, in 

general, prefer shorter trips with all else same (Faghih-Imani and Eluru, 2015; Mahmoud et al., 

2015). Further, research efforts demonstrated that BSS users prefer to use the existing bicycle 

facilities such as bicycle lanes and have a higher interest in stations closer to transit system such 

as subway stations (Faghih-Imani and Eluru, 2015; González et al., 2016). Several studies 

underscored the use of BSS for the daily commute to and from work especially by annual members 

(Faghih-Imani et al., 2014; Faghih-Imani and Eluru, 2015; Murphy and Usher 2015).  

 

1.3. Data Employed for Analysis 

The BSS operators provide system availability data to users on their websites. Through relatively 

simple scripting exercises, it is possible to build a database of bicycle availability across stations 

for the BSS system. The data thus obtained can provide a glimpse of how BSS usage varies across 

the day. By augmenting the BSS usage variables with land-use, temporal and meteorological 

variables, a demand model to study the number of bicycles arriving or departing from a station can 

be examined. The process, analogous to trip generation in the traditional four-step model provides 

the demand from and into a station. Transportation planners are interested in such analysis as it 

quantifies the impact of land use factors on BSS usage. An important question in the process of 

developing such BSS demand models is to choose the size of the data to be selected for the model 

estimation sample. As opposed to the traditional travel demand literature where sample sizes are 

quite limited, in the context of BSS, demand information is available for every minute for multiple 

days and months. Hence, the selection of appropriate sample for demand analysis is quite critical.  
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More recently, in addition to the system availability information, BSS operators release trip 

information containing details including origin and destination stations, start and end time of the 

trip for BSS users. The station usage may also be obtained from this information by aggregating 

trips originated or destined at one station. In addition to usage rate, the information is useful to 

understand destination choice behavior of BSS users. Developing destination choice models will 

allow us to undertake the trip distribution step for BSS users. The exercise would allow us to 

identify trade-offs between distance and several exogenous variables in determining the 

destination. Again, a challenge in this process is the determination of sample size for destination 

choice models.  

For both demand analysis and destination choice modeling, the size of sample influences the 

complexity of the modelling process. Employing large samples requires substantial data 

preparation and model run times. For example, one month of data for a BSS with 300 stations 

results in 216,000 records of hourly arrivals or departures and about one million trips. The 

processing of usage or trip data and preparation of station level variables including built 

environment attributes and other variables such as weather characteristics or temporal attributes 

are substantially time-consuming. In addition to data preparation, a very large sample significantly 

increases the model run times. On the other hand, employing a smaller sample than appropriate 

would result in inaccurate and possibly even biased model estimates affecting the planning 

process. Hence, it would be useful to understand the sample size requirements for examining 

bicycle-sharing systems. Besides, the data is not always available; knowing the required 

appropriate sample size prior to collecting data would be beneficial. Due to the relative infancy of 

BSS, there is little to no guidance on the amount of data necessary for analysis.  

 

1.4. Current Study in Context 

It is evident from the discussion above that sample size requirements would assist transportation 

planners in developing reasonable models to study BSS trip generation (arrivals and departures) 

and distribution (destination). The current study proposes a systematic evaluation of the impact of 

sample size on model estimates, inference statistics, and predictive performance. Towards this end, 

we evaluate the BSS data from two perspectives: 1) system usage – what contributing factors 

influence hourly arrival and departure rates at a station level, 2) user destination choice – what 

factors contribute to users’ preference of destination station choice.  

To examine the system usage, we employ the linear mixed model methodology to determine 

the factors contributing to BSS usage. The usage is characterized as hourly arrival and departure 

rates of each station. The traditional linear regression model is not appropriate to study data with 

multiple repeated observations such as the hourly arrivals and departures for each station in our 

empirical context. Thus, we employ a linear mixed modeling approach that builds on the linear 

regression model while incorporating the influence of repeated observations from the same station. 

Further, the dependent variable is defined as the logarithm of hourly arrival and departure rates 

normalized by the station capacity (see Faghih-Imani et al., 2014). We analyze New York City’s 

BSS (CitiBike) stations’ hourly arrivals and departures for various samples.  

To explore the user destination choice, we employ the Multinomial Logit Model (MNL) to 

examine the impact of individual bicyclist attributes (such as age and gender), trip attributes (such 

as time period of the day) and destination attributes (such as distance from the origin station, 

bicycle infrastructure variables and land use and built environment attributes) on destination 



Faghih-Imani & Eluru  5 

 

choice. The most common methodology to study location choice in transportation and related 

literature is MNL (see Faghih-Imani and Eluru, 2015). We estimate the MNL model for CitiBike 

system in New York City. 

The model estimation exercises for system demand and destination choice are conducted on 

several samples of data (separately for weekdays and weekend days). The performance of these 

sample models relative to a base sample data is observed. Further, the performance of these sample 

based models on a hold-out sample relative to the predictive accuracy of the base sample is also 

compared. In order to account for the randomness of selecting smaller samples, for each smaller 

sample size, we randomly select five sets of data from that large sample and report the range and 

the average results. The results would help the analysts to identify necessary sample size for 

accurately examining BSS usage.   

The remainder of the paper is organized in the following order. Section 2 describes the research 

methodology, data, and the sample formation procedures. In Section 3, the models used in our 

analysis are described. Section 4 presents the model results and comparison. Finally, Section 5 

summarizes and concludes the paper. 

 

2. RESEARCH METHODOLOGY 

2.1. Data Source 

New York’s CitiBike system is the latest major public bicycle-sharing system around the world 

and the largest in the United States. The service was launched in May 2013 with 330 stations and 

6,000 bicycles in the lower half of Manhattan and some part of northwest of Brooklyn (Figure 1). 

The system covers the city’s major commercial business districts and some residential areas with 

an average daily ridership of 34,000 trips. New York City is the most populous city in the US and 

a host to millions of visitors every year. In 2013, the mode share of cycling in New York City 

reached 1% from about 0.5% in 2007 (Kaufman et al., 2015). The city’s dense and walkable urban 

form provide a good opportunity for the success of a well-designed BSS. 

The data used in our research was obtained from CitiBike website 

(https://www.citibikenyc.com/system-data). The CitiBike website provides trip dataset for every 

month of operation since July 2013. The trip dataset includes information about origin and 

destination stations, start time and end time of trips, user types i.e. whether the user was a 

subscriber of the system with annual membership or a customer with a temporary pass, and the 

age and gender for members’ trips only. Additionally, the stations’ capacity and coordinates, as 

well as trip duration, are also provided in the dataset. The built environment attributes such as 

bicycle routes and subway stations are derived from New York City open data 

(https://nycopendata.socrata.com/) while the socio-demographic characteristics are gathered from 

US 2010 census and the weather information are for Central Park station from National Climatic 

Data Center. 

 

2.2. Sample Formation 

The main objective of this study is to examine the impact of sample size on BSS analysis. For this 

purpose, we look into two sets of models: hourly arrival and departure rates and a destination 

station choice model. In this section, we explain the study methodology on how the various 
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samples are generated. Findings from earlier research have indicated that travel patterns of BSS 

are different in weekdays and weekends (Faghih-Imani et al. 2014). Hence, the research exercise 

is conducted separately for weekdays and weekends. Moreover, earlier studies showed that there 

is a significant difference between the behavior of annual members’ and the behavior of customers 

with temporary passes in using BSS (Lathia et al., 2012; Buck et al., 2013; Faghih-Imani and 

Eluru, 2015).  In this paper, we distinguish between the trips made by annual members and daily 

customers. For the sake of brevity, we only focus on trips, arrivals, departures and destination 

choices made by annual members1.   

