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ABSTRACT 

Accurate road-traffic emission inventories are of great interest to metropolitan planning agencies 

especially in the appraisal of regional transport policies. Integrated road transport emission 

models are an effective means of establishing emission estimates, yet their development requires 

significant investments in data and resources. It is therefore important to investigate which data 

inputs are the most critical to inventory accuracy. To address this issue, an integrated transport 

and emissions model is developed using the Montreal metropolitan region as a case-study. Daily 

regional hydrocarbon (HC) emissions from private individual travel are estimated, including the 

excess emissions due to engine starts. The sensitivity of emission estimates is then evaluated by 

testing various levels of input aggregation common in practice and in previous research. The 

evaluated inputs include the effect of start emissions, ambient weather conditions, traffic speed, 

path choice, and vehicle registry information. Inherent randomness within the integrated model 

through vehicle selection and path allocation is also evaluated. The inclusion of start emissions is 

observed to have the largest impact on emission inventories, contributing approximately 67% of 

total on-road HC emissions. Ambient weather conditions (season) and vehicle registry data 

(types, model years) are also found to be significant. Model randomness had a minimal effect in 

comparison with the impact of other variables.  

 

Keywords: Emission modeling, traffic assignment, start emissions, model sensitivity, emission 

inventories 
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1. INTRODUCTION 

The importance of accurate transport emission inventories has never been greater given the 

current impact that transportation systems have on the local and global environment. The current 

state of practice primarily involves the development of inventories through integrated 

transportation and emission models. Increases in model complexity have generally resulted in 

improved estimates, yet the improvements often come at the cost of investing in resource-

intensive data inputs. In addition, not all investments in more accurate data inputs yield a similar 

increase in estimate accuracies. For practitioners involved in transportation, environmental, and 

public health policy, this issue becomes of utmost importance. 

In developing transport emission inventories, detailed input data are often non-existent or 

difficult to gather therefore simplifying assumptions must be made. Yet which simplifying 

assumptions are reasonable, and which result in estimation errors, are still not entirely 

understood. Kioutsioukis et al. (2004) were among the first in assessing the uncertainty and 

sensitivity of emission models of the late 1990s and early 2000s. Their summary of previous 

research concluded that accurate activity data was as important as accurate emissions data in 

generating better inventories.  

This study aims to explore the different inputs within an integrated transport and 

emission model and identify those that contribute the most to the accuracy of the final emission 

inventory. For this purpose, we estimate total daily hydrocarbon (HC) emissions from passenger 

travel at the metropolitan level through the development of an integrated regional traffic 

assignment model and emission simulator. The emission simulation contains sub-models for both 

running emissions (generated throughout the trip during driving and idling) and start emissions 

(generated at the beginning of a trip). The primary inputs of both running and start emission 

models are then varied in order to test the effects of different levels of aggregation in model 

inputs on the final estimates. We also test the effects of prevailing assumptions frequently made 

when emission inventories are conducted within government agencies. Our study is set in the 

Montreal metropolitan region, Canada, an area further described in the methodology section. 
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2. CONTEXT 

Integrated transport and emission models often aim to estimate traffic-related emissions by 

combining transportation data inputs and emission simulators. The inputs from the transportation 

side of the ledger have ranged from aggregate methods such as commute distances from travel 

survey data (Ko et al., 2011; Brand and Preston, 2010; Frank et al., 2000), to mesoscopic 

modeling using improved travel behaviour data (Borge et al., 2012; Barla et al., 2011; Xia and 

Shao, 2005; Borrego et al., 2004; Anderson et al, 1996), and even all the way to complex 

methods involving fully integrated agent-based models (Hülsmann et al., 2014; Kickhöfer and 

Nagel, 2013; Lefebvre et al., 2013; Hao et al., 2010; Beckx et al., 2009a). Meanwhile, emission 

models have also varied regarding the level of detail of vehicle characteristics, ambient 

conditions, and speed aggregation. Aggregate emission models typically use constant emission 

factors while ignoring congestion-related speed impacts (Barla et al., 2011; Ko et al., 2011; 

Brand and Preston, 2010). Others have employed more detailed emission factors yet do not 

account for congestion in their speed estimates (Frank et al., 2000). However, the majority of 

emission models favour a congestion-related approach in combination with more accurate 

vehicle registry data (Borge et al., 2012; Hao et al., 2010; Beckx et al., 2009a; Borrego et al., 

2004; Anderson et al., 1996). Start emissions have also been incorporated in some models. 

Previous research that had employed the MOBILE platform implicitly account for start 

emissions through the generated running emission factors (Hao et al., 2010). COPERT models 

account for starts in a similar fashion (Waked and Afif, 2012). The current generation of 

emission software favours a distinct separation between running and start emissions, with start 

emission factors used to dictate the relationship between vehicle characteristics, soak-time and 

amount of pollutants emitted during engine ignition.  

