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ABSTRACT 

This paper presents a modeling framework developed for the City of Montreal, Canada, and is 

intended to quantify two indicators that can explain the spatial distribution of traffic-related air 

pollution at a metropolitan level. The indicators are estimated at the level of the traffic analysis 

zone (TAZ) and include: (1) the average level of emissions generated per individual, and (2) the 

level of emissions occurring in a zone as a proxy for air pollution exposure. A regional traffic 

assignment model is extended with capabilities for emission modeling at an individual trip level 

while taking into account vehicle (type, age) and trip attributes (road type, speed, volume). We 

observe that individuals who generate higher emissions from travel tend to reside in areas with 

lower exposure to traffic emissions while individuals associated with low levels of travel 

emissions (e.g. travel smaller distances, conduct less trips, use alternative modes) reside in areas 

with high levels of traffic pollution. A regression analysis of the two indicators against a set of 

land-use and socio-economic variables shows that generated emissions per individual are 

positively associated with car ownership and larger vehicles, while being negatively associated 

with ownership of newer vehicles, and location in dense and walkable neighborhoods with high 

levels of commercial land-use. Meanwhile, exposure to emissions is positively associated with 

dense and walkable neighborhoods and negatively associated with car ownership and larger 

vehicles. These findings indicate major inequities in the generation of and exposure to traffic-

related air pollution.  
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1. INTRODUCTION 

The impact of transportation on the global environment is substantial and growing (Chapman, 

2007). In Canada specifically there are about 21 million road motor vehicles registered as of 

2009, up from 17.5 million in 1999 (Statistics Canada, 2012). At the same time, 82% of 

Canadian commuters currently drive to work, compared to only 12% who take public transit and 

6% who walk or bike (Turcotte, 2011). These unprecedented levels of vehicle mobility have 

come with unparalleled levels of pollution. The results of this increase are evident in the recent 

literature, which has shown that exposure to traffic-related air and noise pollution affects various 

aspects of human health (Brauer, et al., 2008; Gan, et al., 2012; Selander, et al., 2009). It is 

therefore crucial to develop modeling systems and analysis tools that can evaluate the impacts of 

various transport policies on urban air quality and identify measures that specifically target 

polluters and persons at risk.  

 

The objective of this study is to better understand the generation of traffic-related air pollution at 

a metropolitan scale and identify the regions that are potentially the most affected by these 

emissions. We propose two measures of traffic emissions that potentially capture inequity in the 

spatial distribution of emissions: (1) the average level of emissions generated per individual and 

(2) the level of emissions occurring in a zone as a proxy for air pollution exposure. These 

indicators are estimated at the traffic analysis zone (TAZ) level by extending a regional traffic 

assignment model with capabilities for individual trip emission modeling while taking into 

account vehicle (type, age) and trip attributes (road type, speed, volume). We examine the spatial 

distribution of emissions as well as capture the determinants of emissions generated and exposed 

to through a multivariate regression analysis of the two indicators against a set of land-use and 

socio-economic variables.  

 

2. CONTEXT 

The linkage between transportation modeling and detailed environmental modeling is a research 

area that has grown rapidly in the past few years in light of the importance of extending the 

capabilities of transportation models with environmental simulation. These studies have found 

considerable evidence that long-term exposure to local traffic-related air and noise pollution is 

potentially dangerous to various aspects of human health including birth outcomes (Brauer, et al., 

2008), children‟s health (Kim, et al., 2004; Zmirou, et al., 2004; and Kramer, et al., 2000) and 

respiratory and cardiovascular diseases, including lung cancer (Gan, et al., 2012; Selander, et al., 

2009; Chen, et al., 2008; Babisch, et al., 2005; Hoek, et al., 2002; and Kunzli, et al., 2000). 

 

Simultaneously, the transportation research field has also moved toward analytical frameworks 

that provide a comprehensive analysis of vehicle emissions. Several activity-based and agent-

based traffic assignment models have been used to calculate refined emission estimates at a 

person and trip level taking into account vehicle (vehicle type, model year, fuel) and trip 

characteristics (drive-cycle, link type and link grade) (Anderson et al., 1996). Building on those 

advancements, a number of studies have also included an analysis of atmospheric dispersion 

based on link emissions (Int Panis et al., 2011; Hatzopoulou et al., 2010; Hulsmann et al., 2009). 

Several efforts were even successful at estimating the effects of cold and hot starts as well as 

soak emissions (Hao et al., 2010).  
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Using significantly more aggregate travel and emission modeling tools, a number of studies have 

calculated individual and household emissions (from transport only) at a metropolitan level and 

analyzed the relationship between emissions and a host of socio-economic, land-use and 

transport supply variables. In one of the earliest studies conducted in California, Khan (1998) 

found that richer households might have higher vehicle emissions because they drive more often 

and own more vehicles. Poorer households were likely to have higher emissions as well because 

of their older, higher polluting vehicles. Frank et al. (2000) explored the relationship between 

land use patterns and household vehicle emissions in the Puget Sound region and found that 

household density, work tract employment density, and street connectivity (block density) were 

inversely related to household vehicle emissions, while commute trip distance had a positive 

influence. More recently, Brand and Preston (2010) estimated CO2 emissions at the individual 

level for the Oxfordshire region in the United Kingdom. They found a significant relationship 

between individual CO2 emissions and age, gender and car ownership. Income, household 

location, working status and accessibility were not found to be significant. In another study with 

a similar methodology focusing on the Seoul metropolis area, Ko et al. (2011) found that 

household location and income were significant in relation to individual CO2 emissions, along 

with age and car ownership. Barla et al. (2011) observed similar effects in Quebec City.  

 

In this paper, we exploit the recent advances in travel and emission modeling by developing a 

framework that estimates emissions at a relatively fine level of detail. In addition, we not only 

estimate emissions generated on an individual and household level but also estimate those 

occurring in different zones as a proxy for air quality. Our analysis extends the existing literature 

by setting the stage for health and equity analysis of transportation systems.  

 

3. STUDY AREA 

Our study area includes the Montreal metropolitan region, which covers an area of 

approximately 7,000 km
2
 and has a population of about 3.8 million (Statistics Canada, 2011). 

The region is dominated by the island of Montreal, with approximately 47% of the region‟s 

population and 71% of the region‟s 1.4 million employment opportunities (AMT, 2010). The rest 

of the region consists of two sub-regions north of Montreal: Laval and the twenty municipalities 

of the North Shore, and another two sub-regions south of the island: Longueuil and the twenty 

five South Shore municipalities. Figure 1 provides the population distribution in terms of density 

across the Montreal metropolitan region with all the major sub-regions identified. Further, the 

figure identifies the central business district (CBD) in a red box.  

 

The spatial economy of the Montreal region is anchored by the CBD; 59% of the region‟s 

employment opportunities are within 10 km of downtown, while the remaining job distribution 

follows a concentric distance-decay curve (Shearmur and Coffey, 2002). The other major 

employment centre in the region is found near Montreal‟s main airport in Ville-Saint-

Laurent/Dorval, located 10-15 km west of downtown. The imbalance between jobs and residents 

previously mentioned for the island of Montreal is especially large for the CBD and surrounding 

central areas. In the central areas there are 24 workers for every 10 residents, an employment 

surplus that is being fed by Laval, Longueuil, and other municipalities on the North and South 

shores (Shearmur and Motte, 2009). Meanwhile, the island of Montreal is connected to the other 

sub-regions through a system of bridges. Five bridges connect the island to the north (with a 

recent addition of a sixth bridge in 2011) and five to the south, while two bridges at either end of 
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the island connect the peripheral eastern and western edges. With the very high proportion of off-

island and on-island commuters, bridges linking the island to the rest of the region have become 

the salient element of the road network. At the same time, most of the residential growth is 

occurring in the periphery zones of the region particularly in the north and south shore 

municipalities (AMT, 2010). Overall, there are over two million vehicles registered in the region, 

resulting in a regional household vehicle ownership rate of about 1.2 vehicles (AMT, 2010). 