A sample formation was necessary in order to obtain the arrivals and departures. We 

aggregated the number of trips originated from/destined to one station by the different type of users 

at an hourly level to obtain hourly arrivals and departures by members and daily customers at a 

station level. Further, we normalized stations’ arrivals and departures with station capacity to 

account for the influence of station capacity on demand. Station capacity is defined as the total 

number of dock spaces at each station. In our modeling efforts, we employ logarithm of the hourly 

normalized arrivals and departures as the dependent variable. We focused on the month of 

September 2013; i.e. the peak month of the usage in 2013 for our base analysis. We separated 

weekdays and weekends. This would give us a base sample consisting of 166,320 records (330 

stations × 24 hours × 21 days) for weekday models and 71,280 records (330 stations × 24 hours × 

9 days) for weekend models. We estimate our base model for arrivals and departures and assume 

the estimate results as the true (base) values and compared the rest of models with these results. 

Then, from this base sample we randomly select a series of smaller samples. For this purpose, we 

select random weekday/weekend days in the month of September and assign them to each station. 

For weekdays, we choose 10 days, 5 days, 3 days, 2 days and 1 day randomly for each station to 

create smaller samples while for weekends we choose samples for 5 days, 3 days, 2 days and 1 

day. It must be noted that the random days assigned to each station are different from random days 

assigned to other stations; thus the sampling approach covers the whole month across the urban 

region. To account for the impact of randomness, we generate five sets of these random days, 

estimate the arrival and departure models with both, and then obtain the average results (while also 

providing the range of the estimates).   

For destination choice model, to be consistent with the usage analysis, again we focus on the 

trips in the month of September. The sample formation exercise also involved a series of steps. 

First, trips with missing or inconsistent information were removed. Second, trips longer than 90 

minutes in duration (only 0.5% of all the trips) were deleted considering that the trips longer than 

90 minutes are not typical bicycle-sharing rides and could also be a result of misplacing the bicycle 

when returning it to the station. At the same time, trips that had the same origin and destination 

were also eliminated. For trips with the same origin and destination, it is possible that the bicycle 

was not functioning well and the users returned them to the origin station. Also, to accommodate 

for intentional same origin and destination trips would require additional trip purpose information 

and is beyond the scope of this work. Therefore, we focus on trips that were destined outward. 

                                                 

1 We have six models and six tables of results. If we wanted to add the results for daily users, the entire effort 

documented will need to be repeated for daily users. Moreover, the daily users typically account for a small share of 

BSS usage; for example, in New York City, only about 10% of trips are made by daily customers in 2014. To be sure, 

the proposed modeling framework and the systematic evaluation of the impact of sampling procedure can be applied 

on trips made only by daily users.   
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Further, we separated trips made by members and daily customers; about 86% of all the trips were 

made by members. Again, we consider separate sets of trips for weekday and weekend models. 

CitiBike system had 330 stations in September 2013. Considering all the stations in the 

universal choice set of destination station choice model will result in substantial computational 

burden. Thus, for each trip, we randomly sample 30 stations from the universal choice set including 

the chosen alternative. It must be highlighted that the 30 different random stations are obtained for 

every individual trip. McFadden (1978) showed that the process of random sampling of 

alternatives does not affect the parameter estimates in multinomial logit models (see Faghih-Imani 

and Eluru, 2015 for a similar assumption). For the evaluation of sampling impact, we consider the 

sample with 50,000 trips made in weekdays and another 50,000 trips made in weekends as the 

base sample for our weekday and weekend models. Then from these 50,000 trips, we randomly 

select five sets of 20000, 10000, 5000, 3000, 2000, 1000 trips generated as our smaller samples 

for both weekday and weekend models. For every sample size, the information for the 30 stations 

is augmented with the individual trip records. A descriptive summary of base samples 

characteristics is presented in Table 2. 

 

2.3. Independent Variable Generation 

The independent variables considered in our analysis can be categorized into four groups: (1) 

weather, (2) temporal, (3) spatial variables and (4) trip attributes. It must be noted that trip 

attributes are only included in the destination choice models. Weather variables include hourly 

temperature, relative humidity, and the hourly weather condition represented as a dummy variable 

indicating whether or not it is raining. Considering the start time of the trips for departures and end 

time of the trips for arrivals, five time periods were created: AM (7:00-10:00), Midday (10:00-

16:00), PM (16:00-20:00), Evening (20:00-24:00), and Night (0:00-7:00) to capture the time of 

the day effect on usage. For the destination choice models, the same time periods are used 

considering the start time of the trips.  

Several variables were considered from the spatial variables group. Population density was 

calculated at census block level and employment density at zip code level. Other attributes were 

considered at a station buffer level. A 250-meter buffer around each station was found to be an 

appropriate walking distance considering the distances between CitiBike stations and the dense 

urban form of New York City; typical New York City block is about 60 meter (Kaufman et al., 

2015). The length of bicycle routes and streets in the 250-meter buffer around the stations were 

calculated in order to examine the impact of street network and cycling facilities. The number and 

capacity of CitiBike stations in the 250-meter buffer were computed to capture the effect of 

neighbouring stations. The presence of subway and Path train stations in the 250-meter buffer were 

generated to examine the influence of public transit on BSS usage. The number of restaurants 

(including coffee shops and bars), and the area of park in the buffer were also considered as the 

point of interest attributes near CitiBike stations. 

Trip attributes considered in destination choice model include the street network distance 

between the origin and destination of every trip. This distance was computed using the shortest 

path between origin and destination stations to investigate the travel distance influence along with 

other attributes. The shortest distance is computed based on the street network around the stations 

(excluding highways). The estimated cycling distance serves as a surrogate for the actual distance 

and is a reasonable reflection of the actual distance between stations. While the actual trip might 
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involve a different route, the shortest distance would be an appropriate indicator of the distance 

traveled. Moreover, for the users with annual membership, the gender, and age information were 

available and were considered in our analysis. It must be mentioned that several exogenous 

variables such as gender, age or weather variables cannot be directly included within the 

destination choice model structure since these variables do not change across alternatives. 

Therefore, the interaction effects of such variables with distance variable are considered in our 

modelling effort. 

 

3. MODELS 

A brief description of the model structures employed in the sampling analysis is presented in this 

section. Specifically, we consider a linear mixed model structure for BSS demand (arrivals and 

departures) and a multinomial logit structure for destination choice. The same model structure is 

employed across the various samples chosen for analysis. 

 

3.1. Linear mixed models 

Let q = 1, 2, …, Q be an index to represent each station, d = 1, 2, …, D be an index to represent 

the number of days on which data was collected (sample size) and t = 1, 2, …, 24 be an index for 

hourly data collection period. The dependent variable (arrival or departure rate over station 

capacity) is modeled using a linear regression equation which, in its most general form, has the 

following structure: 

yqdt = βX + ε         (1) 

where yqdt is the logarithm of normalized arrival or departure rate as the dependent variable, X is 

an L×1 column vector of attributes and the model coefficients, β, is an L×1 column vector. The 

random error term, ε, is assumed to be normally distributed across the dataset. 

The error term may consist of three components of unobserved factors: a station component, a 

day component, and an hour-of-the-day component. We consider the station and the time-of-day 

to be related common unobserved effects. In this structure, the data can be visualized as 24 records 

for each Station-Day combination for a total of “Q stations × D days” observations. We 

parameterize the covariance matrix (Ω). For estimating a parsimonious specification, we assume 

a first-order autoregressive moving average correlation structure with three parameters σ, ρ, and φ 

as follows: 

 

Ω =  𝜎2 (

1 𝜑𝜌    
𝜑𝜌 1

 𝜑𝜌2 ⋯ 𝜑𝜌23

⋯ ⋯ ⋯
⋮ ⋮       

𝜑𝜌23 ⋯       
   

⋮ ⋮ ⋮
⋯ ⋯ 1

)   (2) 

 

The parameter σ2 represents the error variance of ε, φ represents the common correlation factor 

across time periods, and ρ represents the dampening parameter that reduces the correlation with 

time. The correlation parameters φ and ρ, if significant, highlight the impact of station specific 



Faghih-Imani & Eluru  9 

 

effects on the dependent variables.  The models are estimated in SPSS using the Restricted 

Maximum Likelihood Approach (REML). 

