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ABSTRACT 
We examine an alternative method to incorporate potential presence of population heterogeneity 

within the Multiple Discrete Continuous Extreme Value (MDCEV) model structure. Towards 

this end, an endogenous segmentation approach is proposed that allocates decision makers 

probabilistically to various segments as a function of exogenous variables. Within each 

endogenously determined segment, a segment specific MDCEV model is estimated. This 

approach provides insights on the various population segments present while evaluating distinct 

choice regimes for each of these segments. The segmentation approach addresses two concerns: 

(1) ensures that the parameters are estimated employing the full sample for each segment while 

using all the population records for model estimation, and (2) provides valuable insights on how 

the exogenous variables affect segmentation. An Expectation-Maximization algorithm is 

proposed to address the challenges of estimating the resulting endogenous segmentation based 

econometric model. A prediction procedure to employ the estimated latent MDCEV models for 

forecasting is also developed. The proposed model is estimated using data from 2009 National 

Household Travel Survey (NHTS) for the New York region. The results of the model estimates 

and prediction exercises illustrate the benefits of employing an endogenous segmentation based 

MDCEV model. The challenges associated with the estimation of latent MDCEV models are 

also documented. 

 

Keywords: Multiple discrete continuous models, latent segmentation approaches, daily vehicle 

type and use decisions, activity type, accompaniment type, and mileage. 
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1. BACKGROUND 
1.1. Multiple-Discreteness 

The traditional single discrete choice models are used for examining choice processes where 

decision makers choose one alternative from the universal choice set of alternatives. However, in 

a situation where decision makers have the option of choosing several alternatives from the 

universal set of choice alternatives, the application of single discrete choice model does not 

represent behavior appropriately. Examples of such multiple discrete choice decision processes 

include household vehicle type choice, airline carrier choice, grocery item brand choice (such as 

cookies, cereals, soft drinks, yogurt), and stock selection.  

Given the wide range of applications of these multiple-discrete choice processes, it is not 

surprising that a number of alternative approaches have been proposed to study multiple-discrete 

choice processes in recent years. One alternative is to employ a single discrete choice model to 

study these decisions by artificially constructing combination alternatives that consider all 

possible configurations of the original alternatives. However, as the number of alternatives under 

consideration increase, the number of “artificial” alternatives to be generated increases 

exponentially (order of 2
K
 for K alternatives). Another alternative approach often employed is 

the application of multivariate probit (logit) models that manifest dependency across the various 

alternatives through correlation in the unobserved component (Manchanda et al., 1999; Edwards 

and Allenby 2003; Srinivasan and Bhat 2005). A third approach is the one proposed by Hendel 

and Dube where the multiple-discrete choice process is represented as a series of single discrete 

choice processes (Hendel 1999; Dube 2004). These three approaches discussed so far examine 

the multiple discrete problem in the realm of single discrete models i.e. these are clever 

approaches that extend single discrete structures to study multiple-discrete choice scenarios. 

These approaches are not only computationally challenging (particularly 1 and 2), but also resort 

to artificial constructs to model multiple-discrete choice scenarios. 

 

1.2. Kuhn-Tucker Systems 

An alternative stream of literature has examined the issue of multiple-discrete choice processes 

by coupling a continuous component associated with the alternative and a decision maker level 

budget for the continuous component. These approaches are often referred to as multiple-discrete 

continuous models. This approach, with its origin in the Kuhn-Tucker (KT) method, was 

proposed by Wales and Woodland (Wales 1983). These approaches consider a utility function 

U(x) that is assumed to be quasi-concave, increasing, and continuously differentiable with 

respect to the continuous component vector x. The observed continuous component vectors are 

modeled employing a random utility framework while ensuring that the budget constraint is not 

violated. Given the assumption on U(x), the constraint will actually be binding i.e. continuous 

component vector is obtained by maximizing the random utility by utilizing the entire continuous 

component. The KT approach incorporates stochasticity by assuming that U(x) is random and 

then derives the continuous vector subject to the linear budget constraint by using the KT 

conditions for constrained optimization. The KT approach constitutes a more theoretically 

unified and behaviorally consistent framework for dealing with multiple discrete-continuous 

processes. However, the KT approach did not receive much attention until relatively recently 

because the random utility distribution assumptions used by Wales and Woodland led to a 

complicated likelihood function that involves multi-dimensional integration. Bhat introduced a 

simple and parsimonious econometric approach to handle multiple discreteness based on the 

generalized variant of the translated constant elasticity of substitution (CES) utility function with 

a multiplicative log-extreme value error term (Bhat 2005). Bhat’s model, labeled the multiple 
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discrete-continuous extreme value (MDCEV) model, is analytically tractable in the probability 

expressions and is practical even for situations with a large number of discrete consumption 

alternatives. Since its inception, the MDCEV model has received significant attentions in the 

transportation community (for a list of studies employing the MDCEV model see Bhat and Eluru 

2010).  

 

1.3. Incorporating the Systematic Component 

The objective of the current research effort is to contribute to the burgeoning literature on 

multiple-discrete continuous models by formulating a latent segmentation based MDCEV model 

that allows for the influence of exogenous variables to vary across the different segments of the 

population enhancing the heterogeneity captured in the modeling process. An often employed 

alternative to address the issue of population homogeneity is to consider random components or 

error correlations in the MDCEV framework (see Pinjari and Bhat 2010; Pinjari 2011). The 

recent increase in computation power and advances in simulation field have contributed 

substantially to the use of mixed versions of the MDCEV model (see Munger et al., 2012). 

However, these approaches focus their attention on the unobserved component of the utility 

expression. The goal of this paper is to examine an alternative method to address population 

heterogeneity within the MDCEV model structure. 