Recent research has focussed on the development of truly integrated transport and 

emission models incorporating detailed road-traffic simulations. Road-traffic networks are 

modeled at a macroscopic or mesoscopic scale, and then trips are assigned to the network on an 

hourly basis. Output data include vehicle kilometers travelled and average link speeds, which are 

both used directly in conjunction with the emission factors. This process has garnered 

international popularity and has been employed in cities and regions such as Hamilton, Canada 

(Anderson et al., 1996), Helsinki, Finland (Karppinen et al., 2000), Antwerp, Belgium (Mensink 

et al., 2000), Lisbon, Portugal (Borrego et al., 2004), Hong Kong, China (Xia and Shao, 2005), 



 5 

Norwich, England (Nejadkoorki et al., 2008), and Madrid, Spain (Borge et al., 2012). Beckx et al 

(2009a) and Hao et al (2010) even incorporated activity-based models into their integrated 

modeling frameworks applied respectively to the Netherlands and the Greater Toronto Area, 

Canada. The advantage of integrated transport and emission models is that they are able to 

combine congestion-related speed effects and detailed vehicle data, often at the individual trip 

level. This provides significant detail regarding spatial and temporal variation, and allows for 

connections to socioeconomics or even to dispersion models that portray how meteorological 

conditions and the built environment influence pollutant concentrations (Hatzopoulou and 

Miller, 2010; Beckx et al., 2009b).  

Despite the spate of recent studies, there is an on-going debate as to whether emission 

inventories from integrated models have actually become more accurate over time. In a meta-

analysis of 50 studies, Smit et al (2010) found that although models have become more complex, 

their prediction accuracy has not necessarily increased noting an inadequate understanding of 

uncertainties in modeling estimates. 

Regarding transportation inputs, the key components from the transport model are the 

path selection type (i.e. how an assignment model allocates a trip between an OD pair to the road 

network) and the level of speed aggregation (instantaneous speed, link speed, shortest path 

speed, average network speed). The level of detail in the base vehicle registry data is also vital, 

specifically whether it contains individual/zonal details on vehicle type, age, or fuel composition. 

Components of the emission model play an important part as well, principally which engine 

phase (cruising, accelerating, idling, ignition) is included in estimates, and which atmospheric 

conditions (seasonal variation, air conditioning use) are considered. Therefore, the objective of 

this study is to build on the research by Smit et al (2010) by testing the impacts of input data on 

emission estimates using an integrated emissions model that incorporates a module for vehicle 

allocation and specifically accounts for start emissions.  

 

3. METHODOLOGY 

The study methodology comprises two main tasks in the estimation and evaluation of total daily 

regional emissions (HC per day): 1) development of the integrated regional vehicle emissions 

model; and 2) testing the effects of model randomness and variability in input data.  
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The Montreal metropolitan region is the study area for this exercise and consists of the 

island of Montreal, the cities of Laval and Longueuil, and municipalities on the North Shore and 

South Shore (Figure 1). The region covers an area of approximately 7,000 km2 and has a 

population of 3.8 million (Statistics Canada, 2011). The island of Montreal contains 47 percent 

of the region’s inhabitants and 71 percent of the region’s employment opportunities (AMT, 

2008). The central business district is located on the island of Montreal and is primarily 

surrounded by dense mixed-use neighbourhoods. The region has an average vehicle ownership 

of 1.23 vehicles per household and a mode split of 68% car, 17% public transit, and 12% active 

transportation (AMT, 2008). Meanwhile, the island of Montreal is connected to the other sub-

regions through a system of bridges. Five bridges connect the island to the north and five to the 

south, while two bridges at either end of the island connect the peripheral eastern and western 

edges. With the very high proportion of off-island and on-island commuters, bridges linking the 

island to the rest of the region have become the salient element of the road network. 
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FIGURE 1  Montreal metropolitan region 

 

3.1 Model development 

A regional vehicle emission modeling framework was developed for the Montreal metropolitan 

region. The model uses Origin-Destination (OD) survey data in order to accomplish the 

following tasks: 1) allocating vehicles per household and trip, 2) estimating emissions on the 

road network for all trips in a typical day (24 hours), and 3) estimating emissions for vehicle 

starts over the entire day. The modeling framework is presented in Figure 2 and illustrates all the 

interactions between the major model components and the base data sources. Detailed 

descriptions of each sub-model, specifically the vehicle allocation, running emissions estimation, 

and start emissions estimation, are provided over the remainder of this subsection. Further details 

on the integrated model are documented in Sider et al. (2013).  
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FIGURE 2  Integrated emissions modeling framework 
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Vehicle Allocation 

The base travel data for this study encompasses the 2008 origin-destination survey conducted by 

the Agence Métropolitaine de Transport (AMT), the regional transit authority in the Montreal 

metropolitan region. Every 5 years, AMT collects detailed travel diaries from 5 percent of the 

region’s households, resulting in a sample of about 43,000 households from the most recent 

survey (AMT, 2008). The survey results are then released in a trip-by-trip database format with 

details such as origin and destination coordinates, mode choice, start time, trip purpose.  

In order to maintain vehicle consistency between the estimate methods for running and 

start emissions, the first step in this study involved allocating a vehicle to each of the driving 

trips in the 2008 OD survey (162,364 trips). Working at the household level, the main elements 

involved with vehicle allocation are the number of vehicles owned and each vehicle’s time of 

availability and geographic coordinates. Trip availability/end times are approximated using a 

regional traffic assignment model of the Montreal metropolitan region implemented using the 

VISUM platform. The driving trips from the OD survey are then expanded to the full population 

and allocated to the road network using a stochastic user-equilibrium assignment.  Hourly travel 

times were estimated for travel between the 1552 traffic analysis zones (TAZs), and were then 

added to the start times for each trip in order to approximate trip end times.  