 

3.2. Multinomial Logit Model 

Let q = 1, 2, …, Q again be an index to represent each station, j = 1, 2, …, J be an index to represent 

the BSS users. Then, the random utility formulation takes the following form: 

 𝑢𝑗𝑞 = 𝛽′𝑋𝑗𝑞 + 𝜀𝑗𝑞               (3) 

Where ujq is the utility obtained by user j by selecting station q from the choice set of 30 stations. 

Xjq is the vector of attributes and β is the model coefficients to be estimated. The random error 

term, ε, is assumed to be independent and identically Gumbel-distributed across the dataset. The 

BSS user j will choose a station as the destination that offers the highest utility. With this notation, 

the probability expression takes the typical multinomial logit form given by: 

𝑃𝑗𝑞 =
exp (𝛽′𝑋𝑗𝑞)

∑ exp (𝛽′𝑋𝑗𝑞)30
𝑞=1

                (4) 

 The log-likelihood function can be defined as: 

𝐿 = ∑ ∑ ln (𝑃𝑗𝑞)𝑑𝑗𝑞
𝑗𝑞                     

(5) 

where 𝑑𝑗𝑞 is an indicator variable equal to 1 for the station chosen for BSS user j and 0 otherwise. 

By maximizing this log-likelihood function, the model parameters β are estimated. The maximum 

likelihood model estimation is programmed in GAUSS matrix programming language.  

 

4. ANALYSIS AND DISCUSSION 

In this study, the final model specifications for arrivals, departures, and destination choice were 

obtained after testing for several specifications using the corresponding base samples. The 

specifications were evaluated based on data fit, parameter significance and intuitiveness supported 

by statistical inference. The final specification based on base samples for arrivals, departures and 

destination choice models are presented in the first column of Tables 3 to 8.  

 

4.1. Evaluation Measures  

Considering that the base models represent the population models, we set forth estimating the same 

specification using the several samples prepared. As expected, the estimation on the smaller 

samples provides different values for the estimated parameters and different standard errors of 

estimates. To account for the randomness of the sampling process, we estimate the specifications 

on five sets of samples for each sample size. The parameters and standard errors estimated for each 

of five samples are compared to the base results and percentage differences at a parameter level 

and a model level are computed. For each sample size, we report the mean and range of percentage 

changes in order to show the variations not only between the different sample sizes but also 
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between different sets of random samples for each sample size. The estimates are presented in each 

column of Table 3 to 8. All the base reported estimates are significant at 95% level of confidence.  

The impact of sample size on the estimation results are examined by the following measures: 

1) the capability to produce the same parameter estimates of the base sample, 2) the significance 

of the parameter represented by the standard error and 3) the prediction capability as a measure of 

goodness of fit to predict the same results for data hold-out sample. For each variable in each 

sample size model, we calculate the percentage error with respect to base estimate of the variable 

coefficient and standard error for every set of a random sample of that size. Then, for each variable, 

we present the mean percentage change and the range of percentage change within the five random 

samples of smaller samples. For usage models, in order to evaluate the parameters estimated, mean 

absolute percentage error (MAPE) and root mean square error (RMSE) of estimated parameters 

with respect to the base sample’ estimates are calculated. In addition, the MAPE for the change in 

standard error of estimates with respect to base values are also generated. In order to better 

demonstrate the models’ performance, we also indicate the number of parameters which become 

statistically insignificant at 95% level of confidence when we use smaller samples. In order to 

show the prediction capability of models, we used the data from the first week of October 2013 

(i.e. the next week after our base sample for model estimation) to validate the estimated models by 

each sample. We used the first five weekdays of October for our weekday’s models and the first 

Saturday and Sunday of October for our weekend’s models as validation data. The same data 

procedure described in sample preparation for models estimation was repeated in order to compute 

hourly arrivals and departures. For each sample, the model developed was used to generate 

predictions of hourly arrival and departure rates and the predictions were compared with the 

observed rates in the validation sample. Again, to compare the prediction performance, we 

calculate two error metrics of mean absolute error (MAE) and RMSE. All the measures for 

evaluating arrival and departure models performance are presented in the bottom rows of Table 3 

and Table 4 for weekday models and Table 5 and Table 6 for weekend models. 

For the destination choice model, the same measures including the mean and range of 

percentage change for each variable, and MAPE and RMSE as aggregated measure are used in 

order to evaluate the performance of models to produce the estimated parameters of the base 

sample. Also, the mean and range of percentage change for standard errors of estimates and the 

number of parameters which become statistically insignificant at 95% level of confidence are 

calculated. However, for prediction capability measure, different procedure compared to the 

arrivals and departures models was needed. For this purpose, we employ a hold-out sample of 

5000 trips in weekdays and 5000 trips in weekends as our validation sample. The same data 

preparation and choice set generation for estimation samples is exercised for the validation sample. 

The parameters estimated by each sample size models were used to compute the probability of 

choosing a station for 30 stations of choice set for each of the 5000 trips. In order to evaluate the 

performance of models in prediction, two metrics are used: a) the predictive log-likelihood: the 

sum of the log of the probability of chosen station across the validation sample, and b) the 

percentage of correct prediction (correct prediction is defined as assigning the highest probability 

to the chosen station). Again, all the measures for evaluation of sample size impact on the 

performance of destination choice models are presented in the bottom rows of Table 7 for weekday 

models and Table 8 for weekend models.  

 

4.2. Evaluation results  
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In this section, we discuss the impact of sample size on the performance of models estimated. It is 

important to note that the weekday and weekend base models are slightly different. Some variable 

effects were insignificant in weekend models compared to the variable effects in weekday models.  

These include: (1) for arrivals model, the length of rails within buffer and the interaction of job 

density variable with AM; (2) for departures model, the interaction of population density and job 

density variables with AM; (3) for destination choice model, the presence of subway station in the 

buffer and the interaction of distance variable with temperature . The only variable that was 

significant in weekend models and insignificant in weekday models is the area of the park in the 

buffer variable for destination choice model. For the usage models, the weekend models have more 

stable performance; i.e. effect of sample size in arrivals models and departures models are less in 

weekend models (lower RMSE for both estimated parameters and prediction) which are expected 

since the usage of the system is lower in weekends. However, for destination choice models, the 

weekday and weekend models provide almost similar performances with the slightly better 

performance of weekday models in producing the base parameters and slightly better performance 

of weekend models in prediction. 

For weekday usage models, the performance of models on smaller sample size to produce the 

estimated parameters of the base sample varies by MAPE of 2.54 to 9.85 and 2.28 to 9.56 for 

arrivals and departures, respectively. The results show that as we choose smaller sample size until 

two days, we have almost similar results (less than four variables -out of 20- become insignificant) 

as the base case. We observe a huge jump in percentage change of standard errors when we use 

only one day to estimate arrivals or departure models. The results for the standard error changes 

indicate that as sample size decreases, standard error of estimates increases substantially thus 

altering inference i.e. the variable might be considered insignificant. The population density 

variable and time period dummy variables (AM, Midday, PM, and Evening) present the lowest 

variation in the predicted estimates even in one-day sample in both arrivals and departures. On the 

other hand, the maximum variation of estimated parameters is associated with the interaction of 

built environment attributes with temporal variables such as the interaction of population and job 

density with AM and PM, and also the length of bicycle lanes in the buffer and temperature. The 

level of variation of variables can be recognized as a measure of variables’ importance in 

examining the arrivals and departures. In terms of prediction capability, we do not observe any 

significant difference (loss) due to the use of smaller samples.  