 Prior to enhancing our understanding of the unobserved component, it is necessary to 

focus our attention on the systematic component (observed variables) of the utility function. A 

commonly proposed approach to incorporate population heterogeneity is the segmentation of the 

population into various segments with a segment specific choice model. The natural question that 

arises is how do we segment the population? The population can be grouped into mutually 

exclusive segments based on exogenous variables: males and females; individuals with and 

without access to car; and so on. However, when the analyst is interested in incorporating 

multiple variables for the segmentation task, the number of segments and segment specific 

choice models increase the associated computational burden. Further, as the number of mutually 

exclusive segments increases, the sample size within each segment diminishes rapidly reducing 

the efficiency in parameter estimation.  

 An effective solution to the above problem is to consider endogenous segmentation of the 

population (Bhat 1997). The endogenous segmentation approach allocates decision makers 

probabilistically to various segments as a function of exogenous variables. Within each 

endogenously determined segment, a segment specific choice model is estimated. The approach 

allows us to gather insights on the various population segments present while evaluating distinct 

choice regimes for each of these segments. The segmentation approach addresses two concerns: 

(1) ensures that the parameters are estimated employing the full sample for each segment while 

employing all the population records for model estimation, and (2) provides valuable insights on 

how the exogenous variables affect segmentation. The approach outlined here forms a subset of 

latent class models for the multiple-discrete continuous context. There have been a number of 

studies in the single discrete choice domain in terms of examining latent class models. These 

latent class models have been applied for unordered systems (Bhat 1997; Greene and Hensher 

2003, Anowar et al., 2012) and ordered systems (Eluru et al., 2012). We propose an equivalent 

latent segmentation approach for the multiple-discrete continuous frameworks in our study.  

 

1.4. Current Research in Context 

There have been earlier studies on examining latent class models for multiple-discrete 

continuous choices. Kuriyama et al. propose a latent segmentation approach for KT systems 
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(Kuriyama et al., 2010). The study belongs to a stream of research in the environmental 

economics field (Phaneuf et al., 2000; von Haefen 2003; von Haefen and Phaneuf 2005; Phaneuf 

and Smith 2005) that has also used the KT approach to study multiple-discreteness. These 

studies use variants of the linear expenditure system (LES) as proposed by Hanemann and the 

translated CES for the utility functions, and use multiplicative log-extreme value errors 

(Hanemann 1978). However, the error specification in the utility function is different from that in 

Bhat’s MDCEV model, resulting in a different form for the likelihood function. The current 

approach proposes and employs the latent segmentation approach for the MDCEV model. 

Further, the empirical setting involved in the Kuriyama et al. (2010) study entails estimating 

generic parameters (i.e. alternative specific parameters are not estimated). This allows for the 

reduction of the number of parameters estimated in the study – an important criterion in 

estimating latent class models that are known to exhibit instability in the estimation process. The 

presence of alternative specific parameters adds to the computational complexity of the 

estimation process of latent segmentation models (more on this in Section 7). In the MDCEV 

context also there has been one latent class study (Castro et al., 2011). In this study, the authors 

consider the latent aspect of choice set generation for individuals. The approach is demonstrated 

successfully in the context of tour choice and associated mileage. This method, similar to the 

single discrete approaches for choice set generation, is applicable only in the context where the 

number of choice alternatives is manageable. In choice scenarios with large number of 

alternatives, choice set generation based approaches become unmanageable.  

To summarize, the proposed study contributes to travel behavior literature in the 

following ways. The proposed approach is the first implementation of endogenous segmentation 

for the MDCEV model in extant literature. The model estimation is undertaken using Full 

Information Maximum Likelihood (FIML) as well as the Expectation Maximization (EM) 

approach. Second, the latent MDCEV model is applied on the 2009 National Household Travel 

Survey for the New York region to study non-workers daily decision of vehicle type and usage 

(represented as miles) in conjunction with activity type and accompaniment choice decisions 

with a universal choice set of 75 alternatives
1
. Third, the study documents the challenges in the 

estimation of latent segmentation MDCEV models. Finally, a customized prediction framework 

for the latent segmentation model that builds on the KT forecasting procedure (see Pinjari and 

Bhat 2010) is employed for the validating the prediction results for the NHTS dataset. 

The reminder of the paper is organized as follows. Section 2 presents the methodology 

for the endogenous segmentation based MDCEV model; this section also describes the EM 

approach for estimation and the proposed latent segmentation prediction system. Section 3 

provides a brief introduction to the empirical setting. Section 4 presents details on data assembly 

procedures and sample characteristics. Section 5 presents a contrast between the latent MDCEV 

model vis-a-vis the traditional MDCEV model. In Section 6, the estimation results of the 

endogenous segmentation based MDCEV model are presented. The authors document the 

challenges faced in the estimation of latent segmentation MDCEV model in Section 7. Section 8 

provides a discussion of the prediction performance of the traditional MDCEV and the proposed 

latent MDCEV model. Section 9 summarizes and concludes the paper. 

 

                                                 
1
 The latent MDCEV model is also estimated on a sample drawn from the 2010 American Time-Use Survey 

(ATUS) data to study daily activity time-use participation decisions for non-workers. Due to space considerations, 

only the results from the NHTS dataset are discussed in the paper 
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2. ECONOMETRIC METHODOLOGY 
2.1.  Model Structure 

Let us consider “S” homogenous segments of the population (1, 2, ..., S where S is to be 

determined). The pattern of decision process within the segment remains identical. However, 

there are intrinsic differences in the pattern of multiple-discrete continuous choice process across 

different segments i.e. we have a distinct multiple-discrete continuous choice process for each 

segment. 