In a second step, an array was created for each household that had a number of elements 

equal to the number of vehicles owned. Each vehicle in the array was initialized at the 

household’s geographic coordinates. An algorithm then ordered all household trips 

chronologically and assigned to every trip an index based on vehicle availability (time and 

geographic coordinates). Finally, each vehicle index was randomly allocated a vehicle type and 

model year based on the cumulative distribution function of the vehicle fleet composition of the 

household’s residential area. The vehicle registry database was obtained from the provincial 

registry at the Société de l’Assurance Automobile du Québec (SAAQ), and contained 

information on vehicles registered at the forward-sorting area (FSA) level (ie. the first three 

digits of an area’s postal code). Vehicle age was included in the registration data and has been 

conserved in our model. The fuel type was assumed to be exclusively gasoline, which represents 

over 95% of the fuel used in passenger cars (of varying sizes) in Canada. The characteristics of 

gasoline sold in the province of Quebec (in which the Montreal region is located) were used as 

input in the emission model. The regional distribution of all vehicles by vehicle age and category 
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is shown in Figure 3. In this study, we have grouped all passenger cars under one category (light-

duty gasoline cars) while mini-vans and sports utility vehicles (SUVs) are grouped under another 

category (light-duty gasoline trucks). This collapse into two categories is required by the 

emission simulator, which includes one set of emission factors for each category and doesn’t 

differentiate between passenger cars or passenger trucks of different sizes. Therefore, every 

driving trip in the OD survey was allocated a vehicle type and model year that remained constant 

over a day’s worth of trip chains.  

 

 

FIGURE 3  Vehicle age and type distribution for the Montreal metropolitan region 

 

Running Emissions 

Total daily running emissions (which include emissions released during a trip: cruising, 

acceleration, deceleration, idling) in the Montreal metropolitan region were estimated through 

the integration of a regional traffic assignment model and an emission model. The regional 

traffic assignment model was input with hourly OD matrices generated from the AMT’s 2008 

survey. The OD matrices were created by expanding the driving trips in the OD survey to the full 

123456789
10

11
12

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

Vehicle Type 
%

 o
f 

V
e

h
ic

le
s 

Model Year 



 11 

population based on expansion factors provided by the AMT. Traffic was assigned to the 

regional network using a stochastic user-equilibrium assignment, and detailed hourly OD-level 

path information was output, including congestion-related link speeds and volumes.  

Concurrently, a set of emission factors (EFs) expressed in grams of pollutant per vehicle-

kilometer were generated using the Mobile Vehicle Emissions Simulator (MOVES2010b) 

platform developed by the United States Environmental Protection Agency (USEPA). Montreal-

specific data were input in the form of climate trends, vehicle fleet registry, and fuel 

composition, and individual EFs were output that account for vehicle type (passenger car and 

passenger truck), vehicle model year (1978-2008), vehicle speed (17 speed bins), facility type 

(restricted versus unrestricted), pollutant (total hydrocarbons (HC), nitrogen oxides (NOX), and 

greenhouse gases (CO2-eq)) and season (winter and summer). Also, 2008 was chosen as the base 

year for vehicle model year estimation in order to match the OD survey year. 

An emission post-processing algorithm was then used to iterate trip-by-trip through the 

OD data and estimate trip level emissions. An individual trip is first randomly allocated to a path 

between an origin and destination based on a cumulative distribution function of the volumes on 

all paths from O to D. Link-level emissions are then calculated by linking the vehicle type and 

model year from the vehicle allocation with its specific EF (g/veh.km) at the congested link-

speed, and by multiplying the EF by the link length. All link emissions along the path were then 

summed in order to calculate total trip emissions. Full population running emission estimates 

were then developed by expanding the individual trip emissions with statistically derived 

expansion factors.  

 

Start Emissions 

Start emissions occur at engine ignition and are considered separate from those that are emitted 

during an engine’s running phase. They are mostly caused by: (1) excess gasoline due to higher 

fuel enrichment and (2) poor catalytic converter performance due to the large gap between 

engine temperature at ignition and optimum temperature for catalytic conversion. The gap 

between engine and optimum temperatures is dependent on the ambient temperature, which 

varies by season, and the engine’s ignition temperature, which is related to the engine soak-time, 

i.e. amount of time since the engine was turned off prior to ignition. Therefore, an engine that 
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had been turned off recently would have a smaller soak-time and thus would have an ignition 

temperature that is closer to the optimum temperature of the catalytic converter.  