For weekend usage models, similar trends are observed. The MAPE varies from 2.9 to 8.4 for 

arrivals and from 2.3 to 9.9 for departures. Again, we observe a huge drop in performance of 

models when we use only one day to estimate the usage models. The results show that as sample 

size decreases, the MAPE and the standard error of estimates increases. The lowest variation in 

the predicted estimates in both arrivals and departures is associated with the time period dummy 

variables, population density variable and the number of restaurants in the buffer variable while 

the largest variation of estimated parameters is observed for to the job density variable. The sample 

size does not have a significant impact on the prediction performance of both arrival and departure 

models. Based on the evaluation measures discussed above and specifically the escalation of error 

relative to standard errors, we suggest a minimum sample of three days for weekday models and 

two days for weekend models in order to sufficiently analyze BSS hourly usage. 

For destination choice models, as sample size decreases, the error measures increase. The 

MAPE (RMSE) of model performance to generate the estimated parameters of base model 

increases from 7.5 (0.096) for sample size of 20,000 trips to 43.7 (0.575) of sample size of 1,000 
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trips for weekday models while the corresponding values for weekend models are an increase from 

10.1 (0.142) to 46.6 (0.738). Again, as expected, the standard error of estimate increases when 

sample size reduces which is also demonstrated through the number of insignificant parameters. 

In addition, in general, the station capacity variable and the distance variable show the lowest 

variation in the predicted estimates for both weekday and weekend models, clearly indicating the 

importance of these two attributes in destination choice process of CitiBike users. Further, we can 

clearly see that as sample size decreases, the prediction capability of estimated models marginally 

reduces as highlighted by the predictive LL and percentage of correct prediction measures. 

However, the impact of sample size on prediction performance is not as substantial as that of the 

impact on parameters estimated. In total, based on the results and considering the increase in 

standard error, we can recommend a minimum sample size of 5000 trips for both weekday and 

weekend models for examining users’ destination choice and more generally users’ behaviour 

towards BSS.  

Overall, from our research exercise, we observe that employing different sample sizes have a 

stronger impact on the parameters estimated relative to the prediction capability. There is a clear 

trade-off between the use of smaller sample size and the closeness of estimated results with the 

base results. Models estimated with smaller samples are likely to increase the error in parameter 

inference as well as prediction performance. It is important to note that in none of the estimated 

models (arrivals, departures, destination choice) for smaller samples, the sign of estimated 

coefficients changed from the base sample results. We also want to highlight that when we have 

considered a sample size of about half of the base sample (10 days out of 21 days of weekday 

models, 5 days out of 9 days of weekend models, 20000 trips out of 50000 trips), we obtain the 

results that are very similar to the results obtained for the base sample. Specifically, a) for usage 

models, the MAPE is less than 3% and 1 or 2 variables out of about 20 variables become 

insignificant and b) for destination choice models, the MAPE is less than 10% and three or fewer 

variables become insignificant. The decision on the exact size of the sample to be employed will 

need to be specific to each individual dataset and to be examined based on the system knowledge 

of the analyst. In the absence of any information, our recommended sample size for arrivals, 

departures, and destination choices for weekdays and weekends can be employed as minimum 

requirements (as far as possible). 

  

5. CONCLUSION 

This paper examined the impact of sample size on hourly usage and users’ destination choice 

preferences employing data from New York City’s CitiBike. Towards this end, we evaluated the 

BSS data from two perspectives: 1) system usage – what contributing factors influence hourly 

arrival and departure rates at a station level, 2) user destination choice – what factors contribute to 

users’ preference of destination station choice. For system models, we estimated linear mixed 

models for hourly arrivals and departures on one month of data as our base model and compared 

it with the estimation on a set of smaller samples. We recognized the distinct behaviour of BSS in 

weekends by estimating separate models for weekdays and weekends. We considered 21 days of 

weekdays as our base sample and 10 days, 5 days, 3 days, 2 days and 1 day (five sets each) as our 

smaller samples while for weekends we considered 9 days of weekends as our base sample and 5 

days, 3 days, 2 days and 1 day (five sets each) as our smaller samples. For destination choice 

models, we estimated multinomial logit model on 50,000 trips made in weekdays and 50,000 trips 

made in weekends as our base model and again on five sets of smaller samples (20000, 10000, 
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5000, 3000, 2000, 1000 trips) for weekday and weekend models. We examined the impact of 

sample size on the estimation results based on three measures: the capability to produce the same 

parameters estimate of the base sample, the comparison of standard errors and the prediction 

performance.  

As expected, the estimation with the smaller samples provided different values for the 

estimated parameters and standard error of estimates. For usage, the performance of models on 

smaller sample size to produce the “true” parameters were within 10% of the base case. However, 

the increase in the standard errors were substantial (i.e. the confidence interval for the parameters 

was large). We observed a huge drop in performance of models when we used only one day to 

estimate arrivals or departure models. The results clearly indicated that when sample size 

decreases, standard error of estimates gradually increases and the confidence in estimated 

parameters reduces and more number of variables became insignificant. The mean number of 

insignificant parameters varied from 1.2 to 6.4 variables. In terms of prediction capability, we were 

not able to observe any significant difference due to the use of smaller samples. For destination 

choice models, as sample size decreased, the error measures increased. The MAPE of model 

performance to generate the estimated parameters of the base model for weekday (weekend) 

models increased from 7.5 (10.1) for the sample size of 20,000 trips to 43.7 (46.6) for the sample 

size of 1,000 trips. Again, as expected, the standard error of estimate increased when sample size 

reduced. The impact on the confidence of estimated parameters in destination choice models is 

slightly higher than the usage models; the mean number of parameters that become insignificant 

varies between 2.6 to 11 variables. Further, we observed that as sample size decreases, the 

prediction capability of estimated models marginally reduced. However, the impact of sample size 

on prediction performance is not as substantial as that impact on parameters estimated. The results 

suggested a minimum sample size of three days data for weekday analysis and two days data for 

weekend analysis to examine BSS demand and 5000 trips for weekday and weekend models for 

examining users’ destination choice. While these results cannot be generalized across all urban 

regions, these guidelines are intended to serve as minimum requirements for sample sizes 

analyzing BSS in the absence of any system level guidelines. 

To be sure, the study is not without limitations. While the two model structures have been 

extensively tested, these specifications might not be applicable for other regions. Hence, the 

transferability of sample sizes cannot be generalized to other urban regions. However, considering 

the guidelines from our research as minimum requirements will ensure that the sample sizes 

employed for analyzing BSS are reasonable even for other urban regions. Moreover, the data 

employed in our analysis is actual trip data from the BSS operator. We do not have information 

on potentially latent demand. Thus, developing improved models that consider the truncated nature 

of the arrival and departure rates might be useful. Furthermore, it is possible to consider advanced 

models for usage and destination choice. For example, in the usage models, it is possible that 

potential unobserved spatial correlations exist between demand across stations close to one another 

(see Faghih-Imani and Eluru, 2016). Accommodating for such potential spatial correlations in a 

sampling exercise would be a future direction of research. 
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Figure 1. Map of CitiBike System in New York City 
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Table 1. Summary of Recent Literature on BSS 

Study 
Temporal 

Level 

Spatial 

Level 
BSS Sample size 

Analysis 

Level 
Analysis Framework Employed 

Buck & Buehler 2012 Daily Station  
Capital Bike, 

Washington 
91 System Linear Regression 

Rixey 2013 Monthly Station  3 Cities in US 265 System Multiple Regression 

Faghih-Imani et al. 