 

2.1.1. Segment specific formulation 

Within each segment s, we formulate the MDCEV model in its original form (Bhat and Eluru 

2010; Bhat 2008). We consider the following functional form for utility in this paper, based on a 

generalized variant of the translated CES utility function and with the consideration for one 

outside good (essential Hicksian composite good): 

 1

1 1 1

21

1
( ) ex p ( ) ( ) ex p ( ) 1 1

ks

s

K

ks k

s s s ks ks

ks ks ks
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   

x          (1)
2
 

where Us(x) is a quasi-concave, increasing, and continuously differentiable function with respect 

to the consumption quantity (Kx1)-vector x (xk ≥ 0 for all k alternatives), and 
k s

  (= e x p ( )
s k s
z  ), 

k s
  and 

k s
  are parameters associated with alternative k in segment s. 

k s
  represents the 

baseline marginal utility for segment s, zks represent the vector of exogenous variables in the 

marginal utility for segment s, 
k s

  enable corner solutions while simultaneously influencing 

satiation and 
k s

  influences satiation only. Due to the similar role of 
k s

  and 
k s


 
(in terms of 

allowing for satiation) it is very challenging to identify both 
k s

  and 
k s


 

in empirical 

applications due to identification challenges (see Bhat 2008 for an elaborate discussion on the 

issue). Usually, one chooses to estimate satiation using 
k s

  or .
k s

  

 

Depending on the chosen parameter for estimation the alternative utility structures are 

described as follows:  

In the case where only the 
k s

 parameters are estimated the utility simplifies to 
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2
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Similarly, in the case of estimating only 
k

 the corresponding utility expression collapses 

to  
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2
 In the event of the absence of outside goods in the empirical context, the equation is modified as 

1
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Following Bhat (Bhat 2005; Bhat 2008), consider an extreme value distribution for 
k s

  

and assume that 
k s

  is independent of 
k s

z  (k = 1, 2, …, K) . The
k s

 ’s are also assumed to be 

independently distributed across alternatives with a scale parameter of 1
3
. Let 

k s
V  be defined as 

alternative utility in segment s. In that case, the value of 
k s

V according to the two profiles are as 

follows: 

 -profile 
*

ln ( 1)
k

ks s ks

ks

x
V z


    (k ≥ 2); *

1 1 1
ln ( )

s s
V x                 (4) 

 -profile 

   
* *

1 1 1
( 1) ln 1 ; 1 ln ( )

ks s ks ks k s s
V z x V x                                                                             (5) 

 

Given the 
k s

V values for the two profiles
4
, the probability that the individual q (q = 1, 2, 

..., Q) has a continuous vector ( *

k
e ) for the first M of the K goods (M ≥ 1) conditional on the 

segment choice s is given as follows:  
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e
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(6) 

It is important to recognize that the individual utility maximization is subject to the binding 

linear budget constraint that *

1

K

k

k

e E



 where E is the total continuous quantity. The analyst can 

supply the appropriate 
k

V values depending on the profile under consideration in the analysis. 

The proposed analysis approach of the latent segmentation MDCEV will not alter based on the 

profile employed. 

 

2.1.2. Segment choice formulation 

 

Now we need to determine how to assign the decision makers probabilistically to the segments. 

The random utility based multinomial logit structure is employed for the segmentation model. 

The utility for assigning an individual q to segment s is defined as: 
* '

qs s q qs
W y                    (7) 

   is an (M x 1) column vector of attributes (including a constant) that influences the propensity 

of belonging to segment s. 
s

 is a corresponding (M x 1)-column vector of coefficients and     is 

an idiosyncratic random error term assumed to be identically and independently Type 1 Extreme 

                                                 
3
 In the presence of price variation across the various alternatives the scale parameter can be identified. However, in 

the absence of price variation the scale parameter is unidentifiable and is set to 1 for convenience (see Bhat 2008 for 

extensive discussion) 
4
 In our empirical context we found that the MDCEV model based on the  -profile offered substantially better fit to 

compared to the MDCEV model with the  -profile. 
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Value distributed across individuals q and segment s. Then the probability that individual q 

belongs to segment s is given as: 
'

'

1

e x p ( )

e x p ( )

s q

q s S

k q

k

y
P

y




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



                             (8) 

Based on the above discussion, the unconditional probability of multiple-discrete 

continuous choice pattern: 

  
* * * *

1 2 3

1

, ,  ,  . . . ,  ,  0 ,  0 ,  . . . ,  0 | *

S
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s

P P e e e e S P


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 
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The log-likelihood function for the entire dataset is provided below: 






Q

q

q
PL

1

        (10) 

The parameters to be estimated in the model are   (composed of 
1 2

( , , . . . )
S

   ),   

(composed of 
1 2

( , , . . . )
S

   ) or   (composed of
1 2

( , , . . . )
S

   ) and   (composed of (
1 2
, , . . .

S
   )) for 

each s and the number of segments S
5
.  

The model estimation approach begins with a model considering two segments. The final 

number of segments is determined by adding one segment at a time until further addition does 

not enhance intuitive interpretation and data fit. The data fit is measured using (1) Bayesian 

Information Criterion (BIC), (2) Akaike information criterion (AIC) and (3) Akaike information 

criterion corrected (AICc).  

 

2.2. Model Estimation 

The estimation of latent class models using quasi-Newton routines can be computationally 

unstable (Bhat 1997). A commonly employed approach to address the challenges involved in 

optimization of the log-likelihood function for latent class models is the EM algorithm. EM 

algorithm employs an iterative approach consisting of two steps: Expectation (E) step and 

Maximization (M) step. In the E step the segment allocation variables ( ) are estimated based 

on the observed data and in the M step current iteration parameters are updated by maximizing 

the likelihood employing the segment allocation variables ( ) estimated in the E step (Bhat 

1997; Kuriyama et al., 2010). The EM algorithm is employed as follows:  

(1) Starting values for  ,  and   are assumed; based on the assumption the segment 

membership function is computed in the Bayesian fashion as  

 

~

1

( , ) | *

( , ) | *

q s s q s

q s S

q s s q s

s

P S P
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P S P

 

 


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 



 
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 (11) 

(2)   vector is updated while maintaining the  , and   vectors to remain constant by 

maximizing a slightly modified version of the log-likelihood function 
~

1 1

*

Q S

q s q s

q s

P P

 

          (12) 

                                                 
5
 To be sure , ,

s s s
   represent all the K elements of corresponding segment specific vectors. The subscript k is 

suppressed for ease of notation. 
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(3) Employing the updated   vector, new segment membership values (
~

qs
P ) are computed.  

(4)  , and   vectors are updated while maintaining the   vector to remain constant by 

maximizing the function  
~

1 1

* ( , ) |

Q S

q s q s s

q s

P P S 

 

             (13)  

(5) The procedure is repeated until there is no significant difference in the parameters or the log-

likelihood function. 