In order to estimate trip-level start emissions, each trip needed to have a soak-time and a 

vehicle-specific start EF. Soak-times were estimated once the vehicle allocation process was 

completed. The entire trip chain was tracked for every vehicle during the day and a sequence of 

engine ignitions and shutdowns was used to calculate soak-times. Specifically, the soak-time for 

a given trip is calculated as the start time of the current trip minus the end time of the previous 

trip. The maximum soak-time was capped at 1440 minutes (24 hours), and if a vehicle only had 

one trip in its trip-chain then it was given the maximum soak-time. The vehicle-specific start EFs 

were generated using the same platform (MOVES2010b) as the running emissions with a similar 

Montreal-specific context. EFs were generated in order to consider the effect of soak-time (8 

bins), weather (2 seasons), vehicle type (2 types), vehicle model year (30 model years) and 

pollutant type, independently. Given that Montreal has significant seasonal variability and that 

meteorological conditions can have a significant effect on start emissions, we simulated EFs for 

both a summer (21.1 °C) and winter (-6.5 °C) scenario.  

EFs for vehicle model years between 1978 and 2008 were generated for passenger cars 

and passenger trucks independently. Increased vehicle age is associated with increased start 

emissions (Figure 4A). A similar relationship is observed for all pollutants and atmospheric 

conditions considered. Vehicles manufactured before 1985 are associated with considerably 

higher start EFs. 

Start EFs were developed for eight different soak-time bins in line with the eight 

operating modes used for start emission calculations in MOVES2010b. The eight operating 

modes corresponded to the following time bins (ranges in minutes): (1) 0-6; (2) 7-30; (3) 31-60; 

(4) 61-90; (5) 91-120; (6) 121-360; (7) 361-720; and (8) 721-1440. The relationship between 

soak times and EFs is nearly logarithmic (Figure 4B) and compares well to previous findings 

into the connection between start EFs and soak-times (Favez et al., 2009). Engine starts with 

soak-times greater than 12 hours (720 minutes) are considered to be cold-starts. Trip-level start 

emissions were estimated by assigning a start EF to each vehicle/trip based on its soak-time bin 

and vehicle characteristics (type and model year). The trip-level start emissions from the OD 

survey were then expanded to the full population based on survey expansion factors to produce 

total daily start emissions.  
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A)  Start emission factors for vehicle types and model years under winter conditions 

 

B) Start emission factors for passenger cars (model year 2000) as a function of soak time under winter conditions 

FIGURE 4  Development of start emission factors (EF) 
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3.2 Testing the effects of model randomness and input variability 

Following development of the integrated traffic assignment and emission model, a series of 

model runs were undertaken in order to evaluate the effects of input data precision on the final 

emission inventory. Our strategy was to identify specific input data aggregations that are 

commonly applied in practice in the evaluation of transport plans. These common aggregations 

include assumptions based on vehicle ownership, route selection, engine soak-times, etc. The 

goal was to then identify the ‘cost’ that such simplifications entail in terms of the final regional 

emission inventories. In addition, the effect of randomness we built into the model and which 

pertains to the vehicle allocation as well as path allocation processes is evaluated through 

multiple model runs leading to the generation of a standard error associated with every daily 

regional emission estimate.  

A total of 7 sets of model inputs were varied; these include: 1) the inclusion or exclusion 

of start emissions; 2) ambient temperature (winter vs. summer); 3) level of speed aggregation 

extracted from the assignment model (average network speed, trip speed, link speed); 4) vehicle 

age distribution (average vehicle age in the province vs. real distribution obtained from registry 

data); 5) vehicle type distribution (assuming all passenger cars vs. real distribution obtained from 

registry data); 6) soak-time distribution (assuming all starts are cold starts, assuming that all 

starts are warm starts, using default soak time distributions, and deriving the real soak time 

distribution from trip start and end times); and 7) path selection (shortest path vs. stochastic 

assignment).  

1) Inclusion of start emissions – Excess emissions during engine starts have been 

estimated to account for nearly 28-31 percent of total on-road volatile organic compounds 

(VOC) emissions under summer conditions (Borrego et al., 2004; Houk, 2004). Kioutsioukis et 

al. (2004) also found that cold start effects in relation to average trip lengths were one of the 

most important elements in accurate VOC estimates. While earlier emission inventories have 

accounted for starts through three different types of running EFs (cold-transient, hot-transient, 

and hot-stabilized), the new generation of emission simulators tend to separate running and start 

EFs. Therefore, in order to evaluate the effect of start emissions on daily regional emission 

inventories in isolation from other factors, we ran the model while including and excluding start 

emissions.  



 15 

2) Season – For regions and urban areas with high temperature differentials between 

summer and winter, season becomes an important consideration in developing emission 

inventories. Emission rates, especially the excess from starts, tend to significantly change under 

winter conditions, with start contributions rising to over 50 percent of total on-road emissions 

(Houk, 2004). Therefore, total emissions (start and running) were evaluated under summer and 

winter conditions in order to assess the isolated effect of ambient temperature.   

3) Travel speed – There are varying levels of detail with regard to travel speeds used in 

emission modeling. The simplest assumption involves applying the average network speed (daily 

or peak-period) to all trips (Ko et al., 2011; Brand and Preston, 2010). Certain models have 

increased the level of detail by assuming average trip speeds for emission calculations (Borge et 

al., 2012; Barla et al., 2011; Frank et al., 2000; Hao et al. 2000). Adding another layer of detail, 

the majority of emission models tend to use average link-speeds (Borge et al., 2012; Hao et al., 

2010; Beckx et al., 2009a; Xia and Shao, 2005; Borrego et al., 2004; Anderson et al., 1996). The 

detail in travel speed has been repeatedly shown to be highly significant with regards to emission 

estimates. Smit (2006) concluded that congestion and its impact on travel speeds was the second 

most important element in HC estimates after vehicle kilometers travelled. Anderson et al. 