2014 
Hourly Station  

BIXI, 

Montreal 
16400 System Linear Mixed Model 

Faghih-Imani & Eluru 

2014 

5 periods 

in a day 
TAZ  

BIXI, 

Montreal 
8225 System Panel Ordered Logit Model 

Gebhart & Noland 

2014 
Hourly System  

Capital Bike, 

Washington 
10968 System 

Negative Binomial for Trip Rates 

& OLS regression for Trip 

Duration 

Rudloff & Lackner 

2014 
Hourly Station  

CityBike 

Wien, Vienna 
16489 System Various Count Models 

Zhao et al. 2014 Daily City  
Various Cities 

in China 
69 System 

Linear regression and its variants 

such as Partial Linear regression 

Mahmoud et al. 2015 Monthly Station  
Bike Share 

Toronto 

Station analysis: 960 

OD-Pair analysis: 

6316 

System 

and Users 
OLS regression 

Wang et al. 2015 Daily Station  
Nice Ride, 

Minneapolis 
116 System 

OLS regression and Negative 

Binomial 

Faghih-Imani & Eluru 

2015 
Trips  Station  

DIVVY, 

Chicago 
6000 Users Multinomial Logit Model 
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Table 2. Descriptive Summary of base samples characteristics 

Continuous Variables Min Max Mean 
Std. 

Deviation 

Hourly Arrivals (Annual Members) 0 83.00 3.74 5.26 

Hourly Arrivals (Daily Customers) 0 39.00 0.61 1.50 

Hourly Departures (Annual Members) 0 102.00 3.74 5.36 

Hourly Departures (Daily Customers)  0 34.00 0.61 1.49 

Temperature (°C) 8.3 34.4 19.64 4.82 

Relative Humidity (%) 27.0 94.2 60.96 16.01 

Length of Bicycle Facility in 250m Buffer (m) 0 1022.7 314.95 178.82 

Area of Parks in 250m Buffer (m2) 0 95209.9 10181.87 15169.65 

Number of Restaurants in 250m Buffer 0 545 54.35 92.21 

Number of CitiBike stations in 250m Buffer 0 4.00 1.24 1.01 

Capacity of CitiBike stations in 250m Buffer 0 169.00 43.93 38.93 

Station Capacity 3.00 67.00 34.35 10.76 

Pop Density (people per m2 ×1000)  0.01 67.20 24.87 14.68 

Job Density (jobs per m2 ×1000) 0 432.52 55.83 53.83 

Trip Distance (km) 0.05 12.68 3.97 2.30 

Trip Duration (min) 1.02 89.57 12.79 8.87 

Members Age 16.00 96.00 37.33 10.95 

Categorical Variables Percentage 

Rainy Weather 2.6 

Weekends 30.0 

Subway Station in 250m Buffer 49.7 

Path Train Station in 250m Buffer 4.2 

Female Members 24.7 
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Table 3. Arrivals Models Estimation Results - Weekdays 

 Base 

Sample 
% Change in β  relative to Base for Smaller Sample with the size of 

β 
10 days 5 days 3 days 2 days 1days 

Mean Range Mean Range Mean Range Mean Range Mean Range 

Constant -4.142 0.2 [-0.5 0.8] 0.5 [-2.7 7.9] 0.0 [-4.6 3.3] 1.1 [-0.5 3.9] -0.9 [-6.5 5] 

Built Environment 

Variables 
           

Length of Bicycle 

Facilities in buffer 
0.041 8.0 [-2.5 12.3] -17.8 [-23 -13.6] 6.4 [-14.8 35.5] -11.9 [-59.2 19.8] 69.4 [40.2 119.2] 

Presence of Subway 

Station in Buffer 
0.118 2.0 [-3.8 7.2] -2.0 [-11.3 3.6] 1.0 [-12.3 15.9] -1.0 [-24.4 27] 5.0 [-13.1 29.6] 

Presence of Path Train 

Station in Buffer 
0.362 1.5 [-0.2 4.6] -4.5 [-10.1 -1.2] -4.7 [-9.3 0.8] -2.9 [-7.3 6.7] -2.6 [-35.3 16] 

Length of Rails in Buffer -0.024 -1.4 [-28.2 32.7] -17.7 [-40 -3.9] -12.9 [-79.6 87] -9.3 [-61.8 45.6] -17.7 [-88.1 70.6] 

Area of Parks in Buffer -2.949 -1.5 [-9.5 6.1] 0.0 [-24.6 10.9] 2.3 [-12.1 20.7] 0.2 [-38.5 24.7] -6.3 [-39.8 12.2] 

Number of Restaurants in 

Buffer 
0.745 1.3 [-3.2 4.7] 6.4 [3.6 11.2] -2.2 [-27.2 14.8] -0.7 [-4.7 3] -1.0 [-21.3 17.3] 

Population Density 12.931 -0.2 [-1.9 1.2] -0.1 [-0.7 1] 0.8 [-2.1 4.3] -1.9 [-8.3 3.6] -1.7 [-3.7 1.7] 

Population Density*AM -4.331 1.3 [-7.2 15.5] 7.8 [-18.8 32.5] -0.1 [-29.1 25.7] 13.8 [-9.7 27.1] -13.1 [-29.3 17.7] 

Population Density*PM 3.103 5.1 [-5.9 20.2] 1.6 [-13.4 28.9] -6.7 [-30.8 12.2] 1.7 [-39.1 57.1] 29.8 [1 71.6] 

Job Density 1.064 -2.7 [-10.8 4.4] -4.2 [-9.8 6.5] -7.7 [-20.4 9.8] -3.1 [-23.8 15.1] 6.7 [-40.8 53.5] 

Job Density*AM 4.945 -1.4 [-3 3.4] -2.2 [-11.3 2.7] 0.4 [-6.2 9.4] 2.0 [-4.2 8.5] 3.5 [-5.6 12] 

Job Density*PM 0.231 15.4 [-47.3 72.4] -22.3 [-99.5 40] 60.0 [22.9 153.3] 20.5 [-170 137.3] -2.6 [-132.2 125.4] 

Weather & Temporal 

Attributes 
           

AM 1.276 0.1 [-2.6 1.9] 0.3 [-3.8 3.6] -0.2 [-2.5 3.2] 1.0 [-4.6 6.3] -1.7 [-4.8 1.3] 

Midday 1.103 0.3 [0 0.8] -1.1 [-3.5 0] -0.2 [-0.9 0.7] 0.3 [-1.3 3.5] -0.9 [-7.5 2.3] 

PM 1.470 -0.4 [-1.8 0.8] 0.0 [-1.5 2] -0.2 [-2.8 1.1] -1.6 [-6.4 0.8] -2.0 [-4.8 0.8] 

Even 0.790 0.1 [-0.8 0.8] -0.1 [-0.9 1] 0.2 [-3.3 2.9] -2.1 [-5 -0.2] -1.8 [-4.6 -0.5] 

Temperature 0.0110 2.7 [-5.5 7.7] -2.9 [-19.2 18.8] -1.3 [-75.5 38.6] 20.7 [-13.9 62] -14.3 [-94 49.2] 

Relative Humidity -0.005 -0.2 [-4 3.5] -8.4 [-78.9 18.2] -0.2 [-22.5 23.1] -5.1 [-12.4 2.6] 11.8 [-31.2 31.2] 

Rainy Weather -0.221 5.2 [-3.8 11.6] 9.2 [-5.5 51.4] -6.4 [-28.1 7.6] -4.1 [-23.3 19.8] 4.2 [-42.4 36.7] 

% Change in Std.Err - 44.9 [44 45] 105.0 [99 110] 165.7 [164 168] 226.1 [220 231] 360.2 [359 369] 

Number of Insignificant 

Parameters  
- 1.6 [1 2] 3 [3 3] 3.2 [3 4] 3.8 [3 5] 6.4 [5 8] 

Parameters MAPE - 2.54 5.47 5.68 5.25 9.85 

Parameters RMSE - 0.044 0.085 0.141 0.082 0.183 

Prediction MAE 3.09 3.09 3.10 3.09 3.09 3.09 

Prediction RMSE 5.49 5.49 5.52 5.50 5.50 5.50 
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Table 4. Departures Models Estimation Results - Weekdays 