The procedure does not provide the standard error of the parameter estimates. To generate 

standard errors of the estimates, we provide the convergence solution from the EM approach as 

initial values and run the Full Information Maximum Likelihood (FIML) model. In our 

experience, we found the EM approach to be very slow. Hence, we used it to generate the very 

initial specification for the latent MDCEV model. After we achieved a reasonable set of starting 

attributes for a stable latent MDCEV we shift to FIML model estimation procedure which was 

substantially faster than the EM approach. The EM and FIML routines for latent MDCEV 

models were programmed in Gauss.  

 

2.3. Model Prediction 

We also outline a prediction framework for the proposed latent MDCEV model. The prediction 

process builds on the prediction framework developed for the MDCEV model (Pinjari and Bhat 

2010). Specifically, the following approach is employed to predict consumption patterns:  

(1) Generate consumption patterns for individuals by employing the segment specific MDCEV 

models (involves the influence of random component – so repeat K times) 

(2) Generate the probability measure for the individual segment membership using the latent 

segmentation model. 

(3) Assign individuals to segment based on their segment membership probabilities by drawing 

uniform random numbers.  

(4) Allocate the consumption patterns to individuals depending on their segment choice in step 

3 and consumption patterns obtained in step 1. 

(5) Repeat the process (Step 1 to 4) multiple times (L) and compute the average and standard 

deviation of the resulting consumption patterns to generate a range on the predicted 

participation. We examine the influence of various values of (K*L). 

3. EMPIRICAL SETTING 
In our research effort, we focus our attention on short-term vehicle fleet allocation decisions. 

Specifically, we examine the role of activity type and accompaniment type on vehicle type and 

usage decisions. The NHTS 2009 data indicates that the vehicle occupancy levels for shopping 

and social/recreational activities are 1.78 and 2.20 respectively indicating the inherent tendency 

among individuals to pursue these activities with a companion. Moreover, vehicle miles of travel 

for social/recreational activities, family and personal errands and other activities are 10.9, 10.6 

and 5.4, respectively; implying that activity type affects mileage decisions (Santos et al., 2011). 

Earlier literature has also found evidence toward increased likelihood of engaging larger vehicles 

(like SUV or Van) when multiple passengers are engaged (Paleti et al., 2012). In summary, it is 

plausible to consider strong interactions the following choice dimensions - vehicle type, activity 

type, accompaniment type and usage. 

 To be sure, several studies have examined a subset of dimensions identified above. A set 

of studies have focussed on daily activity participation decisions including activity type and 
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accompaniment type decisions (for example, see Kapur and Bhat 2007; Carrasco and Miller 

2009; Ferdous et al., 2010). Only recently research studies exploring short-term vehicle type 

choice, accompaniment type and tour length decisions have been undertaken (see Paleti et al., 

2012; Konduri et al., 2011). These studies focus on tour as an entity for participation while 

neglecting the inherent activities pursued. Further, only Paleti et al. (2012) has examined mileage 

choices in the context of accompaniment type. The study employs a system of simultaneous 

equations to generate the correlation across the various dimensions including tour complexity, 

passenger accompaniment, vehicle type and tour length. The approach, while simulation free, 

still resorts to coupling of choices through the unobserved component. 

In our current study, we propose a unified model that simultaneously allows for 

competition across the various alternatives within a random utility based approach while 

considering the daily vehicle type and usage decisions for every activity type and 

accompaniment type combination. Towards this end we focus on three dimensions: (1) vehicle 

type, (2) activity type and (3) accompaniment type. To consider vehicle type, we recast the 

vehicle type choice process as a travel mode choice process by considering the various travel 

mode alternatives (transit, walking/bicycling) and replacing the private vehicle alternative with 

various vehicle type options that are available to individuals. We recognize that the available 

private vehicle alternatives are dependent on the household vehicle ownership decisions. The 

activity type and accompaniment decisions are directly obtained from NHTS data responses. 

Thus the three dimensions: (1) travel mode that implicitly considers vehicle type, (2) activity 

purpose and (3) accompaniment type are jointly analyzed by generating combination alternatives 

(an example alternative: SUV- shopping- with household members). The continuous component 

essential for the MDCEV budget constraint is considered through the mileage dimension for 

each discrete alternative combination.  

 

4. DATA SOURCE AND SAMPLE FORMATION 
The data for our research effort is drawn from National Household Travel Survey (NHTS) data 

conducted in 2008-2009 for New York, Northern New Jersey and Long Island region. The 

survey compiled information on individual and household socio-demographics, residential 

location characteristics and daily travel attributes including out-of-home activity episode type, 

the day and month on which the activity is undertaken, travel mode for every episode (including 

vehicle type information for automobile users) and accompanying person information (alone, 

household or non-household members) for the episode.  

For the purpose of our analysis we restrict our attention to non-work activity purposes 

classified into five main categories: (1) Shopping, (2) Social and recreational, (3) Transporting 

someone, (4) Meals and (5) Others. The travel mode alternatives are characterized as: (1) Public 

transit, (2) Walk/bike (these two modes are available for everyone) and three privately owned 

vehicle types: (3) Car, (4) SUV and (5) Other vehicles (including Van and pick up). The vehicle 

type dimensions are appropriately matched with the household vehicle ownership information 

(i.e. if a household does not own a SUV, the individual will not have alternatives corresponding 

to SUV available to him/her). The accompaniment dimension is classified as: (1) Alone, (2) With 

household member and (3) With household members and non-household members. Overall, 

these categories result in 75 discrete alternatives (5*5*3). The mileage component associated 

with these discrete alternatives is provided as the continuous component of the MDCEV model.  

The sample formation exercise involved a series of transformations on the original NHTS 

travel data set. First, the respondents that participated in the work activity were selected. Second, 
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for the worker sample, information on activity purpose, travel mode and accompaniment type 

were gathered for out-of-home activities on weekdays. Subsequently, the combination 

alternatives across the three dimensions and the corresponding mileage metrics were generated. 