 

4. METHODOLOGY 

Our research methodology is divided into three main steps: (1) transportation modeling, (2) 

emission modeling, and (3) statistical analysis.  

4.1. Transportation Modeling  

A regional traffic assignment model was developed for the Montreal metropolitan area. The 

model takes as input the 2008 Origin-Destination (OD) trip data for the Montreal region 

provided by the Agence Métropolitaine de Transport (AMT) and assigns it on the network using 

a stochastic assignment in the VISUM platform (PTV Vision, 2009). The regional network 

consists of 127,217 road links and 90,467 nodes associated with 1,552 TAZs. It also contains 

various road characteristics such as the type, length, speed limit, capacity, and number of lanes.  

 

Only the driving trips were extracted from the OD survey for the purpose of this study and 

segmented into 24 1-hour origin-destination matrices based on trip departure times. The OD 

matrices were generated at the traffic analysis zone (TAZ) level. For the purpose of this exercise, 

only morning (6-8am) and afternoon (4-6pm) peak periods were simulated. The simulated traffic 

was assigned to the network employing the stochastic user equilibrium approach (SUE) in 

VISUM. The SUE approach allows for route choice distribution based on perceived travel times 

thus incorporating realistic route choice behavior compared to the traditional deterministic user 

equilibrium approach (PTV Vision, 2009). The validation exercise comparing link volumes 

based on the SUE outputs with observed link volume data provided satisfactory results 

(correlation = 0.62 – 0.86 based on 160 data collection points comparing 24-hour flows). Output 

from the traffic assignment simulations consisted of an array that contained a detailed description 

of all paths connecting pairs of origin-destination zones in the 6-8 am and 4-6 pm periods. This 

“path array” contains approximately 1,000,000 paths per hour for which the following 

characteristics are listed: links along the path, traffic volumes per link, average speed per link, 

and link type. 

4.2. Emission Modeling 

Linked with the regional traffic assignment model, an emission post-processor was developed 

that incorporated four main data sources as inputs while outputting an individual emission level 

for each individual trip. The post-processor goes through the list of individuals in the OD survey 

and assigns a vehicle for each individual driver based on vehicle ownership data obtained from 

the Societe de l‟Assurance Automobile du Quebec (SAAQ). It then randomly selects a path for 

each trip based on the path array. For each link along the path, based on the link type, average 

speed, and vehicle type/age, it attaches an emission factor (EF) in g/veh.km, and finally, 

multiplies the EF by the length of the link. After generating an emission per individual trip, total 

emissions per person are aggregated and assigned to the TAZ where the individual resides. We 
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also calculate total emissions occurring on the network in each TAZ. Figure 2 presents the design 

and operation of the post-processor.  
 

Four main databases are used to calculate individual trip emissions, these include: 1) the OD trip 

table, 2) the vehicle ownership database, 3) the paths array, and 4) the EF look-up table. 

1) The Origin-Destination survey data contains information on 319,915 trips conducted in the 

Montreal metropolitan region; each trip is associated with a set of attributes including origin, 

destination, departure time, travel mode, and attributes of the individual performing the trip 

including residential location. In addition, every trip is associated with a weight or “expansion 

factor” which allows us to scale the sample up to the total population. This survey is conducted 

every five years and is the primary source in Montreal of information on travel habits. The most 

recent survey was conducted in 2008 and the results were released in 2010. Participants in the 

survey were identified through a random sample of the Montreal population using telephone 

listings; the sample is validated against census data using a wide range of variables (age, gender, 

employment status, home location, work location, etc.). In 2008, 66,100 households 

(representing 4% of the population) were interviewed including 156,700 individuals. Telephone 

interviews took place in autumn, a time period when most urban travel habits are stable. The 

survey included individual and household-level socio-demographic information as well as a 

diary of each trip (i.e., trip origin, destination, purpose, mode of transportation).  

2) The SAAQ database includes vehicle ownership information for the Montreal region at the 

level of the Forward Sorting Area (FSA), indicated by the first three characters of the postal 

code. Within each FSA, the total number of vehicles by type (e.g. passenger car, sports utility 

vehicle, minivan, small truck, large truck) and model year (1981-2011) is provided. The SAAQ 

data contains 12 vehicle designations. These designations were collapsed into two groups, one 

for passenger cars and one for passenger trucks (which includes SUVs, minivans, and pick-up 

trucks). While it is possible that the 12 vehicle designations have different emission profiles, it is 

important to recognize that vehicle emissions on roadways are not only dependent on vehicle 

types and models but also influenced by fuel and engine technology, engine displacement, model 

year group, and regulatory class (USEPA, 2010). In fact the emission differences between 

different passenger cars of the same model year (and regulatory class) undergoing the same 

drive-cycle are smaller than emission differences for the same car undergoing different driving 

patterns. In real-road conditions, the differences due to vehicle make within the same category 

(passenger truck or passenger car) can be neglected. For this reason the USEPA‟s model 

MOVES 2010 has aggregated passenger vehicles into two broad categories: (1) passenger car 

(i.e. all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying 

passengers) and (2) passenger trucks (which includes SUVs, minivans, and pick-up trucks) 

coming from a larger vehicle classification which was included in the older MOBILE6 series. 

The distribution of the fleet was computed for each FSA, based on the two vehicle types and 

thirty model years provided. After linking the home TAZ and the home FSA of the driver, a 

random vehicle (type and model year) is assigned to each individual based on the vehicle fleet 

distribution of the home FSA.  

 

3) The path array output from the regional traffic model contains information on each path 

between every active OD pair. Every path in the array has information on the volume of vehicles 

for that path as well as the type, length, speed, and volume of each link along the path. A path 
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was allocated to each driver based on their origin and destination TAZs. In the case of multiple 

paths for one OD pair, a path was randomly allocated based on the volume proportion between 

the multiple paths.  

 

4) Vehicle emission factors were generated using MOVES. All default input distributions within 

MOVES were replaced with Montreal-specific data reflecting the vehicle fleet, fuel composition, 

and ambient conditions. Using specifically the vehicle age distribution by type obtained from the 

SAAQ database, we generated fleet-wide EFs. These EFs (in g/veh.km) vary by vehicle type 

(passenger car and passenger truck), age (30 model years), fuel (gasoline), average speed (15 

speed bins ranging from 2.5mph to >65mph), and facility type (uninterrupted, interrupted). The 

latter is based on MOVES‟ differentiation between two different driving behaviors based on two 

different types of road facilities. Uninterrupted facilities are roadways that have controlled access 

points with no signal control (i.e. expressways), resulting in more free-flowing traffic. 

Interrupted facilities, on the other hand, are roadways with intersections, signal lights, or stop-

signs, resulting in more stop-and-go driving. Emissions are computed for Nitrogen Oxides 

(NOx), Carbon Monoxide, and greenhouse gases (as CO2-eq). This leads to a large multi-

dimensional look-up table with 5,400 EFs. Following the generation of the look-up table, trip 

emissions (in grams) are calculated by matching the corresponding EF (g/veh.km) with each link 

along the trip taking into account vehicle characteristics and multiplying by the length of the link 

(km). Further, emissions for each path are multiplied by the trip expansion factor and then 

assigned to the TAZ of the driver‟s home location, as well as allocated onto the TAZs of every 

link on the driver‟s path. In our analysis, we restrict ourselves to examining the NOx related 

emissions as they have the highest co-locational association with other traffic-related pollutants 

(Beckerman et al., 2008; Wheeler et al., 2008).  