 Base 

Sample 
% Change in β  relative to Base for Smaller Sample with the size of 

β 
10 days 5 days 3 days 2 days 1days 

Mean Range Mean Range Mean Range Mean Range Mean Range 

Constant -4.141 0.4 [-0.6 1] 0.7 [-3.2 6.7] 0.0 [-4.3 4.4] 1.7 [-0.2 4] 0.8 [-4.5 7.2] 

Built Environment 

Variables 
                     

Length of Bicycle 

Facilities in buffer 
0.063 4.8 [-1.2 15.7] -7.5 [-21.3 6.1] 11.6 [-16.7 35.6] -2.3 [-28.6 24] 22.5 [-17.2 66.1] 

Presence of Subway 

Station in Buffer 
0.175 2.0 [-1.2 6.8] -0.2 [-12.2 7.7] 3.8 [-11.8 10.2] 1.1 [-15.1 12] 6.3 [-6 18.7] 

Presence of Path Train 

Station in Buffer 
0.370 -0.5 [-2.8 1.4] -2.4 [-9.2 6.8] -4.2 [-12.6 4.1] -3.1 [-14.1 19] -1.1 [-36.5 15.5] 

Length of Rails in Buffer -0.040 -5.8 [-24.8 5.9] -6.2 [-30.7 33.5] -2.6 [-20.6 27.7] 3.3 [-13.3 30.7] -30.7 [-75.6 40.9] 

Area of Parks in Buffer -3.062 -3.4 [-10.5 3.3] -2.4 [-17.9 5.2] 6.1 [-3.6 13.8] -4.7 [-21.5 4.2] -16.1 [-41.7 51.3] 

Number of Restaurants in 

Buffer 
0.811 1.5 [-3.5 5.5] 1.9 [-4 8.1] -0.1 [-12 11.5] -5.1 [-15.3 4.1] 3.7 [-22.4 32.8] 

Population Density 11.951 0.6 [-2.6 3.9] -0.3 [-2.2 1.6] 1.5 [-1.7 5.3] -1.9 [-9.2 7.1] 2.4 [-1.8 11.8] 

Population Density*AM 5.666 -3.1 [-12 10.8] -3.3 [-33 13.8] -12.7 [-22.9 1.6] -21.2 [-46.1 5.1] 12.3 [-55.9 79] 

Population Density*PM -1.187 0.1 [-51.3 67.2] -10.2 [-66.2 40.9] -42.4 [-89.7 -5.1] -24.3 [-104.6 34.9] -13.3 [-87.9 79.4] 

Job Density 1.348 -3.1 [-4.9 -1.2] 0.4 [-2.8 7.6] 3.9 [-0.5 9.6] 3.3 [-13.8 25.1] 3.1 [-19.6 30.9] 

Job Density*AM -0.360 5.3 [-34.2 64.2] -10.3 [-72.9 114.6] 54.7 [-46.5 113.4] 17.6 [-105.9 175.1] 60.3 [-18.5 144.1] 

Job Density*PM 3.072 1.8 [-4.8 5.5] -1.8 [-14.1 4.5] -2.9 [-11.8 6.8] 3.4 [-6.4 13] 3.8 [-17.4 20.3] 

Weather & Temporal 

Attributes 
                     

AM 1.485 0.1 [-1.8 1.7] -0.7 [-4.2 4] 0.5 [-2.7 3.2] 2.8 [-0.9 7.3] 1.3 [-4.5 8.1] 

Midday 1.125 -0.1 [-0.9 0.4] -0.4 [-2.7 0.7] -1.8 [-3.7 -0.8] 0.1 [-1.8 3.7] -0.3 [-4.8 3.2] 

PM 1.433 -0.5 [-2.4 0.9] 0.2 [-1.8 1.9] -1.0 [-5 1.5] -1.9 [-2.7 -1] 0.0 [-3.9 4.6] 

Even 0.756 -0.4 [-1 0.6] -0.2 [-1.9 1.7] -1.4 [-4.8 1] -3.5 [-5.6 0.5] -0.7 [-6.3 5.9] 

Temperature 0.006 8.4 [-4.4 19.9] 8.5 [-47.2 82] -14.9 [-107.8 64] 50.3 [-7.1 132.3] -7.6 [-89.8 95.3] 

Relative Humidity -0.005 -0.8 [-5.9 3.6] -4.8 [-64.6 17.6] -3.5 [-34.3 25.7] -6.5 [-20.7 7.6] -1.9 [-35.9 14.2] 

Rainy Weather -0.269 3.0 [-3.2 8.2] 1.9 [-18.7 48.9] -5.5 [-13.3 3.5] -4.5 [-36.2 17.4] -2.9 [-61.1 50.4] 

% Change in Std.Err - 45.0 [44 45] 104.8 [99 110] 166.4 [165 168] 226.7 [218 233] 359.6 [357 370] 

Number of Insignificant 

Parameters 
- 1.2 [1 2] 2.4 [1 3] 2.8 [2 4] 3.8 [3 5] 5.8 [5 6] 

Parameters MAPE - 2.28 3.21 8.75 8.13 9.56 

Parameters RMSE - 0.032 0.047 0.165 0.143 0.171 

Prediction MAE 3.06 3.06 3.07 3.07 3.06 3.06 

Prediction RMSE 5.59 5.60 5.61 5.61 5.59 5.58 
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Table 5. Arrivals Models Estimation Results - Weekends 

 Base 

Sample 
% Change in β  relative to Base for Smaller Sample with the size of 

β 
5 days 3 days 2 days 1days 

Mean Range Mean Range Mean Range Mean Range 

Constant -4.035 -0.2 [-1.1 1] 0.4 [-0.3 1.5] -0.3 [-2.8 5.5] 2.2 [-2.2 5.5] 

Built Environment 

Variables 
                 

Length of Bicycle 

Facilities in buffer 
0.065 5.0 [-4.2 16] -10.3 [-26.6 12.3] -20.2 [-30.7 -1.6] 12.8 [-8.9 58.9] 

Presence of Subway 

Station in Buffer 
0.040 -7.7 [-15.9 1.5] -8.8 [-41.8 20.7] -23.5 [-64.5 5] 0.3 [-48.4 41] 

Presence of Path Train 

Station in Buffer 
0.327 1.3 [-6.4 6.3] -2.1 [-13.5 16.5] 13.3 [-0.3 32.3] -10.4 [-53.2 19.8] 

Area of Parks in Buffer -1.730 3.0 [-32.2 27.5] -9.9 [-32.9 8.2] 3.2 [-11.6 24.1] -20.4 [-79.7 37.5] 

Number of Restaurants in 

Buffer 
0.804 3.2 [-2 8.9] -3.0 [-10.4 14.1] 0.4 [-18.7 10.1] -1.0 [-9.4 14.3] 

Population Density 15.211 -0.8 [-2.2 0.7] 0.0 [-2.4 3] -0.6 [-10.3 6] -4.5 [-9.4 -0.6] 

Population Density*AM -2.266 10.1 [-0.1 18] -0.6 [-67.8 23.5] -13.5 [-49.7 22.3] 11.7 [-59.5 56.1] 

Population Density*PM 3.212 7.9 [-12.9 31.4] -2.8 [-17.8 25.5] 5.5 [-24.2 37.1] 15.5 [-30.8 57.5] 

Job Density -0.498 2.5 [-5.2 13.4] 0.9 [-16.7 30.2] -1.5 [-28.9 29.1] -39.4 [-72.8 7.8] 

Job Density*AM 0.656 -1.8 [-11.3 15.9] 8.6 [-15 46.6] -17.2 [-84.7 80.9] 7.5 [-31.2 55.2] 

Weather & Temporal 

Attributes 
                 

AM 0.656 0.8 [-1.6 3.6] -1.2 [-9.5 2.4] -0.4 [-8 4.5] -0.3 [-6.7 9.3] 

Midday 1.458 -0.1 [-1.3 0.8] -0.4 [-0.8 0] 0.3 [-0.8 1.2] 0.2 [-2.7 2.8] 