(1996) found that HC estimates increased by 56 percent when using congested versus free-flow 

speeds. Therefore, three different travel speed assumptions were tested. The first was the most 

detailed and involved estimating link emissions using the congested speed of every link in a 

trip’s path. The second involved calculating an average trip speed for every OD trip using the 

trip length and time, and then estimating link emissions using this speed. The third speed 

assumption was to apply an hourly network-wide average speed to each link/trip. Despite recent 

research into the added value of incorporating mean speed distributions into link speed estimates 

(Smit et al., 2008), deterministic link speeds were used in all analysis due to limited traffic speed 

data at the regional level.  

4) Vehicle age – Vehicle age is a significant factor in emission modeling, as it typically 

captures many elements related to emission generation. These include advancements in engine 

technology (increased efficiency, etc.), emission-capture technology (catalytic converters, etc.) 

as well as the effects of ageing and deterioration on vehicle performance. Previous studies have 

made three common assumptions: (1) all trips use the same vehicle age (Ko et al., 2011; Hao et 

al., 2000); (2) all trips are assigned a single EF representing the actual distribution of vehicles 
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(obtained from fleet registry data) (Borge et al., 2012; Xia and Shao, 2005; Borrego et al., 2004; 

Frank et al., 2000; Anderson et al., 1996); or (3) each trip is allocated a model year that is related 

to a unique EF (Barla et al., 2011; Hao et al., 2010; Brand and Preston, 2010). Therefore for this 

study two different vehicle age assumptions were tested. One involved creating a set of EFs from 

Montreal-specific fleet information for 30 different model years (1978-2008). When each trip 

was assigned a unique vehicle age, it was also associated with a single EF for that same model 

year. The second involved using an EF for one model year and assuming that all trips were made 

using that same vehicle age. The vehicle age that was used was the average for the Montreal 

fleet, which at the time of simulation (2008) was eight-years old (model year 2000). While this 

second scenario is not particularly common considering that most agencies have access to 

vehicle age distributions nowadays, it represents an extreme that has been employed in the past. 

5) Vehicle type – A common misconception in operational emission modeling 

frameworks is to assume that all household vehicles are of the same type, often assumed to be 

passenger cars (Ko et al., 2011; Brand and Preston, 2010; Anderson et al., 1996). For this reason, 

we evaluated the effects of two different vehicle type distributions: a) the actual household 

vehicle types existing in Montreal including passenger cars (PC), and passenger trucks (PT), a 

category that covers light-duty trucks and sports utility vehicles; and b) the assumption that every 

trip was made using a passenger car.  

6) Soak-time – The time between turning an engine off and its successful re-ignition is 

known as the vehicle soak-time, and is a primary determinant of start emissions. Previous 

generations of emission models employed default soak-time distributions in order to account for 

start emissions. Over a certain period, all the trips would be randomly allocated soak-times based 

on that hour’s distribution. Nair et al. (2000) recommended replacing the default distribution 

with regional-specific data if possible. For this study, individual soak-times for each vehicle/trip 

were estimated based on the vehicle allocation algorithm. Three other soak-time configurations 

were also tested. The second and third involved the assumptions that every start was a cold start 

(largest soak-time bin), or a warm start (smallest soak-time bin). The fourth configuration is 

based on the assumption that all vehicles in the survey data are randomly assigned a soak-time 

based on default cumulative distributions from MOBILE6 (USEPA, 1998). The MOBILE series 

is the previous generation of emission models developed by the USEPA, with MOVES2010b 

being its successor. Given that numerous studies have used either MOBILE6 (Hao et al., 2010) 
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or a previous generation of the MOBILE model (Frank et al., 2000; Anderson et al., 1996), it is 

interesting to assess its impact compared to emission estimates generated from locally derived 

soak-times. In the Montreal case, the differences across several hours seem to be relatively 

consistent between the MOBILE6 distribution and the travel diary distribution (Figure 5), 

however the overall differences between the two distributions are fairly large. The travel-diary 

distribution favours larger soak-times (greater than 12 hours), whereas the MOBILE6 

distribution has a more relatively balanced range. Initially, this suggests that the MOBILE6 soak-

time distribution might underestimate the total start emissions given that the soak-times are 

smaller on average.   