Third, the respondent related socio-demographics, residential location and contextual 

characteristics (day of week and the season of travel day) were appropriately appended to the 

database. Fourth, consistency checks were performed on the sample, and records with missing or 

inconsistent data were eliminated. Finally, a small hold-out sample was created to allow for 

validation comparison of the proposed model.  

5. MODEL EVALUATION 
5.1. Model Fit 

The model estimation of the latent MDCEV structure began with an estimation of the traditional 

MDCEV model. Subsequently a latent segmentation model with two segments was estimated. 

Then, we continued adding additional segments to the model as long as there was the additional 

segment provided an improvement in the overall log-likelihood function. In this process, we 

estimated four model structures: (1) MDCEV model, (2) Latent MDCEV model with two 

segments (latent MDCEV 2), Latent MDCEV model with three segments (latent MDCEV 3), 

and Latent MDCEV model with four segments (latent MDCEV 4).  Since the various models are 

not nested within one another, the Bayesian Information Criterion (BIC), Akaike information 

criterion (AIC) and Akaike information criterion corrected (AICc) are employed to compare 

model performance (see Schwarz  1978; Akaike  1977; Burnham and Anderson 2004)
6
. The log-

likelihood, BIC, AIC and AICc measures along with the parameter set size for the four model 

systems are presented in Table 1. The model fit measures presented clearly highlight that the 

three segment model outperforms the other models substantially. It is also important to note that 

all the latent segmentation models significantly outperform the traditional MDCEV model. These 

model fit measures substantiate our hypothesis that relaxing the population homogeneity 

assumption enhances the statistical fit of the data. For the sake of brevity, the discussion of 

model results is confined to the three segment latent MDCEV model.  

The reader should note that the model specification was arrived at through a systematic 

process of removing statistically insignificant variables and combining variables when their 

effects were not significantly different. It was found that the dummy representation of continuous 

variables offered superior fit compared to the corresponding linear variables. 

 

5.2.  Latent MDCEV Framework versus Exogenously Segmented MDCEV Framework 

The latent MDCEV model allows us to incorporate population heterogeneity through 

endogenous segmentation. Based on our discussion in section 5.1, it is evident that the three 

segment latent MDCEV model statistically outperforms the MDCEV model. To further highlight 

the advantages of the latent MDCEV model we compare its performance with exogenous 

segmentation based MDCEV model. Specifically, we split the dataset into distinct sub-datasets 

based on exogenous variables. Subsequently, we estimate MDCEV models for each of the sub-

datasets and compare the model fit with the three segment MDCEV model. The exogenous 

variables considered for segmentation include: (1) Males and Females, (2) Age 21 and under and 

Age over 21 years, (3) Household size less than 3 and household size 3 and above, (4) 

                                                 
6
 The BIC for a given empirical model is equal to − 2ln(L) + K ln(Q), where ln(L) is the log-likelihood value at 

convergence, K is the number of parameters, and Q is the number of observations. AIC is represented by 2K - 2ln(L) 

and AICc is defined as AIC + 2K (K+1)/(Q – K – 1). 
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Residential density less than 10,000 per square mile and residential density above 10,000 per 

square mile, (5) Gender and Age combinations (from 1 and 2) and (6) Gender and household size 

combination (from 1 and 3). The results for the log-likelihood values for the six variable 

combinations are presented in Table 2. The comparable log-likelihood to the three segment latent 

MDCEV model can be computed by just summing up the different sample log-likelihoods. The 

comparison of these log-likelihood measures with the latent segment MDCEV model 

(-16283.86) clearly shows the efficacy of the endogenous segmentation approach relative to the 

exogenous approach. The approach to undertake the exogenous segmentation – though easier to 

achieve - is bound to be inefficient relative to the endogenous approach. 

 

5.3. Segmentation Properties of the Latent MDCEV Three framework 

The three segment MDCEV model estimations can be used to generate information regarding the 

aggregate percentage population share across the three segments based on the segment 

membership component. For the latent MDCEV 3 model we observe the following membership 

shares: Segment one – 56.4%, Segment two – 22.0% and Segment three – 21.6%. The population 

membership shares highlight the significantly heterogeneous nature of the population sample and 

require a careful consideration for policy analysis. 

To provide further insight on the distinct profiles of the segments we can also determine 

the mean values of the segmentation variables in the three segments. To compute these measures 

we will employ the following notation (see Bhat 1997; Anowar et al., 2012 for similar 

computation for the single discrete context): 

~
q s q

q

s

q s

q

P y

y
P






                (14) 

Where 
~

s
y  represents the mean segmentation value of the segmentation variables y . The 

computation of these measures is based on the segmentation component parameters of the 

MDCEV 3 model presented in Table 3. The 
~

s
y measures computed for all exogenous variables 

affecting segmentation are presented in Table 4. The variable shares across the different 

segments offer intuitive distributions for the various segmentation variables. For example, male 

variable (positive effect for segment three) indicates a slightly higher proportion of males 

allocated to segment three compared to the population measure; at the same time the other two 

segments have a slightly smaller share of males compared to the population share. On the other 

hand, the spring variable (negative coefficient for segment two) reduces the overall likelihood of 

spring day being allocated to segment two, while increasing the likelihood for allocation to either 

segment one or three. The impact for spring variable is of a higher magnitude than that for the 

male variable because of the larger magnitude (-0.86 versus 0.34).  

 

6. MODEL RESULT DISCUSSION 
The model results for the three-segment MDCEV consists of four components: (1) latent 

segmentation component (Table 4), (2) segment one mileage profile (Table 5A), (3) segment two 
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mileage profile (Table 5B) and (4) segment three mileage profile (Table 5C).
7
. In the model 

specification, several types of variables were considered including: (1) individual demographics 

(gender, age, race and education level), (2) household demographics (household size, presence of 

children and family income), (3) household location variables (urban areas and residential 

density) and (4) contextual variables (day of the week and seasons). In the results presentation 

for MDCEV components every row represents an activity purpose, travel mode and accompany 

type dimension; while every column represents the variable effects on the alternatives. Further, a 

‘-’ entry indicates the absence of a significant effect of the variable on the corresponding mileage 

usage utility. 