 

The emission post-processor estimates two indicators of traffic-related emissions: 1) an average 

level of emissions generated per person for each TAZ calculated by dividing the total emissions 

generated by residents of the TAZ with the TAZ‟s population. This measure is an indicator of the 

“polluting power” of the TAZ; and 2) an average level of emissions occurring in a TAZ 

calculated by dividing the total emissions allocated to that TAZ by its area (in km
2
). This 

measure relates to the amount of pollution experienced by a TAZ; in this study we use it as a 

proxy for air pollution exposure in the absence of an air pollution dispersion model.  

4.3. Statistical Analysis 

In order to capture the strengths of associations between vehicle emissions and land-use and 

socio-economic attributes, a regression analysis was performed on the two TAZ-level indicators: 

1) average emissions generated per individual, 2) emissions exposed to per km
2
. Multivariate 

regressions were run on the logarithm of the two indicators as both distributions are lognormal. 

In this respect, an extensive database of variables potentially affecting emissions was computed 

at the TAZ level for the Montreal metropolitan region. The database includes a range of socio-

economic, land-use and transportation related variables (e.g. population, residential density, 

highway length, etc.). Factor analysis is then employed in order to structure the large dataset into 

a number of factors for use in the linear regression. The individual variables were first classified 

into two categories: (1) variables affecting travel demand (e.g. car ownership, average income, 

vehicle age, etc.), and (2) variables affecting transport supply (e.g. network density, bus stop 

density, walkability, etc.).  
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The results of the factor analysis are shown in Table 1. Based on the six demand variables, three 

factors were derived. The first factor (i.e. high income, newer vehicles) represents the effect of 

household income and vehicle age. A zone that exhibits a high value for this factor can include 

more households with high income and newer vehicles. The second and third factors represent 

high vehicle ownership and larger vehicles (second factor) and older vehicles (third factor). 

Cumulatively, the three factors account for 81.5% of the variability in the six demand-based 

variables. Based on the supply variables three factors were derived to capture the effects of zones 

that are: (1) dense, walkable and have transit oriented development (TOD), (2) commercial, and 

(3) government and institutional.  

 
 

5. RESULTS AND DISCUSSION 

 

5.1. Spatial Distribution of Emissions 

The average emitted NOx per person (am and pm peak periods only) across the 1,552 TAZs in 

the region ranges from 0.0 to 17.5 grams. The spatial distribution of results across the region is 

shown in Figure 3. As expected, the high emitting individuals tend to reside on the periphery of 

the region, which is furthest from the central business district (CBD). Concurrently, the majority 

of low emitting individuals live centrally, on the island, much closer to the CBD. Overall, these 

results clearly confirm the intuitive hypothesis that high polluting individuals reside away from 

the downtown in suburban areas. When we overlay the map of emissions occurring on the 

network onto Figure 3, it is evident that most of the emissions occur in areas where the lowest 

polluting individuals reside (Figure 4).  This is confirmed when plotting the emissions occurring 

within a TAZ. Indeed, it is clear that there is much higher pollution along the main highway 

corridors and in the areas closer to downtown. In addition, emissions are very low for all of the 

zones on the region‟s periphery. The spatial distribution of NOx emissions per km
2
 is presented 

in Figure 5.  

 

While it is hard to validate link-level NOx emissions at a regional level, we compared our link-

based emissions and TAZ-based emissions with NO2 ambient air quality levels previously 

mapped for Montreal based on a land-use regression analysis. The resulting model features 

raster-based NO2 levels across the Island of Montreal (Crouse et al., 2009). The resulting overlay 

between link-level NOx emissions and NO2 levels is presented in Figure 6. Based on the number 

of raster cells falling in each TAZ, we calculate the average NO2 level (in ppb) per TAZ and 

correlate this level with the level of NOx emissions occurring in the same TAZ per km
2
 (based on 

Figure 5). The Spearman‟s rank correlation coefficient between the two datasets was found to be 

0.424 (significant at the 1% level). While the aggregation to the level of the TAZ is expected to 

introduce disparity in the two datasets (therefore reducing the correlation coefficient), a visual 

inspection of Figure 6 clearly indicates that our highest simulated NOx emissions do correspond 

to the areas with the highest NO2 levels in Montreal.  

5.2. Statistical Analysis 

In order to better understand the underlying factors associated with the generation and exposure 

to emissions, the two indicators of emissions were regressed against the set of factors derived 

from socio-economic, land-use and transport supply variables at the TAZ level. A summary of 

the regression results is presented in Table 2.  
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We observe that the emitted NOx per person per TAZ are positively associated with high car 

ownership and larger vehicles and negatively associated with dense, walkable, TOD zones. 

Commercial zones also tend to decrease the average individual emissions since zones with 

higher amounts of commercial land-use tend to be located in areas with higher accessibility, thus 

reducing trip length. In addition, zones with high income and newer vehicles tend to decrease 

individual level emissions. This is likely because newer vehicles have lower emission factors. It 

is important to distinguish this factor from „high car ownership and larger vehicles‟. This factor 

(high income, newer vehicles) seems to represent high-income urban dwellers who are not 

necessarily high emitters. This is an interesting finding, since it indicates that income influences 

emissions generation only when it is connected to higher car ownership. The final factor with 

negative association is „older vehicles‟. The negative sign is counter-intuitive since older 

vehicles tend to have significantly higher emission factors (Figure 7). This finding is however 

confirmed by examining the level of car ownership of owners of older vehicles. Indeed, a cross 

tabulation of car ownership and average vehicle age (Table 3) confirms that the factor „older 

vehicles‟ also includes low vehicle ownership. In fact, there is clear evidence indicating that a 

lower vehicle ownership leads to lower vehicle mileage (NHTS, 2009). We can then conclude 

that households with older vehicles tend to make fewer trips therefore offsetting the higher 

emissions of their vehicles. 

 

The multivariate regression model for NOx emissions occurring per km
2
 (used as a proxy for air 

pollution exposure) had four significant factors. Zones that were dense, walkable, and accessible 

by transit or had more commercial land-use were positively associated with air pollution 

exposure. Meanwhile, zones with high car ownership and larger vehicles or ones with older 

vehicles were negatively correlated with exposed to NOx per km
2
. This is likely because zones 

with higher car ownership and larger vehicles are located further away from the downtown and 

do not attract as much traffic.  

 

The regression analysis points towards asymmetry in the roles of the factors influencing 

emissions generated and exposed to. To further explore this asymmetry, we conducted a two-step 

cluster analysis based on the two indicators. The cluster analysis divided the 1,552 zones into 

four clusters: 1) low emitter, high exposure; 2) low emitter, moderate exposure; (3) high emitter, 

moderate exposure; and (4) high emitter, low exposure. Based on the spatial distribution of the 

clusters (Figure 8), it is evident that the lowest emitting zones (highlighted in white and the 

lightest shade of grey) are also the ones that are exposed to the highest emissions. They are 

mostly located in central areas and in the CBD. In contrast, high emitting zones (dark grey) are 

also exposed to low amounts of pollution and located outside of the urban core. This analysis 

points towards spatial and socio-economic disparities in air pollution generation and exposure.  

 

It is interesting to situate these results within the context of the region‟s spatial economy. As has 

been mentioned, the central areas of Montreal have a large disparity in jobs vs. residents, 

matched on the opposite side of the spectrum by areas such as Laval or Longueuil, which only 

have between 6-7 jobs for every 10 residents. It has also been shown that the CBD is the only 

employment centre attracting labour from across the entire region, in contrast to smaller 

suburban centres that tend to have local labour catchments (Shearmur and Motte, 2009). The 

central areas of Montreal therefore rely on the suburbs for labour. At the same time, a form of 

income redistribution is occurring wherein income, often high income, is made through 
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employment in the CBD and is then transferred back to the suburbs where the high-income 

earners typically live (Shearmur and Motte, 2009). This income redistribution is mirrored by the 

results of our study which show an opposite redistribution of traffic‟s negative externalities from 

suburbs to central areas downtown. Downtown residents are therefore faced with a net loss of 

wealth along with a net gain in pollution, the majority of which they are not responsible for. 