7) Path selection – Not to be confused with path allocation (where vehicles are allocated 

to different paths linking their origin and destination in the emissions processor), path selection 

involves the choice of path used for any trip between an OD pair that is determined by the 

assignment type employed in the regional traffic model. Various assignment types used in 

conjunction with emission models include: (1) shortest path (Barla et al., 2011); (2) deterministic 

user equilibrium (Beckx et al., 2009a; Borrego et al., 2004; Anderson et al., 1996); (3) stochastic 

user equilibrium (Hao et al., 2010); and (4) dynamic user equilibrium (Borge et al., 2012; Xia 

and Shao, 2005). Alternatively, VKT data are sometimes gathered directly from travel surveys 

(Ko et al., 2011; Brand and Preston, 2010; Frank et al., 2000; Hao et al., 2000).  For 

computational reasons, both deterministic and dynamic user equilibrium assignments were 

ignored in this study, resulting in two path selection algorithms being tested. One involves a 

stochastic path selection, which randomly allocates a trip to a path within a probability-based 

path set for every OD pair. The other involves the simplification that all trips select the shortest 

path.  
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FIGURE 5  Soak-time comparison between local travel diary information and MOBILE6 defaults 

The final element of interest in the framework is the variance within the emission 

processor. Assuming all other inputs remain constant, the variance within the emission output is 

caused by randomness in both the vehicle allocation and the path allocation steps. The vehicle 

allocation step entails randomly assigning each vehicle a model year and type based on the 

cumulative vehicle fleet distribution characterizing the household’s residential zone. The 

cumulative distribution function was created using vehicle registry data, broken down into 

number of vehicles owned by type and model year. Therefore, the individual vehicles change 

between model runs, however the aggregate makeup of each zone remains consistent with the 

actual fleet distribution.  Meanwhile, the path allocation step entails randomly assigning a trip to 

a certain path between its origin and destination TAZs based on a cumulative path volume 

distribution function. The cumulative distribution function is created for every path set and is 

based on the volumes assigned to each path from the regional traffic assignment model. 

Therefore, individuals will have a higher chance of taking the most popular (ie. most congested) 

paths, yet lengthier alternatives are also available.  
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In order to account for this variance, the model was run under three different vehicle 

allocation simulations as well as three different path allocations combined to create three model 

iterations. We use the same path file generated by the regional traffic assignment model when 

varying the path allocations. These three iterations will form the basis for error estimation, and 

every input (belonging to the seven categories presented) is evaluated three times thus leading to 

three values for the total emissions output. The three values are averaged and a standard error 

(SE) is calculated. Figure 6 details the process used in testing the seven sets of data input. The 

results are presented in the same format with the mean and SE from the three iterations for each 

inventory estimated.  

 

FIGURE 6  Flowchart of changes to data inputs and model simulations  

(Note: the tree for average trip speed is similar to those for average link/network speeds yet is omitted for clarity) 

 

4. RESULTS AND DISCUSSION 

4.1 Validation of base-case model results 

The main output of the integrated model that was validated includes traffic volumes on selected 

links, and these were compared with count data for the same time period. The hourly traffic 

counts used for volume validation were collected on bridges and major arterials, and represented 
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averages over five days of data collection. The hourly correlation between simulated volumes 

and field counts at 160 data points ranged from 0.62 to 0.88 over the 24-hr period.  

 

4.2 Variability analysis 

Results of the data input permutations that were tested are presented in the two trees that show 

daily regional emission estimates in tons per day, along with standard error values as they 

propagate across various input aggregations (Figure 7). Additionally, a summary of results is 

presented in Table 1 whereby the regional emission estimates are ordered in terms of percent 

change from base-case.  

The two trees in Figure 7 serve to differentiate two sets of emission models with one 

involving a common omission: start-emissions. The figure shows an estimate that ignores start 

emissions (bottom tree) versus a more accurate one that includes starts (top tree). The uppermost 

branch of the top tree reveals the most detailed emission estimate of about 18 tons per day (0.36 

grams per VKT), a quantity comparable to previously estimated daily HC inventories for similar 

metropolitan areas (Hao et al., 2010; Anderson et al., 1996). Meanwhile, it is important to note 

that the standard error of all estimates is due to randomness in the vehicle and path allocation 

steps and accounts for at most 0.36 percent of the daily regional emission estimate. This means 

that the variance in allocating vehicles to individual trips based on zone-level registry data is 

insignificant given the size of the region and the fact that we are only looking at total daily 

emissions. More specifically, vehicle ownership trends (type and age) at the zonal level are 

respected during each iteration resulting in relatively consistent emission estimates, even though 

vehicle allocation at the individual level may be varying drastically. The same conclusion can be 

reached for the randomness due to the path allocation process.  Individuals are likely taking 

different paths over different iterations, however at the aggregate level the variance is small. 

These results are contrasted with the substantial inaccuracy when solely making assumptions 

based on vehicle ownership data.  For instance, estimates involving a simplification in vehicle 

age actually result in overestimations of 0.24-5.73 tons per day. Larger overestimations occur in 

scenarios where start emissions are included, owing to the fact that they are highly dependent on 

vehicle age (Figure 4A).  

The impact of various assumptions in combination was tested, for instance, the lowest 

branch of the lower tree shows the multiplying effect of simplifications regarding start-exclusion, 
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speed aggregation, vehicle type and age, and path selection. Together, those impacts lead to an 

underestimation of 1.69 tons per day compared to the detailed estimate excluding starts, and an 

underestimation of 13.7 tons per day compared to the most accurate estimate including starts.  