 

6.1. Segmentation Propensity Component 

The latent segmentation model plays the role of assigning individuals probabilistically to the 

various segments in the latent MDCEV model. In our segmentation component, the utility 

corresponding to the first segment is chosen to be the base. The segment membership is 

influenced by individual demographics (age and gender), household demographics (household 

size and residential density), and contextual variables (spring).  

The results indicate that the second segment membership is positively influenced by 

individuals under 21 years, and larger family size. The membership is negatively influenced by 

the season dummy variable corresponding to spring season. On the other hand, males are more 

likely to be assigned as the member of the third segment while individuals residing in dense 

neighborhoods are less likely to be assigned to the third segment. The endogenous segmentation 

model presented here allows us to efficiently generate three segments based on 5 exogenous 

variables. An exogenous segmentation might have required us to segment the population into at 

least 32 segments while estimating distinct MDCEV models for each segment.  

 

6.2. Segment One Mileage Profile 

Activity travel profile for the various segments of the MDCEV 3 model are influenced by 

individual and household demographics, and contextual variables.  

 

6.2.1. Individual demographics 

The individual demographic variables influencing the segment one activity travel profile include 

gender, race, education and age. The gender variable impact indicates that male non-workers 

have a higher tendency to choose an SUV or Van as their private vehicle alternative (see 

Mohammadian and Miller 2003; Paleti et al., 2012 for similar results). The impact of race 

variable indicates that Caucasian individuals are more likely to pursue out-of-home meals and 

social/recreation activities compared to individuals of other race. Non-workers with university 

education are more likely to participate in transport someone while at the same time are less 

likely to pursue activities with household members.  

 The age-related variables have a significant association with non-worker activity travel 

participation profile. The results indicate that individuals older than 22 years are less likely to 

travel for social/recreational activity, meals, and other activities compared to individuals 21 and 

younger. Further, these individuals are less likely to pursue activities with non-household 

members. The results are along expected lines because these individuals are more likely to have 

                                                 
7
 The constant and the gamma parameters for the MDCEV model are not presented due to space considerations. 

These parameter tables are available with authors. The constants and gamma parameters were also estimated along 

the various dimensions (as opposed to estimating 2*75 parameters for each segment) 
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familial responsibilities compared to the younger individuals. Older individuals (aged more than 

60 years) are also less likely to be accompanied with non-household members. The result 

indicates that older individuals prefer to be more involved in activities with their family. On the 

other hand, these people are less probable to choose walk/bike or public transit as their travel 

mode respectively. Given their physical condition, it is intuitive that the older individuals are 

disinclined to employ non-motorized and public transit modes. 

 

6.2.2. Household demographics 

Among the household socio-demographic variables, household size, presence of children, 

household income, residential location and residential density affect the activity travel process. 

The impact of household size offers interesting insights. Individuals from larger households are 

more likely to pursue the transport someone alternative and employ either the Van alternative or 

non-private vehicle alternatives for travel (see Eluru et al., 2010 for similar results). The results 

indicate two subtle patterns of travel for activity participation. Individuals who can afford vehicle 

ownership are likely to use larger vehicles (Van) while those individuals that cannot afford 

multiple vehicles are likely to rely on the non-auto travel modes.  

The next household demographic attribute examined is the presence of a child in the 

household. The variable is introduced as four dummy indicators: (1) household with children less 

than 5 years old, (2) household with children between 6 and 15 years, (3) household with 

children between 16 and 21 years and (4) household with no children. As you would expect, 

presence of children increases the likelihood of transport someone activity participation. 

Typically, adults are responsible for chauffeuring of children to/from school and other non-

school activities. The results for the presence of children variables are consistent with this 

assumption (similar to Paleti et al., 2012). In terms of accompaniment type, presence of children 

increases activity participation with household members. In terms of travel mode, households 

with children aged between 6 to15 years are more likely to choose Van for travel. It is reasonable 

that households with young children choose larger vehicles (see Eluru et al., 2010; Paleti et al., 

2011; Cao et al., 2006 for similar results). 

Household income variables indicate that individuals from households with more than 

$40,000 income are less likely to choose public transit as their daily travel mode; while the ones 

with high income (more than $70,000 per year) are more likely to be involved in 

social/recreational activities. Household location characterized as urban area, and residential 

density greater than 10,000 residents per square mile were introduced in the baseline utility to 

study the impact of land-use on activity travel process. Non-workers in segment one who live in 

urban or high residential density areas are less likely to participate in a transport someone 

activity. Due to enhanced connectivity, it is possible that individuals are less likely to be 

pursuing transport someone relative to individuals residing in suburban regions. On the other 

hand, more frequent, accessible public transport services and proximity to activity centers in high 

density neighborhoods make it more practical to use transit and/or non-motorized modes.  

 

6.2.3. Contextual Variables 

In segment one, none of the contextual variables had a statistically significant effect on the 

activity travel patterns. 

 

6.3. Segment Two Mileage Profile 

For the sake of brevity, only major differences in exogenous variable effects are discussed for 

segments two and three. 
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6.3.1. Individual demographics 

In segment two, men are less likely to travel with an SUV relative to other modes. In this 

segment, it appears that female members of the family are assigned the responsibility of 

transporting others. The results for the age-related indicators show that people aged more than 22 

years are more likely to pursue transport someone activity. This is presumably due to the 

possibility that at this age they are more responsible compared to the younger people, and might 

have their family members who need to be transported. We also observe that individuals between 

the years 22 through 60 are more inclined to pursue activities alone in segment two. Another 

interesting impact of the age variable is the disinclination of older individuals in employing the 

SUV vehicle for non-work activities.  

 

6.3.2. Household demographics 

In the second segment the coefficient of household size variable indicates that with increasing 

household size the probability of transporting someone decreases (different from segment one). 