While the paper does not directly establish a link between air pollution exposure and socio-

economic disadvantage; the spatial distribution of traffic emissions within the region established 

here, points towards significant concerns from an environmental justice perspective.  

 

6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 

In this study, we have estimated two key indicators of emissions through the development of a 

multi-model framework involving a regional traffic assignment model, a vehicle emissions 

model, and an emission post-processor. The two indicators are 1) the average level of NOx 

emissions generated per individual in a TAZ, and (2) the average level of NOx occurring in a 

TAZ per km
2
. Our findings indicate significant spatial disparity between the areas that generate 

or are responsible for high levels of individual emissions and areas that experience high 

emissions. Both measures were a function of socioeconomic and built environment 

characteristics. We observe that the factors which positively influence the emissions generated 

are also the ones which negatively influence the emissions occurring in a zone therefore pointing 

towards equity issues in the generation and distribution of traffic-related emissions.  

 

These findings are of relevance to policy evaluation at the Metropolitan level. When cities are 

faced with challenges such as reducing traffic emissions by 2030 to a certain percentage less than 

1990 levels; a main question arises: Are these the emissions generated within the city or 

emissions generated by individuals residing in the city? In areas where most of the traffic 

emissions are generated by residents living outside the city, policy development becomes a 

challenging task. The modeling framework that we propose provides a way to quantify the 

responsibility for emissions generated and the impact of every individual‟s emissions on the 

region. It will be used to simulate regional-level transport policies and their effects on the spatial 

distributions of emissions and on equity in emissions generated and exposed to.  

 

The developed modeling framework is associated with a range of limitations. In our emission 

modeling exercise, we focus our attention on private vehicle emissions. We are currently 

introducing transit emissions but we have not yet considered emissions generated by commercial 

traffic (freight and delivery trucks). The task of obtaining data on commercial traffic is far from 

trivial. In terms of traffic assignment, we employed the Stochastic User Equilibrium algorithm. 

We do intend to explore more advanced assignment procedures including Dynamic Traffic 

Assignment for generating inputs to the emission post-processor. Moreover, our current 

implementation of vehicle allocation is based on the vehicle type/age distribution of the 

residential zone of the trip-maker while not explicitly accounting for factors related to household 

vehicle use and potential trip chaining. In future research attempts, a vehicle allocation model 

based on data related to the use of specific vehicles for specific trips and by specific individuals 

will be developed. The nearest future extensions for this model include: linkage with dispersion 

models, estimation of population exposure, quantification of equity, and the evaluation of policy 

scenarios.  

 



 11 

 

REFERENCES 

Agence Metropolitain de Transport (AMT) (2010). La mobilite des personnes dans la region de 

Montreal: Faits Saillants. Enquete Origine-Destination 2008.  

Anderson, W.P., Kanaroglou, P.S., Miller, E.J., & Buliung, R.N. (1996). Simulating automobile 

emissions in an integrated urban model. Transportation Research Record, 1520, 71-80. 

Babisch, W., Beule, B., Schust, M., Kerbett, N., & Ising, H. (2005). Traffic Noise and Risk of 

Myocardial Infarction. Epidemiology, 16 (1), 33-40. 

Barla, P., Miranda-Moreno, L. F., & Lee-Gosselin, M. (2011). Urban travel CO2 emissions and 

land use: A case study for Quebec City. Transportation Research Part D, 16, 423-428. 

Beckerman, B., Jerrett, M., Brook, J. R., Verma, D. K., Arain, M. A., & Finkelstein, M. (2008). 

Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. 

Atmospheric Environment, 42, 275–290. 

Brand, C., & Preston, J. M. (2010). '60-20 emission' - The unequal distribution of greenhouse gas 

emissions from personal, non-business travel in the UK. Transport Policy , 17, 9-19. 

Brauer, M., Lencar, C., Tamburic, L., Koehoorn, M., Demers, P., & Karr, C. (2008). A cohort 

study of traffic-related air pollution on birth outcomes. Environmental Health Perspectives , 116 

(5), 680-686. 

Chapman, L. (2007). Transport and climate change: a review. Journal of Transport Geography , 

354-367. 

Chen, H., Goldberg, M. S., & Villeneuve, P. J. (2008). A systematic review of the relation 

between long-term exposure to ambient air pollution and chronic diseases. Reviews on 

Environmental Health, 23 (4), 243-297. 

Crouse, D. L., Goldberg, M. S., & Ross, N. A. (2009). A prediction-based approach to modelling 

temporal and spatial variability of traffic-related air pollution in Montreal, Canada. Atmospheric 

Environment, 5075-5084. 

Frank, L. D., Stone Jr., B., & Bachman, W. (2000). Linking land use with household vehicle 

emissions in the central puget sound: methodological framework and findings. Transportation 

Research Part D, 173-196. 

Gan, W. Q., Davies, H. W., Koehoorn, M., & Braeur, M. (2012). Association of Long-term 

Exposure to Community Noise and Traffic-related Air Pollution With Coronary Heart Disease 

Mortality. American Journal of Epidemiology, 175 (9), 898-906. 

Hao, J. Y., Hatzopoulou, M., & Miller, E. J. (2010). Integrating an Activity-Based Travel 

Demand Model with Dynamic Traffic Assignment and Emission Models. Transportation 

Research Record: Journal of the Transportation Research Board, 2176, 1-13. 



 12 

Hatzopoulou, M., & Miller, E. J. (2010). Linking an activity-based travel demand model with 

traffic emission and dispersion models: Transport‟s contribution to air pollution in Toronto. 

Transportation Research Part D: Transport and Environment, 15 (6), 315-325. 

Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., & van den Brandt, P. (2002). Association 

between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort 

study. The Lancet, 1203-1209. 

Hulsmann, F., Gerike, R., Kickhofer, B., Nagel, K., & Luz, R. (2009). Towards a multi-agent 

based modeling approach for air pollutants in urban regions. Luftqualitat an Strassen. Berlin: 

German Federal Highway Research Institute. 

Int Panis, L., Beckx, C., Broekx, S., De Vlieger, I., Schrooten, L., Degraeuwe, B., et al. (2011). 

PM, NOx and CO2 emission reductions from speed management policies in Europe. Transport 

Policy, 18, 32-37. 

Kahn, M. E. (1998). A household level environmental Kuznets curve. Economics Letters, 269-

273. 

Kim, J. J., Smorodinsky, S., Lipsett, M., Singer, B. C., Hodgson, A. T., & Ostro, B. (2004). 

Traffic-related air pollution near busy roads: the East Bay children's respiratory study. American 

Journal of Respiratory and Critical Care Medicine, 170 (5), 520-526. 

Ko, J., Park, D., Lim, H., & Hwang, I. (2011). Who produces the most CO2 emissions for trips in 

the Seoul metropolis area? Transportation Research Part D, 16, 358-364. 

Kramer, U., Koch, T., Ranft, U., Ring, J., & Behrendt, H. (2000). Traffic-related air pollution is 

associated with atopy in children living in urban areas. Epidemiology, 11 (1), 64-70. 

Kunzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., et al. (2000). Public-

health impact of outdoor and traffic-related air pollution: a European assessment. The Lancet, 

356 (9232), 795-801. 