Analyzing the effect that starts have on daily estimates, it is clear that ignoring start 

emissions will result in significant underestimations. Daily regional emission estimates increase 

threefold when including starts under summer conditions and this increase can rise to as much as 

eight times if winter conditions are considered (Figure 8A). These results show that starts alone 

can contribute 67 to 86 percent of total daily HC emissions. These results also highlight two 

important points with regards to season, in that: 1) substantial differences in weather conditions 

do not have a significant effect on running emissions, at least for HCs; and 2) that any impact 

seasonality has on running estimates pales in comparison to its pivotal role in start estimates.  

The effect of using average trip speeds in emission calculations reduces the total daily 

estimate by a small amount from the baseline, which employs more accurate average link speed 

data (Figure 8B). Applying the more simplistic assumption that all drivers travel at average 

hourly network speeds results in a similar-sized underestimation. The fact that both 

simplifications result in underestimation comes as no surprise given that congestion effects tend 

to be lost in speed aggregation. However, the impacts are much smaller than anticipated. This is 

possibly caused by aggregating hourly running emissions, which typically vary significantly in 

peak versus non-peak traffic, into one daily estimate. The reasons for this are likely twofold: 1) 

the EFs are not as sensitive to speeds since the average network speeds observed from the traffic 

assignment model are located on a flatter segment of the speed-EF curves, and 2) the congestion 

algorithm employed by the traffic model is underestimating the impact of congestion on link 

speeds.  

Regarding the impacts of vehicle age, the assumption that all trips are made with an 

average model year (8 years old) results in a consistent overestimation across each of the speed 

aggregation scenarios. The error bars in Figure 8B represent the range of estimate totals from 

model randomness. The smaller error bars of the constant vehicle age scenarios clearly indicate 

that the bulk of model randomness lies in the vehicle allocation step. While this scenario is 

perhaps less plausible than the others tested, the effect that it illustrates is nevertheless interesting 

when combined with input data assumptions on vehicle type.  
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If the effect of vehicle type in combination with vehicle age is then isolated, the resulting 

outputs show that assuming all trips are made with passenger cars leads to a large 

underestimation in emission estimates (Figure 8C). The underestimate from this assumption is 

1.21-1.33 tons per day and is consistent whether applying the full fleet age distribution or 

assuming an average vehicle age. When including starts the underestimation is 3.97-6.34 tons per 

day, a percent decrease similar to that seen when ignoring starts. While the relationships between 

vehicle age/type and emission rates have been well established through previous research, this 

finding is interesting nevertheless in that it parallels previous findings even when applied in 

combination with other assumptions at a regional scale. 

Additionally, the type of path selection algorithm employed in the transportation model 

has a significant impact on the daily emission estimate. The assumption that all trips were taken 

on the shortest path results in a small drop in total regional emissions from the baseline, in which 

the path set is created through a stochastic distribution (Figure 7). It is important to note that 

these results are based on 24-hour emissions (estimated from running 24 hourly assignments) 

and therefore include peak and non-peak periods. The difference between the emissions resulting 

from shortest path selection and stochastic path selection vary by time of day. During congested 

hours, we observe that shortest path emissions are lower than stochastic emissions by 44-57 kg 

per hour. During uncongested hours and at night, the difference drops to 1-2 kg per hour. In 

smaller cities or cities with lower levels of congestion than Montreal, this difference between 

stochastic and shortest path selection is likely to decrease. However, for cities with high 

congestion levels, having a stochastic path set for assignment purposes is vital in order to capture 

the impact of trips that take lengthier, but less congested, route alternatives. 

The results of analyzing the effects of soak time on starts can be seen in Figure 8D. The 

error bars shown represent the range in values from different vehicle allocations. The soak-time 

distribution estimated from detailed travel diaries resulted in 12.00 tons of start-based HCs. 

Assuming all trips began under warm-start conditions resulted in a drastic decrease of 11.3 tons 

per day, whereas the total start emissions rose by 4.0 tons per day under the assumption that all 

trips were cold-starts. Given that start emissions are responsible for the majority of total HC 

emissions, it is important that soak time distributions are accurate due to the wide range of values 

seen in Figure 8D. Another finding of note is that the total daily start emission estimates are 

relatively similar when using the local soak-time distributions derived from travel diaries versus 
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the default distribution in MOBILE6. Although the contribution from starts was higher under the 

soak-times derived from travel diaries (12 tons per day vs. 11.5 tons per day), the differences are 

smaller than expected. Note however that when hourly start emissions are compared, it is evident 

that the discrepancy in estimates is primarily due to differences in the morning and afternoon 

peak-periods. 

Meanwhile, the modeling results for NOx are qualitatively comparable to those for HC. 