Segment two is composed of younger individuals who are unlikely to participate in transport 

someone activity. Further, as household size increases, the propensity of accompanying non-

household member in a daily trip increases (see Paleti et al., 2012 for similar results). The 

presence of younger individuals encourages activity participation with non-household members. 

This is further substantiated by the impact of presence of children aged less than 5 years in the 

household. Individuals with children pursue activities with household members. Similar to 

segment one, presence of at least one child between 6 to 15 years results in increased 

participating in transport someone activity purpose.  

 

6.3.3. Contextual Variables 

Non-workers in the second segment during summer have a higher tendency to travel for 

social/recreational purposes whereas in spring and winter they are more involved in transport 

someone activity. It is interesting to note that during spring individuals are less likely to pursue 

activities with household members. The exact reasons for these impacts require additional 

investigation. During winter individuals prefer to use SUV compared to other months probably 

because larger vehicles offer better control and improve the driving experience in winter. The 

weekday dummy variable for Friday indicates a disinclination to pursue transport someone 

activity on Fridays. Further, the results indicate that on Fridays SUVs are less likely to be 

employed. It is possible that on Fridays individuals travel to activity centers in denser 

neighborhoods where parking concerns might make SUVs less preferable. 

 

6.4. Segment Three Mileage Profile 

6.4.1. Individual demographics 

Male non-workers in the third segment are less likely to pursue activities with non-household 

members. People with higher education level are more likely to be accompanied with their 

household members. It is possible that these individuals are likely to be in households with 

higher employment and busier schedules thus reducing the likelihood of activity participation 

alone or with non-household members.  

 

6.4.2. Household demographics 

In segment three, as household size increases, propensity for transport someone increases while 

propensity for Van usage reduces. Presence of a child is one of the variables at the household 
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level which has significant effect on mileage usage. Individuals with at least one child aged less 

than 5 years old are more likely to pursue activities with household members. Further, existence 

of a child between 6 to 15 years increases the tendency of choosing a Van or walk/bike as a 

travel alternative in this segment.  

The next household socio-demographic attribute considered is the effect of household 

annual income. The coefficient of this variable indicates that households with medium income 

(annual income between $40,000 and $70,000) are less likely to participate in social/recreational 

activities. Also, these individuals are less inclined to walk or bike. Further, as you would expect, 

individuals with annual income more than 70,000 are less likely to choose public transport as 

their travel mode. The residential location variable indicates that individuals from urban areas are 

less inclined to accompany their household members.  

 

6.4.3. Contextual Variables 

During spring, people are more likely to travel with their household members and opt for Van as 

their transportation mode while they are likely to prefer SUVs on Fridays.  The impact discussed 

here is in contrast to the impact observed in segment two for the Friday variable. The potential 

for such distinct variable effects across different segments provides further evidence to the 

presence of significant population heterogeneity.  

Overall, we see that the three segments exhibit distinct activity travel profiles 

substantiating the hypothesis that distinct activity travel profiles exist in the population. The 

conventional approach that restricts the activity travel profile to be the same across the 

population ignores this potential variation and arrives at exogenous variable impacts that are 

inaccurate.  

 

7. ESTIMATION CHALLENGES 
The estimation of latent segmentation models poses significant challenges in pinning down the 

influence of exogenous variables on the segmentation (MNL model) and within segment choice 

(MDCEV) components. In this section, we document the challenges we faced in the estimation 

of the latent MDCEV model. The main challenge arises from the issue of empirical 

identification. Based on the problem formulation, theoretically, the analyst should be able to 

estimate the impact of a particular variable in the latent segmentation model as well as the 

segment specific MDCEV models (while accounting for base variables appropriately). However, 

the estimation of all theoretically plausible impacts are not always possible due to empirical 

identification issues i.e. the data does not support their estimation because these parameters are 

not different from 0. Consider the impact of male variable in the three segment latent MDCEV 

model. The influence of the male variable can be estimated in the segmentation model as well as 

the segment specific models. A priori, we have no information to suggest that the variable can be 

restricted to either segmentation or segment specific models. Hence, theoretically, we should be 

able to estimate two effects of the influence of male variable in the segmentation component – 

segment two and segment three (segment one is base) and 10 effects of the male variable per 

segment in the MDCEV segment level models
8
. So the total number of effects that we could 

potentially estimate would amount to 32 (2 + 3 * 10). We expect a large portion of these 32 

                                                 
8
 The number of variable effects is limited to 10 as we focus on the impact of variable on each dimension rather than 

the actual combination alternatives. The approach allows for parsimonious specification structure and is widely used 

in choice processes with large number of alternatives (for example Kapur and Bhat 2007; Eluru et al., 2010). 
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parameters to not have a statistically significant impact. The typical approach to employ in the 

traditional MDCEV model would be to try to estimate the 32 variables and discard variables that 

are insignificant. However, in the latent MDCEV model, adding 32 variables simultaneously 

would lead to empirical identification resulting in lack of convergence of the log-likelihood 

optimization routine. In the absence of a converged solution it is not possible to estimate the 

standard errors for the parameters. This does not happen in the MDCEV model because of the 

well-defined nature of the log-likelihood function. The latent MDCEV model (or for that matter 

all latent segmentation models) are weighted averages of multiple log-likelihood functions. 

Hence, these functions are not as well behaved as their non-latent counterparts.  

In fact, the challenges with the latent MDCEV are similar to the empirical identification 

issues observed in the estimation of simulated maximum likelihood (Cherchi and Guevara 2012). 

In the simulated maximum likelihood optimization routine it is very likely that the analyst finds 

optimization routine convergence issues because of the flatness of the log-likelihood function. In 

the latent case, we observe that the log-likelihood function at the initial stages of the latent 

segmentation model is relatively flat thus making it hard to identify the impact of exogenous 

variables. It is comforting to note that once, we have established a convergent set of parameter 

estimates, it is easier to build on the specification and identify factors that influence the various 

components. The EM method proposed is useful in this regard, particularly for the initial 

specification set up.  