NHTS (2009). National Household Travel Survey 2009 “Number of Vehicle Miles (VMT) by 

Household Vehicle Count” Table, http://nhts.ornl.gov/tables09/FatCat.aspx?action=excel&id=28 

accessed on March 20th 2013. 

PTV Vision. (2009). VISUM 11.0 Basics. Karlsruhe, Germany: PTV AG. 

Selander, J., Nilsson, M. E., Bluhm, G., Rosenlund, M., Lindqvist, M., Nise, G., et al. (2009). 

Long-Term Exposure to Road Traffic Noise and Myocardial Infarction. Epidemiology, 20 (2), 

272-279. 

Shearmur, R., & Coffey, W.J. (2002). A tale of four cities: intrametropolitan employment 

distribution in Toronto, Montreal, Vancouver, and Ottawa-Hull, 1981-1996. Environment and 

Planning A, 34, 575-598.  

Shearmur, R., & Motte, B. (2009). Weak ties that bind: do commutes bind Montreal‟s central 

and suburban economies? Urban Affairs Review, 44 (4), 490-524.  

http://nhts.ornl.gov/tables09/FatCat.aspx?action=excel&id=28


 13 

Statistics Canada. (2011). 2011 Census of Population. Ottawa: Statistics Canada. 

Statistics Canada. (2012, July 4). Table 405-0004 - Road motor vehicles, registrations, annual 

(number). CANSIM (database) . Ottawa, Ontario: Statistics Canada. 

Turcotte, M. (2011, August). Commuting to work: Results of the 2010 General Social Survey. 

Canadian Social Trends, 92, 25-36. 

United State Environment Protection Agency (USEPA). (2010). MOVES2010 highway vehicle: 

population and activity data. EPA-420-R-10-026, Assessment and Standards Division Office of 

Transportation and Air Quality U.S. Environmental Protection Agency. 

Wheeler, A. J., Smith-Doiron, M., Xu, X., Gilbert, N. L., & Brook, J. R. (2008). Intra-urban 

variability of air pollution in Windsor, Ontario – measurement and modelling for human 

exposure assessment. Environmental Research, 106, 7–16. 



ABSTRACT 

This paper presents a modeling framework developed for the City of Montreal, Canada, and is 

intended to quantify two indicators that can explain the spatial distribution of traffic-related air 

pollution at a metropolitan level. The indicators are estimated at the level of the traffic analysis 

zone (TAZ) and include: (1) the average level of emissions generated per individual, and (2) the 

level of emissions occurring in a zone as a proxy for air pollution exposure. A regional traffic 

assignment model is extended with capabilities for emission modeling at an individual trip level 

while taking into account vehicle (type, age) and trip attributes (road type, speed, volume). We 

observe that individuals who generate higher emissions from travel tend to reside in areas with 

lower exposure to traffic emissions while individuals associated with low levels of travel 

emissions (e.g. travel smaller distances, conduct less trips, use alternative modes) reside in areas 

with high levels of traffic pollution. A regression analysis of the two indicators against a set of 

land-use and socio-economic variables shows that generated emissions per individual are 

positively associated with car ownership and larger vehicles, while being negatively associated 

with ownership of newer vehicles, and location in dense and walkable neighborhoods with high 

levels of commercial land-use. Meanwhile, exposure to emissions is positively associated with 

dense and walkable neighborhoods and negatively associated with car ownership and larger 

vehicles. These findings indicate major inequities in the generation of and exposure to traffic-

related air pollution.  
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1. INTRODUCTION 

The impact of transportation on the global environment is substantial and growing (Chapman, 

2007). In Canada specifically there are about 21 million road motor vehicles registered as of 

2009, up from 17.5 million in 1999 (Statistics Canada, 2012). At the same time, 82% of 

Canadian commuters currently drive to work, compared to only 12% who take public transit and 

6% who walk or bike (Turcotte, 2011). These unprecedented levels of vehicle mobility have 

come with unparalleled levels of pollution. The results of this increase are evident in the recent 

literature, which has shown that exposure to traffic-related air and noise pollution affects various 

aspects of human health (Brauer, et al., 2008; Gan, et al., 2012; Selander, et al., 2009). It is 

therefore crucial to develop modeling systems and analysis tools that can evaluate the impacts of 

various transport policies on urban air quality and identify measures that specifically target 

polluters and persons at risk.  

 

The objective of this study is to better understand the generation of traffic-related air pollution at 

a metropolitan scale and identify the regions that are potentially the most affected by these 

emissions. We propose two measures of traffic emissions that potentially capture inequity in the 

spatial distribution of emissions: (1) the average level of emissions generated per individual and 

(2) the level of emissions occurring in a zone as a proxy for air pollution exposure. These 

indicators are estimated at the traffic analysis zone (TAZ) level by extending a regional traffic 

assignment model with capabilities for individual trip emission modeling while taking into 

account vehicle (type, age) and trip attributes (road type, speed, volume). We examine the spatial 

distribution of emissions as well as capture the determinants of emissions generated and exposed 

to through a multivariate regression analysis of the two indicators against a set of land-use and 

socio-economic variables.  

 

2. CONTEXT 

The linkage between transportation modeling and detailed environmental modeling is a research 

area that has grown rapidly in the past few years in light of the importance of extending the 

capabilities of transportation models with environmental simulation. These studies have found 

considerable evidence that long-term exposure to local traffic-related air and noise pollution is 

potentially dangerous to various aspects of human health including birth outcomes (Brauer, et al., 

2008), children‟s health (Kim, et al., 2004; Zmirou, et al., 2004; and Kramer, et al., 2000) and 

respiratory and cardiovascular diseases, including lung cancer (Gan, et al., 2012; Selander, et al., 

2009; Chen, et al., 2008; Babisch, et al., 2005; Hoek, et al., 2002; and Kunzli, et al., 2000). 

 

Simultaneously, the transportation research field has also moved toward analytical frameworks 

that provide a comprehensive analysis of vehicle emissions. Several activity-based and agent-

based traffic assignment models have been used to calculate refined emission estimates at a 

person and trip level taking into account vehicle (vehicle type, model year, fuel) and trip 

characteristics (drive-cycle, link type and link grade) (Anderson et al., 1996). Building on those 

advancements, a number of studies have also included an analysis of atmospheric dispersion 

based on link emissions (Int Panis et al., 2011; Hatzopoulou et al., 2010; Hulsmann et al., 2009). 

Several efforts were even successful at estimating the effects of cold and hot starts as well as 

soak emissions (Hao et al., 2010).  
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Using significantly more aggregate travel and emission modeling tools, a number of studies have 

calculated individual and household emissions (from transport only) at a metropolitan level and 

analyzed the relationship between emissions and a host of socio-economic, land-use and 

transport supply variables. In one of the earliest studies conducted in California, Khan (1998) 

found that richer households might have higher vehicle emissions because they drive more often 

and own more vehicles. Poorer households were likely to have higher emissions as well because 

of their older, higher polluting vehicles. Frank et al. (2000) explored the relationship between 

land use patterns and household vehicle emissions in the Puget Sound region and found that 

household density, work tract employment density, and street connectivity (block density) were 

inversely related to household vehicle emissions, while commute trip distance had a positive 

influence. More recently, Brand and Preston (2010) estimated CO2 emissions at the individual 

level for the Oxfordshire region in the United Kingdom. They found a significant relationship 

between individual CO2 emissions and age, gender and car ownership. Income, household 

location, working status and accessibility were not found to be significant. In another study with 

a similar methodology focusing on the Seoul metropolis area, Ko et al. (2011) found that 

household location and income were significant in relation to individual CO2 emissions, along 

with age and car ownership. Barla et al. (2011) observed similar effects in Quebec City.  