PM 1.199 -1.2 [-2.2 -0.1] -0.5 [-2.7 1.7] 0.6 [-2.8 3.9] -1.2 [-9.3 3.6] 

Even 0.639 -0.7 [-1.9 0.6] 0.8 [-2.4 4.8] 0.7 [-1.2 3.9] 0.0 [-2.5 6.2] 

Temperature 0.022 2.0 [-4.8 8.3] 4.6 [-3.1 12.3] -1.6 [-19.1 41.6] 9.4 [-38.1 46.6] 

Relative Humidity -0.010 1.9 [-2.4 5.5] -1.0 [-3 2.5] -1.8 [-13.1 4.3] -6.6 [-9.9 -2.2] 

Rainy Weather -0.204 -1.2 [-13.6 17] 9.1 [1.2 20.3] 4.3 [-19.3 20.6] -7.5 [-22.1 26.5] 

% Change in Std.Err - 33.9 [33 35] 73.7 [73 75] 112.4 [112 115] 203.3 [200 206] 

Number of Insignificant 

Parameters 
- 1.2 [1 2] 3.4 [3 4] 5.2 [4 6] 6.2 [6 7] 

Parameters MAPE - 2.9 3.6 6.0 8.4 

Parameters RMSE - 0.040 0.052 0.097 0.127 

Prediction MAE 2.21 2.22 2.22 2.21 2.21 

Prediction RMSE 3.71 3.71 3.72 3.70 3.70 
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Table 6. Departures Models Estimation Results - Weekends 

 Base 

Sample 
% Change in β  relative to Base for Smaller Sample with the size of 

β 
5 days 3 days 2 days 1days 

Mean Range Mean Range Mean Range Mean Range 

Constant -4.122 -0.5 [-1.2 0.1] 0.1 [-1.7 2.6] -0.1 [-3.2 6.2] 1.5 [-1 5.2] 

Built Environment 

Variables 
                 

Length of Bicycle 

Facilities in buffer 
0.090 -0.2 [-3.2 3.9] -6.1 [-20.1 3.5] -5.5 [-17.9 7] 19.1 [-2.3 43.1] 

Presence of Subway 

Station in Buffer 
0.100 -2.0 [-10.3 9.4] -3.0 [-23.1 14.3] -2.6 [-31.4 19.4] 5.3 [-5.4 10.3] 

Presence of Path Train 

Station in Buffer 
0.324 2.8 [-7.9 13] -6.0 [-16.5 2.1] 8.3 [-1.9 23.2] -24.0 [-60.8 4.9] 

Length of Rails in Buffer -0.036 -7.0 [-35.4 5] -11.4 [-31.2 3.9] -31.2 [-47.9 -6.4] 5.1 [-22.8 38.9] 

Area of Parks in Buffer -1.796 -3.1 [-33.4 14.1] -10.0 [-39.6 21.2] -1.5 [-23.9 38.8] -5.3 [-78.3 50.3] 

Number of Restaurants in 

Buffer 
0.894 2.4 [-2 6.8] -2.6 [-10.3 6.4] -5.2 [-19.8 11.9] -3.4 [-21.5 7.9] 

Population Density 13.100 -0.2 [-1.3 0.9] -0.1 [-4.7 7.1] 2.0 [-6.4 11.5] -4.3 [-7.7 -0.8] 

Population Density*AM 5.017 -4.7 [-14.7 8.7] 10.5 [1.1 21.3] -16.0 [-28.1 -1.8] 1.7 [-57.9 44.4] 

Job Density -0.379 8.1 [-4.3 30] -0.4 [-25.7 37.4] -4.5 [-46.1 8.5] -59.1 [-138.2 -12.1] 

Job Density*PM 0.738 -0.5 [-13.4 32.2] -1.1 [-37.7 41.1] 18.2 [-17.6 83.2] -28.2 [-79.4 8.2] 

Weather & Temporal 

Attributes 
                 

AM 0.610 0.3 [-0.9 1.5] -3.0 [-5.4 -0.1] 3.4 [1.2 6.5] 1.4 [-7.6 13.2] 

Midday 1.546 0.2 [-0.1 0.5] -0.4 [-1.5 0.7] -0.5 [-2 1.2] 0.2 [-3.4 3.4] 

PM 1.298 -0.6 [-1.9 0.5] -0.2 [-1.6 1.4] 0.4 [-3.5 1.9] 2.6 [-1.3 5.5] 

Even 0.650 0.4 [-0.7 1.6] 0.1 [-3.6 1.6] 0.4 [-1.8 1.6] 1.8 [-1.2 5.8] 

Temperature 0.017 -0.6 [-7.3 4.7] 0.7 [-9.5 14.6] -7.1 [-37.7 43.6] 1.8 [-19.7 34] 

Relative Humidity -0.009 2.6 [0.5 9.2] -1.8 [-11.4 4.9] -3.1 [-20.7 6.5] -6.9 [-32 2.8] 

Rainy Weather -0.224 -5.0 [-12.6 -1.3] 3.8 [-9.3 21.5] -8.0 [-20.6 -0.6] -7.0 [-44.2 22.1] 

% Change in Std.Err - 34.0 [33 34] 74.0 [73 75] 113.4 [112 117] 204.6 [202 207] 

Number of Insignificant 

Parameters 
- 1.8 [1 3] 3 [2 4] 3.4 [2 4] 5.4 [5 6] 

Parameters MAPE - 2.3 3.4 6.5 9.9 

Parameters RMSE - 0.033 0.050 0.101 0.174 

Prediction MAE 2.19 2.20 2.20 2.19 2.19 

Prediction RMSE 3.65 3.65 3.65 3.65 3.64 
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Table 7 Destination Choice Models Estimation Results - Weekdays 

  Base 

Sample 
% Change in β relative to Base for Smaller Sample with the size of 

  

Parameters β 
20000 10000 5000 3000 2000 1000 

Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range 

Built Environment 

Variables 
              

Station Capacity 0.017 -0.8 [-5.8 2.9] -0.7 [-5.2 7.5] -1.2 [-6.4 6.4] -3.5 [-22 24.3] -12.6 [-30.6 11] 24.9 [7.5 38.2] 

Presence of Subway 

Station in Buffer 
0.057 15.4 [-10.1 34.6] -22.0 [-50.8 3.7] -2.6 [-62.1 69.3] 28.4 [-57.2 106.3] 4.4 [-70.9 150.8] -7.6 [-49.6 25.8] 

Presence of Path Train 

Station in Buffer 
0.109 4.4 [-21.9 20.7] -17.2 [-46 25.8] 5.6 [-49.1 113.9] 4.9 [-108.3 118.3] -2.8 [-71.2 77.4] 11.0 [-115.8 178.9] 

Length of Rails in Buffer -0.086 -12.0 [-28.5 2.7] 13.1 [-23.9 45.2] -4.0 [-24.2 29.9] -34.6 [-63.9 15.8] -16.5 [-48.5 7.9] -44.5 [-72.8 4.8] 

Number of Restaurants 

in Buffer 
0.465 -1.8 [-27.1 14.3] 7.2 [-7.9 30.5] 16.9 [-16.2 41.2] -3.5 [-76.1 59.6] 33.9 [-8.9 99.7] -13.2 [-160.6 131.4] 

Population Density 3.513 -9.3 [-35.8 10.4] 6.0 [-11.2 35.5] -12.3 [-67 28.3] -7.7 [-63.8 26.3] -10.8 [-99.7 58.9] 82.9 [-14.2 134.7] 

Population Density*AM -11.899 -7.3 [-13.1 1.7] 13.7 [-0.2 33.4] -0.8 [-22.2 34.9] -8.4 [-11.9 -2.2] -2.7 [-63.5 33.7] 15.7 [-43.9 56.5] 