Both atmospheric conditions and vehicle age had similarly significant impacts on regional NOx 

emission estimates, even to a greater extent than with HC estimates (note: start emissions were 

omitted due to their relative insignificance in NOx emission rates). At the same time, input data 

assumptions on vehicle type, speed aggregation and path selection all resulted in decreases to 

estimate accuracy, paralleling findings from the HC analysis.  
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FIGURE 7  Sensitivity results for daily regional emission estimates (values in parentheses include daily mean HC amount 

followed by its standard error) 
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TABLE 1  Summary of regional emissions across input distributions considered  

Atmospheric 

Conditions 

Start 

Emissions 

Speed 

Aggregation 
Vehicle Age 

Vehicle 

Type 

Path 

Selection 

Mean HC 

Emissions 

(tons/day) 

% Change 

From Base 

Summer 

Included 

Link Speed Distribution PCs+PTs Stochastic 17.95 a 

Link Speed Distribution PCs Stochastic 13.98 -22.1% 

Network Speed Constant Age PCs Shortest 16.62 -7.4% 

Network Speed Constant Age PCs Stochastic 16.97 -5.5% 

Link Speed Distribution PCs+PTs Shortest 17.52 -2.4% 

Network Speed Distribution PCs+PTs Stochastic 17.59 -2.0% 

Trip Speed Distribution PCs+PTs Stochastic 17.84 -0.6% 

Network Speed Constant Age PCs+PTs Stochastic 23.31 29.9% 

Link Speed Constant Age PCs+PTs Stochastic 23.68 31.9% 

Ignored 

Link Speed Distribution PCs+PTs Stochastic 5.95 b 

Network Speed Constant Age PCs Shortest 4.26 -28.4% 

Network Speed Constant Age PCs Stochastic 4.61 -22.5% 

Link Speed Distribution PCs Stochastic 4.62 -22.4% 

Link Speed Distribution PCs+PTs Shortest 5.52 -7.2% 

Network Speed Distribution PCs+PTs Stochastic 5.60 -5.9% 

Network Speed Constant Age PCs+PTs Stochastic 5.82 -2.2% 

Trip Speed Distribution PCs+PTs Stochastic 5.84 -1.8% 

Link Speed Constant Age PCs+PTs Stochastic 6.19 4.0% 

Winter 
Included Link Speed Distribution PCs+PTs Stochastic 42.83 - 

Ignored Link Speed Distribution PCs+PTs Stochastic 5.84 - 
a This ‘base’ emission estimate is used for comparison with all other ‘summer’ + ‘starts included’ scenarios  
b This ‘base’ emission estimate is used for comparison with all other ‘summer’ + ‘starts ignored’ scenarios 
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A) Daily emissions ignoring and including starts and season     B) Daily emissions for different speed aggregations and  

vehicle ages (ignoring starts) 

 

   

C) Daily emissions for different ages and types (ignoring starts)  D) Daily start emissions for different soak-times  

FIGURE 8  Illustrating the effects of selected variables on regional emissions  

 

 
5. CONCLUSION 

The level of accuracy in travel behaviour data is highly linked to accurate emission inventories 

(Kioutsioukis et al., 2004). However, the question remains as to which inputs contribute the most 

to the accuracy of emission estimates. To address this question, an integrated traffic and emission 

model was developed in order to estimate daily regional emissions for the Montreal metropolitan 

region. The detailed model was set as the baseline, and then seven different data inputs were 

altered in isolation, as well as several in combination, to assess their impact on daily emission 

inventories. Overall, start emissions had the largest impact. Even under summer conditions, start 
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emissions are estimated to make up two thirds of total on-road hydrocarbon emissions. The 

impact of starts would likely be less if inventories were being made for other pollutants such as 

nitrogen oxides. Vehicle registry data is the next element with the highest impact, specifically 

data on vehicle type distribution. SUVs and light-duty trucks emit more running and start 

emissions than passenger cars with similar model years, and so regions with high levels of 

passenger truck use certainly need to account for them. Meanwhile, speed aggregation and path 

selection type both have significant impacts on regional emission estimates, however nowhere 

close to the extent of including starts or accurate fleet composition data. However, the results on 

speed aggregation likely mask their true impact to a certain extent, especially given that 

deterministic link speeds were used instead of mean speed distributions (Smit et al., 2008). It is 

likely that this effect would also have a crossover impact on the significance of path selection 

type. Aside from that, our results do seem to support the argument that vehicle distance travelled 

remains a significant element in determining trip emissions at the regional level. For 

practitioners, reaching the modeling optimum that balances input accuracy with model accuracy 

likely means investing resources in start emissions and accurate vehicle ownership data.  

It is important to note that our sensitivity results are pollutant-specific. Other major traffic 

pollutants (e.g. particulate matter, sulfur oxides) and greenhouse gases are likely to be impacted 

differently by the various input parameters as their emission rates react differently under 

congestion, ignition conditions, atmospheric conditions, etc. Furthermore, the HC estimates in 

this study do not incorporate evaporative emissions, a significant portion of total urban 

emissions. Evaporative emissions are strongly influenced by ambient conditions, and have been 

estimated to account for up to 15% of total urban HC emissions under summer conditions (Hao 

et al., 2010). Meanwhile at a more macroscopic level, owing to the complexity and resource-

intensiveness of developing integrated transport and emissions models with specific transport 

and emission simulators, the impact of model/software choice was not assessed in our study. 

This omission extends to the analysis of various congestion algorithms used in regional traffic 

modeling.  

Further work should initially focus on including evaporative emissions within the 

analysis framework. From there, it would be interesting to extend the sensitivity analysis to other 

major traffic pollutants. Additionally, the impact of using different traffic simulations/algorithms 
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and emission models on regional emission inventories should be studied, although the time and 

cost investments of such an endeavour are significant.   
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