 

In this paper, we exploit the recent advances in travel and emission modeling by developing a 

framework that estimates emissions at a relatively fine level of detail. In addition, we not only 

estimate emissions generated on an individual and household level but also estimate those 

occurring in different zones as a proxy for air quality. Our analysis extends the existing literature 

by setting the stage for health and equity analysis of transportation systems.  

 

3. STUDY AREA 

Our study area includes the Montreal metropolitan region, which covers an area of 

approximately 7,000 km
2
 and has a population of about 3.8 million (Statistics Canada, 2011). 

The region is dominated by the island of Montreal, with approximately 47% of the region‟s 

population and 71% of the region‟s 1.4 million employment opportunities (AMT, 2010). The rest 

of the region consists of two sub-regions north of Montreal: Laval and the twenty municipalities 

of the North Shore, and another two sub-regions south of the island: Longueuil and the twenty 

five South Shore municipalities. Figure 1 provides the population distribution in terms of density 

across the Montreal metropolitan region with all the major sub-regions identified. Further, the 

figure identifies the central business district (CBD) in a red box.  

 

The spatial economy of the Montreal region is anchored by the CBD; 59% of the region‟s 

employment opportunities are within 10 km of downtown, while the remaining job distribution 

follows a concentric distance-decay curve (Shearmur and Coffey, 2002). The other major 

employment centre in the region is found near Montreal‟s main airport in Ville-Saint-

Laurent/Dorval, located 10-15 km west of downtown. The imbalance between jobs and residents 

previously mentioned for the island of Montreal is especially large for the CBD and surrounding 

central areas. In the central areas there are 24 workers for every 10 residents, an employment 

surplus that is being fed by Laval, Longueuil, and other municipalities on the North and South 

shores (Shearmur and Motte, 2009). Meanwhile, the island of Montreal is connected to the other 

sub-regions through a system of bridges. Five bridges connect the island to the north (with a 

recent addition of a sixth bridge in 2011) and five to the south, while two bridges at either end of 
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the island connect the peripheral eastern and western edges. With the very high proportion of off-

island and on-island commuters, bridges linking the island to the rest of the region have become 

the salient element of the road network. At the same time, most of the residential growth is 

occurring in the periphery zones of the region particularly in the north and south shore 

municipalities (AMT, 2010). Overall, there are over two million vehicles registered in the region, 

resulting in a regional household vehicle ownership rate of about 1.2 vehicles (AMT, 2010). 

 

4. METHODOLOGY 

Our research methodology is divided into three main steps: (1) transportation modeling, (2) 

emission modeling, and (3) statistical analysis.  

4.1. Transportation Modeling  

A regional traffic assignment model was developed for the Montreal metropolitan area. The 

model takes as input the 2008 Origin-Destination (OD) trip data for the Montreal region 

provided by the Agence Métropolitaine de Transport (AMT) and assigns it on the network using 

a stochastic assignment in the VISUM platform (PTV Vision, 2009). The regional network 

consists of 127,217 road links and 90,467 nodes associated with 1,552 TAZs. It also contains 

various road characteristics such as the type, length, speed limit, capacity, and number of lanes.  

 

Only the driving trips were extracted from the OD survey for the purpose of this study and 

segmented into 24 1-hour origin-destination matrices based on trip departure times. The OD 

matrices were generated at the traffic analysis zone (TAZ) level. For the purpose of this exercise, 

only morning (6-8am) and afternoon (4-6pm) peak periods were simulated. The simulated traffic 

was assigned to the network employing the stochastic user equilibrium approach (SUE) in 

VISUM. The SUE approach allows for route choice distribution based on perceived travel times 

thus incorporating realistic route choice behavior compared to the traditional deterministic user 

equilibrium approach (PTV Vision, 2009). The validation exercise comparing link volumes 

based on the SUE outputs with observed link volume data provided satisfactory results 

(correlation = 0.62 – 0.86 based on 160 data collection points comparing 24-hour flows). Output 

from the traffic assignment simulations consisted of an array that contained a detailed description 

of all paths connecting pairs of origin-destination zones in the 6-8 am and 4-6 pm periods. This 

“path array” contains approximately 1,000,000 paths per hour for which the following 

characteristics are listed: links along the path, traffic volumes per link, average speed per link, 

and link type. 

4.2. Emission Modeling 

Linked with the regional traffic assignment model, an emission post-processor was developed 

that incorporated four main data sources as inputs while outputting an individual emission level 

for each individual trip. The post-processor goes through the list of individuals in the OD survey 

and assigns a vehicle for each individual driver based on vehicle ownership data obtained from 

the Societe de l‟Assurance Automobile du Quebec (SAAQ). It then randomly selects a path for 

each trip based on the path array. For each link along the path, based on the link type, average 

speed, and vehicle type/age, it attaches an emission factor (EF) in g/veh.km, and finally, 

multiplies the EF by the length of the link. After generating an emission per individual trip, total 

emissions per person are aggregated and assigned to the TAZ where the individual resides. We 
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also calculate total emissions occurring on the network in each TAZ. Figure 2 presents the design 

and operation of the post-processor.  
 

Four main databases are used to calculate individual trip emissions, these include: 1) the OD trip 

table, 2) the vehicle ownership database, 3) the paths array, and 4) the EF look-up table. 

1) The Origin-Destination survey data contains information on 319,915 trips conducted in the 

Montreal metropolitan region; each trip is associated with a set of attributes including origin, 

destination, departure time, travel mode, and attributes of the individual performing the trip 

including residential location. In addition, every trip is associated with a weight or “expansion 

factor” which allows us to scale the sample up to the total population. This survey is conducted 

every five years and is the primary source in Montreal of information on travel habits. The most 

recent survey was conducted in 2008 and the results were released in 2010. Participants in the 

survey were identified through a random sample of the Montreal population using telephone 

listings; the sample is validated against census data using a wide range of variables (age, gender, 

employment status, home location, work location, etc.). In 2008, 66,100 households 

(representing 4% of the population) were interviewed including 156,700 individuals. Telephone 

interviews took place in autumn, a time period when most urban travel habits are stable. The 

survey included individual and household-level socio-demographic information as well as a 

diary of each trip (i.e., trip origin, destination, purpose, mode of transportation).  

2) The SAAQ database includes vehicle ownership information for the Montreal region at the 

level of the Forward Sorting Area (FSA), indicated by the first three characters of the postal 

code. Within each FSA, the total number of vehicles by type (e.g. passenger car, sports utility 

vehicle, minivan, small truck, large truck) and model year (1981-2011) is provided. The SAAQ 

data contains 12 vehicle designations. These designations were collapsed into two groups, one 

for passenger cars and one for passenger trucks (which includes SUVs, minivans, and pick-up 

trucks). While it is possible that the 12 vehicle designations have different emission profiles, it is 

important to recognize that vehicle emissions on roadways are not only dependent on vehicle 

types and models but also influenced by fuel and engine technology, engine displacement, model 

year group, and regulatory class (USEPA, 2010). In fact the emission differences between 

different passenger cars of the same model year (and regulatory class) undergoing the same 

drive-cycle are smaller than emission differences for the same car undergoing different driving 

patterns. In real-road conditions, the differences due to vehicle make within the same category 

(passenger truck or passenger car) can be neglected. For this reason the USEPA‟s model 

MOVES 2010 has aggregated passenger vehicles into two broad categories: (1) passenger car 

(i.e. all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying 

passengers) and (2) passenger trucks (which includes SUVs, minivans, and pick-up trucks) 

coming from a larger vehicle classification which was included in the older MOBILE6 series. 

The distribution of the fleet was computed for each FSA, based on the two vehicle types and 

thirty model years provided. After linking the home TAZ and the home FSA of the driver, a 

random vehicle (type and model year) is assigned to each individual based on the vehicle fleet 

distribution of the home FSA.  