Population Density*PM 2.903 -0.2 [-38.7 40.6] -19.4 [-63.8 37.2] 24.8 [-61.7 127.5] -14.9 [-74.4 111.2] 57.6 [-34.6 136] -48.0 [-153.1 56.1] 

Job Density -0.360 -16.6 [-78.9 55.2] 4.2 [-21.3 47.1] 1.1 [-107.4 73.1] -101.4 [-443.7 92.2] 75.6 [-134.1 259] 104.5 [-103.6 299.1] 

Job Density*AM 4.374 1.0 [-6.9 8.1] -1.5 [-6.3 3.2] 0.9 [-9.9 24.4] -8.0 [-36.7 24] 18.2 [3.6 25.9] 7.7 [-22.2 55.3] 

Job Density*PM -1.941 3.6 [-10.6 12.6] 2.3 [-11 21] 0.5 [-32.4 24.6] 18.2 [-55.1 159.8] -40.5 [-64.4 15.1] -2.8 [-112.5 107.2] 

Trip Attributes                       

Distance -0.484 -1.9 [-13.4 10] -0.3 [-4.4 3.3] -13.2 [-35.6 4.9] -0.2 [-21 19.5] -4.3 [-39.5 24.3] -16.3 [-74 31.2] 

Distance*Female 0.025 -5.0 [-57.5 34] -15.9 [-75.7 73.7] 29.4 [-96.8 116.6] -55.9 [-125.1 2.8] 64.1 [-140.1 318.2] -43.6 [-167.2 127.9] 

Distance*Temperature 0.119 -8.3 [-134.5 112.2] -24.0 [-71.2 66.2] -126.0 [-447.7 88.2] 60.9 [-317.1 519.6] -36.8 [-588.6 322.8] -119.4 [-439.8 121.4] 

Distance*Humidity -0.105 12.1 [-35.2 49.1] -6.9 [-46.8 38.3] 64.2 [13.4 133.8] 29.8 [-6.9 85.8] 21.3 [-84.9 102.2] 97.4 [-282.5 448.1] 

Distance*Rainy -0.136 -20.0 [-47.7 13.3] 42.2 [-11.8 131.8] 39.5 [-106.7 377.3] 53.4 [-10.7 130] -39.4 [-142.6 84.4] 59.7 [-124.8 679.7] 

% Change in Std.Err - 57.8 [54 60] 124.7 [120 135] 217.3 [200 251] 309.4 [276 355] 394.2 [380 404] 615.2 [525 677] 

Number of 

Insignificant 

Parameters 

- 2.6 [2 3] 5.6 [3 7] 6.2 [4 9] 8.2 [7 9] 10 [9 12] 11 [9 12] 

Parameters MAPE - 7.5 12.3 21.4 27.1 27.6 43.7 

Parameters RMSE - 0.096 0.164 0.384 0.385 0.355 0.575 

Predictive LL -14799.5 -14801.3 -14801.4 -14808.8 -14814.7 -14819.9 -14850.4 

% of Correct 

Prediction 
11.88 11.80 11.82 11.86 11.84 11.88 11.86 
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Table 8 Destination Choice Models Estimation Results - Weekends 

  Base 

Sample 
% Change in β relative to Base for Smaller Sample with the size of 

  

Parameters β 
20000 10000 5000 3000 2000 1000 

Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range 

Built Environment 

Variables 
              

Station Capacity 0.015 1.8 [0 3.4] -3.9 [-10.1 4.7] -0.7 [-8.8 12.8] 0.7 [-18.2 13.5] -8.6 [-25.7 1.4] -2.2 [-58.1 28.4] 

Presence of Path Train 

Station in Buffer 
0.072 4.0 [-16.9 37.6] -45.4 [-81.3 -10.4] -12.8 [-100 105.6] 13.9 [-76.7 113.6] -3.3 [-144.7 128.7] -138.9 [-303.8 -52.8] 

Area of Parks in Buffer 1.744 -27.0 [-64.8 3.3] -8.5 [-44.1 26.9] 22.2 [-26.9 76.3] -45.1 [-121.7 53.8] -13.3 [-156.1 222.8] -88.2 [-194.7 -31.9] 

Length of Rails in Buffer -0.060 -17.9 [-36.5 -2.5] -15.6 [-43.8 12.2] -5.5 [-90.3 51.2] -30.8 [-105.7 -1.8] 30.2 [-98.2 88.7] 98.5 [-79.8 345.7] 

Number of Restaurants in 

Buffer 
0.663 -0.2 [-21.7 7.8] -2.6 [-15.1 8.7] -1.1 [-27.1 18.1] -29.2 [-51.3 14.8] -4.1 [-23 19.4] 14.2 [-96.8 95.2] 

Population Density 6.208 2.8 [-8.3 12.5] 0.1 [-18.4 29.4] -7.5 [-37.8 11.9] 15.7 [-22.7 62.3] -9.3 [-60.7 47.8] -9.3 [-212.9 80.4] 

Population Density*AM -8.534 3.6 [-19.6 21.1] 2.4 [-35.9 25] -4.3 [-49.2 29.9] 4.6 [-126.7 124.4] -13.3 [-102.5 46.3] 8.7 [-100.6 108.7] 

Population Density*PM 3.210 -14.9 [-42.7 26.9] -13.5 [-103 13.3] -10.6 [-111.9 44.5] -11.3 [-115 87.6] 17.5 [-163.3 244.9] -20.5 [-198.7 317.9] 

Job Density -2.147 -5.7 [-19.7 4] -2.2 [-23.5 17.2] -14.8 [-36.5 0.5] -10.8 [-44 15.9] -16.8 [-35.4 1.2] 2.5 [-37.4 58.2] 

Job Density*AM 1.261 1.4 [-38.5 39.8] 0.3 [-21 59.7] -18.3 [-111.1 52.5] -1.5 [-199.7 193.5] -84.8 [-287.4 110.7] 45.2 [-322.4 271.6] 

Job Density*PM -1.006 25.0 [-10.9 62.9] -25.0 [-80.9 50.6] 11.9 [-59 100.1] -38.1 [-186.5 145.8] -50.5 [-228.3 92.8] -19.0 [-215.8 152.2] 

Trip Attributes              

Distance -0.540 -2.2 [-6.3 2.5] 1.2 [-4.9 5.4] -6.6 [-17.4 4.5] -0.9 [-7.2 6.3] -12.8 [-32.3 -4.1] 1.8 [-24.6 44.1] 

Distance*Female 0.031 -18.8 [-23.5 -12.9] -28.6 [-100 39.4] 18.2 [-48.1 94.5] 12.9 [-162.9 263.5] -66.1 [-179 51.3] 86.5 [-111.3 302.3] 

Distance*Humidity -0.043 22.5 [-73.1 107.7] -55.9 [-151.3 29.3] 118.8 [-78.2 305.4] 25.1 [-206.6 139.1] 247.2 [-42.2 664.4] 27.6 [-679.4 448.9] 

Distance*Rainy -0.124 -14.0 [-113.9 31.8] 25.1 [-82.9 225.6] -2.7 [-107.1 155] 70.2 [-159.7 479.1] 52.1 [-264.9 479.6] 183.2 [-330.9 569.8] 

% Change in Std.Err - 57.1 [50 60] 123.4 [117 133] 213.8 [200 222] 309.0 [284 350] 402.5 [380 434] 624.9 [572 731] 

Number of Insignificant 

Parameters 
- 2.8 [1 4] 5.8 [5 6] 7.6 [5 8] 8.8 [8 10] 9.4 [9 10] 10.4 [9 12] 

Parameters MAPE - 10.1 14.4 16.0 19.4 39.4 46.6 

Parameters RMSE - 0.142 0.228 0.327 0.280 0.731 0.738 

Predictive LL -14596.0 -14597.0 14599.5 14602.1 14608.0 14608.8 14635.1 

% of Correct Prediction 12.98 13.02 13.08 12.83 12.84 12.83 12.79 

 

 