 

3) The path array output from the regional traffic model contains information on each path 

between every active OD pair. Every path in the array has information on the volume of vehicles 

for that path as well as the type, length, speed, and volume of each link along the path. A path 
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was allocated to each driver based on their origin and destination TAZs. In the case of multiple 

paths for one OD pair, a path was randomly allocated based on the volume proportion between 

the multiple paths.  

 

4) Vehicle emission factors were generated using MOVES. All default input distributions within 

MOVES were replaced with Montreal-specific data reflecting the vehicle fleet, fuel composition, 

and ambient conditions. Using specifically the vehicle age distribution by type obtained from the 

SAAQ database, we generated fleet-wide EFs. These EFs (in g/veh.km) vary by vehicle type 

(passenger car and passenger truck), age (30 model years), fuel (gasoline), average speed (15 

speed bins ranging from 2.5mph to >65mph), and facility type (uninterrupted, interrupted). The 

latter is based on MOVES‟ differentiation between two different driving behaviors based on two 

different types of road facilities. Uninterrupted facilities are roadways that have controlled access 

points with no signal control (i.e. expressways), resulting in more free-flowing traffic. 

Interrupted facilities, on the other hand, are roadways with intersections, signal lights, or stop-

signs, resulting in more stop-and-go driving. Emissions are computed for Nitrogen Oxides 

(NOx), Carbon Monoxide, and greenhouse gases (as CO2-eq). This leads to a large multi-

dimensional look-up table with 5,400 EFs. Following the generation of the look-up table, trip 

emissions (in grams) are calculated by matching the corresponding EF (g/veh.km) with each link 

along the trip taking into account vehicle characteristics and multiplying by the length of the link 

(km). Further, emissions for each path are multiplied by the trip expansion factor and then 

assigned to the TAZ of the driver‟s home location, as well as allocated onto the TAZs of every 

link on the driver‟s path. In our analysis, we restrict ourselves to examining the NOx related 

emissions as they have the highest co-locational association with other traffic-related pollutants 

(Beckerman et al., 2008; Wheeler et al., 2008).  

 

The emission post-processor estimates two indicators of traffic-related emissions: 1) an average 

level of emissions generated per person for each TAZ calculated by dividing the total emissions 

generated by residents of the TAZ with the TAZ‟s population. This measure is an indicator of the 

“polluting power” of the TAZ; and 2) an average level of emissions occurring in a TAZ 

calculated by dividing the total emissions allocated to that TAZ by its area (in km
2
). This 

measure relates to the amount of pollution experienced by a TAZ; in this study we use it as a 

proxy for air pollution exposure in the absence of an air pollution dispersion model.  

4.3. Statistical Analysis 

In order to capture the strengths of associations between vehicle emissions and land-use and 

socio-economic attributes, a regression analysis was performed on the two TAZ-level indicators: 

1) average emissions generated per individual, 2) emissions exposed to per km
2
. Multivariate 

regressions were run on the logarithm of the two indicators as both distributions are lognormal. 

In this respect, an extensive database of variables potentially affecting emissions was computed 

at the TAZ level for the Montreal metropolitan region. The database includes a range of socio-

economic, land-use and transportation related variables (e.g. population, residential density, 

highway length, etc.). Factor analysis is then employed in order to structure the large dataset into 

a number of factors for use in the linear regression. The individual variables were first classified 

into two categories: (1) variables affecting travel demand (e.g. car ownership, average income, 

vehicle age, etc.), and (2) variables affecting transport supply (e.g. network density, bus stop 

density, walkability, etc.).  
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The results of the factor analysis are shown in Table 1. Based on the six demand variables, three 

factors were derived. The first factor (i.e. high income, newer vehicles) represents the effect of 

household income and vehicle age. A zone that exhibits a high value for this factor can include 

more households with high income and newer vehicles. The second and third factors represent 

high vehicle ownership and larger vehicles (second factor) and older vehicles (third factor). 

Cumulatively, the three factors account for 81.5% of the variability in the six demand-based 

variables. Based on the supply variables three factors were derived to capture the effects of zones 

that are: (1) dense, walkable and have transit oriented development (TOD), (2) commercial, and 

(3) government and institutional.  

 
 

5. RESULTS AND DISCUSSION 

 

5.1. Spatial Distribution of Emissions 

The average emitted NOx per person (am and pm peak periods only) across the 1,552 TAZs in 

the region ranges from 0.0 to 17.5 grams. The spatial distribution of results across the region is 

shown in Figure 3. As expected, the high emitting individuals tend to reside on the periphery of 

the region, which is furthest from the central business district (CBD). Concurrently, the majority 

of low emitting individuals live centrally, on the island, much closer to the CBD. Overall, these 

results clearly confirm the intuitive hypothesis that high polluting individuals reside away from 

the downtown in suburban areas. When we overlay the map of emissions occurring on the 

network onto Figure 3, it is evident that most of the emissions occur in areas where the lowest 

polluting individuals reside (Figure 4).  This is confirmed when plotting the emissions occurring 

within a TAZ. Indeed, it is clear that there is much higher pollution along the main highway 

corridors and in the areas closer to downtown. In addition, emissions are very low for all of the 

zones on the region‟s periphery. The spatial distribution of NOx emissions per km
2
 is presented 

in Figure 5.  

 

While it is hard to validate link-level NOx emissions at a regional level, we compared our link-

based emissions and TAZ-based emissions with NO2 ambient air quality levels previously 

mapped for Montreal based on a land-use regression analysis. The resulting model features 

raster-based NO2 levels across the Island of Montreal (Crouse et al., 2009). The resulting overlay 

between link-level NOx emissions and NO2 levels is presented in Figure 6. Based on the number 

of raster cells falling in each TAZ, we calculate the average NO2 level (in ppb) per TAZ and 

correlate this level with the level of NOx emissions occurring in the same TAZ per km
2
 (based on 

Figure 5). The Spearman‟s rank correlation coefficient between the two datasets was found to be 

0.424 (significant at the 1% level). While the aggregation to the level of the TAZ is expected to 

introduce disparity in the two datasets (therefore reducing the correlation coefficient), a visual 

inspection of Figure 6 clearly indicates that our highest simulated NOx emissions do correspond 

to the areas with the highest NO2 levels in Montreal.  

5.2. Statistical Analysis 

In order to better understand the underlying factors associated with the generation and exposure 

to emissions, the two indicators of emissions were regressed against the set of factors derived 

from socio-economic, land-use and transport supply variables at the TAZ level. A summary of 

the regression results is presented in Table 2.  
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We observe that the emitted NOx per person per TAZ are positively associated with high car 

ownership and larger vehicles and negatively associated with dense, walkable, TOD zones. 

Commercial zones also tend to decrease the average individual emissions since zones with 

higher amounts of commercial land-use tend to be located in areas with higher accessibility, thus 

reducing trip length. In addition, zones with high income and newer vehicles tend to decrease 

individual level emissions. This is likely because newer vehicles have lower emission factors. It 

is important to distinguish this factor from „high car ownership and larger vehicles‟. This factor 

(high income, newer vehicles) seems to represent high-income urban dwellers who are not 

necessarily high emitters. This is an interesting finding, since it indicates that income influences 

emissions generation only when it is connected to higher car ownership. The final factor with 

negative association is „older vehicles‟. The negative sign is counter-intuitive since older 

vehicles tend to have significantly higher emission factors (Figure 7). This finding is however 

confirmed by examining the level of car ownership of owners of older vehicles. Indeed, a cross 

tabulation of car ownership and average vehicle age (Table 3) confirms that the factor „older 

vehicles‟ also includes low vehicle ownership. In fact, there is clear evidence indicating that a 

lower vehicle ownership leads to lower vehicle mileage (NHTS, 2009). We can then conclude 

that households with older vehicles tend to make fewer trips therefore offsetting the higher 

emissions of their vehicles. 

 

The multivariate regression model for NOx emissions occurring per km
2
 (used as a proxy for air 

pollution exposure) had four significant factors. Zones that were dense, walkable, and accessible 

by transit or had more commercial land-use were positively associated with air pollution 

exposure. Meanwhile, zones with high car ownership and larger vehicles or ones with older 

vehicles were negatively correlated with exposed to NOx per km
2
. This is likely because zones 

with higher car ownership and larger vehicles are located further away from the downtown and 

do not attract as much traffic.  

 

The regression analysis points towards asymmetry in the roles of the factors influencing 

emissions generated and exposed to. To further explore this asymmetry, we conducted a two-step 

cluster analysis based on the two indicators. The cluster analysis divided the 1,552 zones into 

four clusters: 1) low emitter, high exposure; 2) low emitter, moderate exposure; (3) high emitter, 

moderate exposure; and (4) high emitter, low exposure. Based on the spatial distribution of the 

clusters (Figure 8), it is evident that the lowest emitting zones (highlighted in white and the 

lightest shade of grey) are also the ones that are exposed to the highest emissions. They are 

mostly located in central areas and in the CBD. In contrast, high emitting zones (dark grey) are 

also exposed to low amounts of pollution and located outside of the urban core. This analysis 

points towards spatial and socio-economic disparities in air pollution generation and exposure.  

 

It is interesting to situate these results within the context of the region‟s spatial economy. As has 

been mentioned, the central areas of Montreal have a large disparity in jobs vs. residents, 

matched on the opposite side of the spectrum by areas such as Laval or Longueuil, which only 

have between 6-7 jobs for every 10 residents. It has also been shown that the CBD is the only 

employment centre attracting labour from across the entire region, in contrast to smaller 

suburban centres that tend to have local labour catchments (Shearmur and Motte, 2009). The 

central areas of Montreal therefore rely on the suburbs for labour. At the same time, a form of 

income redistribution is occurring wherein income, often high income, is made through 
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employment in the CBD and is then transferred back to the suburbs where the high-income 

earners typically live (Shearmur and Motte, 2009). This income redistribution is mirrored by the 

results of our study which show an opposite redistribution of traffic‟s negative externalities from 

suburbs to central areas downtown. Downtown residents are therefore faced with a net loss of 

wealth along with a net gain in pollution, the majority of which they are not responsible for. 

While the paper does not directly establish a link between air pollution exposure and socio-

economic disadvantage; the spatial distribution of traffic emissions within the region established 

here, points towards significant concerns from an environmental justice perspective.  

 

6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 

In this study, we have estimated two key indicators of emissions through the development of a 

multi-model framework involving a regional traffic assignment model, a vehicle emissions 

model, and an emission post-processor. The two indicators are 1) the average level of NOx 

emissions generated per individual in a TAZ, and (2) the average level of NOx occurring in a 

TAZ per km
2
. Our findings indicate significant spatial disparity between the areas that generate 

or are responsible for high levels of individual emissions and areas that experience high 

emissions. Both measures were a function of socioeconomic and built environment 

characteristics. We observe that the factors which positively influence the emissions generated 

are also the ones which negatively influence the emissions occurring in a zone therefore pointing 

towards equity issues in the generation and distribution of traffic-related emissions.  

 

These findings are of relevance to policy evaluation at the Metropolitan level. When cities are 

faced with challenges such as reducing traffic emissions by 2030 to a certain percentage less than 

1990 levels; a main question arises: Are these the emissions generated within the city or 

emissions generated by individuals residing in the city? In areas where most of the traffic 

emissions are generated by residents living outside the city, policy development becomes a 

challenging task. The modeling framework that we propose provides a way to quantify the 

responsibility for emissions generated and the impact of every individual‟s emissions on the 

region. It will be used to simulate regional-level transport policies and their effects on the spatial 

distributions of emissions and on equity in emissions generated and exposed to.  

 

The developed modeling framework is associated with a range of limitations. In our emission 

modeling exercise, we focus our attention on private vehicle emissions. We are currently 

introducing transit emissions but we have not yet considered emissions generated by commercial 

traffic (freight and delivery trucks). The task of obtaining data on commercial traffic is far from 

trivial. In terms of traffic assignment, we employed the Stochastic User Equilibrium algorithm. 

We do intend to explore more advanced assignment procedures including Dynamic Traffic 

Assignment for generating inputs to the emission post-processor. Moreover, our current 

implementation of vehicle allocation is based on the vehicle type/age distribution of the 

residential zone of the trip-maker while not explicitly accounting for factors related to household 

vehicle use and potential trip chaining. In future research attempts, a vehicle allocation model 

based on data related to the use of specific vehicles for specific trips and by specific individuals 

will be developed. The nearest future extensions for this model include: linkage with dispersion 

models, estimation of population exposure, quantification of equity, and the evaluation of policy 

scenarios.  
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TABLE 1  

 

Demand Factors
b
 

Components 

High income, 

newer vehicles 

High vehicle 

ownership, larger 

vehicles 

Older vehicles 

TAZ average income 0.657   

Vehicles per household  0.884  

Ratio of light-duty trucks vs. cars  0.772  

Fraction of model year: 1981 to 1990    0.949 

Fraction of model year: 1991 to 2000  -0.966   

Fraction of model year: 2001 to 2011  0.956   

Summary Statistics 

Eigen Value 

Variance accounted for by the component (%) 

2.32 

38.62 

1.44 

24.03 

1.13 

18.89 

Supply Factors
b
 

Components 

Dense, walkable 

and TOD 
Commercial 

Government & 

institutional 

TAZ Walkscore 0.690   

Residential density (%) 0.732   

Length of highways (kilometres) -0.630   

Local road density (%) 0.862   

Open water density (%) -0.803   

Bus stop density (%) 0.638   

Commercial area (km
2
)  0.935  

Government and institutional area (km
2
)   0.981 

Summary Statistics 

Eigen Value 

Variance accounted for by the component (%) 

3.21 

40.08 

1.04 

13.00 

1.03 

12.91 
a
 Principal components estimation, varimax rotation and kaiser normalization were used in creating the factors 

b
 Factor loadings below 0.4 are considered insignificant and not shown in the table 

 
  



TABLE 2  

 

Factors 

Ln (emitted NOx / person) Ln (exposed to NOx / km
2
) 

B t-stat B t-stat 

Constant 0.077 2.543 7.103 96.02 

Dense, Walkable, TOD zones -0.082 -2.166 0.687 7.883 

Government & Institutional  -0.042 -1.390 -0.120 -1.610 

Commercial -0.111 -3.497 0.238 3.147 

Older Vehicles -0.304 -9.702 -0.408 -5.507 

High car ownership, larger vehicles 0.666 15.74 -0.856 -9.747 

High income, newer vehicles -0.096 -3.134 0.115 1.535 

Summary Statistics 

Adjusted R
2
 0.314 0.192 

 

  



 
TABLE 3  

 

Fraction of model year  

1981 to 1990 
Vehicles per Household 

Total 0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3+ 

0-0.01 2 0 0 0 0 0 0 2 

0.01-0.15 32 8 22 33 3 0 0 98 

0.015-0.02 55 67 114 121 20 3 1 381 

0.02-0.025 66 181 180 163 26 1 0 617 

0.025-0.03 73 78 48 41 7 0 0 247 

0.03-0.04 42 39 17 49 22 1 1 171 

0.04-0.05 18 3 4 7 3 0 0 35 

0.05+ 1 0 0 0 0 0 0 1 

Total 289 376 385 414 81 5 2 1552 

 

 