In our analysis, to address the aforementioned issues we followed the following 

guidelines for model estimation. First, we started the estimation with a stable MDCEV model to 

identify the exogenous variables that are likely to influence the choice process. Second, we 

estimated the latent MDCEV model with two segments by starting with distinct exogenous 

variables in the segmentation component and the segment specific components. Thus, we 

minimized the potential empirical identification problem. Third, once we obtained a stable latent 

MDCEV two segment model, we added one variable at a time to complete the specification 

process. The process was repeated for the three segment and four segment models. It is important 

to note that even when the log-likelihood function does not converge the parameter values when 

the iterations stop provide useful information on the plausible parameter values
9
.  

Overall, from our experience, the task of formulating the MDCEV model to incorporate 

systematic heterogeneity through latent segmentation is less challenging compared to the task of 

empirically estimating the latent segmentation MDCEV model due to a host of empirical 

identification issues arising when the number of alternatives and parameters sought be estimated 

are large. The algorithm routines have been coded in GAUSS for our analysis. 

 

8. MODEL VALIDATION 

As discussed in section 5.1, the log-likelihood measures and model estimates clearly highlight 

the superior data fit offered by the three segment MDCEV model. To examine the performance 

of the latent models in prediction, we undertake a comprehensive validation exercise. We 

implement the prediction framework discussed in section 2.3. For every individual in the dataset, 

we generate participation and mileage values were examined for various K*L values (2500, 

5000, 25000 and 50000). Beyond the value of 5000, there was little to no change in the mean 

                                                 
9
 For instance, if a parameter estimate has a value of 0.001 around the 200

th
 iteration it is most likely going to have 

an insignificant effect. This is a useful guideline (particularly for dummy variables). However, these guidelines 

might not be applicable for continuous variables with large range (such as land use mix). 
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predicted values while the standard deviations reduced for larger K*L values. In fact, for the 

50000 value, the standard deviations were within 0.05% of the average values. Hence, we can 

ascertain that the means are computed with high level of accuracy. For the sake of brevity we 

limit ourselves to presentation of the results for 50000 repetitions. The validation exercise was 

conducted on two data samples: (1) estimation sample from 2009 NHTS data (1937 

observations), and (2) hold out sample from 2009 NHTS data (378 observations).   

 Tables 6 and 7 present the comparison for the MDCEV model, latent MDCEV 2 segment 

and latent MDCEV 3 segment models for the 2009 NHTS data. The prediction exercise 

generates outputs for participation mileage values for the 75 alternatives. However, to undertake 

a comparison in a meaningful way, the participation measures are aggregated across the various 

accompaniment types, activity purpose and travel mode dimensions. The predicted participation 

outcomes are compared with the actual observed participation in the estimation sample (Table 6) 

and hold out sample (Table 7). To compute an overall metric of error in prediction the Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE) for each model are calculated. The 

results clearly highlight the improved accuracy offered by the latent segmentation models. The 

lowest values of RMSE and MAE measures are obtained for the 3 segment latent MDCEV 

model. The two-segment MDCEV model also provides an improved data fit compared to the 

traditional MDCEV model.  It is encouraging to note that even in the hold out sample, a similar 

trend is observed.  Further, it is interesting to note that the error bands in prediction for activity 

participation across regimes are satisfactory considering the size of the universal choice set (75). 

Overall, the results illustrate that the latent MDCEV model offers improved prediction 

capabilities relative to the traditional MDCEV model. 

9. SUMMARY  
The objective of the current research effort is to contribute to the burgeoning literature on 

multiple-discrete continuous models by formulating a latent segmentation based MDCEV model. 

The MDCEV model in its traditional form restricts the exogenous parameter effects across the 

population i.e. there is an implicit population homogeneity assumption within the model 

structure. In the event that this assumption is violated the MDCEV model parameter estimates 

are likely to be biased. An effective approach to incorporate population heterogeneity is to 

consider endogenous segmentation of the population. The endogenous segmentation approach 

allocates decision makers probabilistically to various segments as a function of exogenous 

variables. Within each endogenously determined segment, a segment specific choice model is 

estimated. The segmentation approach ensures that the parameters are estimated employing the 

full sample for each segment while employing all the population records for model estimation, 

and provides valuable insights on how the exogenous variables affect segmentation. The 

proposed approach is the first implementation of endogenous segmentation for the MDCEV 

model in extant literature. The model estimation is undertaken using Full Information Maximum 

Likelihood (FIML) as well as the Expectation Maximization (EM) approach.  

The proposed latent MDCEV model is applied to data drawn from the 2009 National 

Household Travel Survey for the New York region. In our empirical context, the latent 

segmentation based MDCEV model estimation process involved estimating four model 

structures: (1) MDCEV model, (2) Latent MDCEV model with two segments, (3) Latent 

MDCEV model with three segments and (4) Latent MDCEV model with four segments. The 

MDCEV model with three segments offered the superior fit based on a host of measures. In the 

model specification, several types of variables were identified to influence choice process such 

as: (1) individual demographics (gender, age, race and education level), (2) household 
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demographics (household size, presence of children and family income), (3) household location 

variables (urban areas and residential density) and (4) contextual variables (day of the week and 

seasons). The model estimation results highlight how the latent MDCEV model allows 

exogenous variables to exhibit distinct activity participation profiles across various segments. 

This is clearly illustrated by the varying coefficients for the same exogenous variable the 

different segments (see for instance, male or income) across.  

Further, to examine the performance of the latent models in prediction, a prediction 

framework for latent segmentation based models was proposed. Through the prediction 

framework, we undertake a comprehensive validation exercise on two datasets: (1) estimation 

sample and (2) validation sample. For the 2009 NHTS sample to undertake a comparison in a 

meaningful way, the participation measures are aggregated across the various accompaniment 

types, activity purpose and travel mode dimensions. The predicted participation outcomes are 

compared with the actual observed participation in the estimation sample and hold out sample. 

To compute an overall metric of error in prediction the Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) for each model were calculated. The estimation and validation 

results highlight the importance of incorporating population heterogeneity in the modeling 

framework within the MDCEV model structure. The latent MDCEV models offer improved data 

fit as well as improved predictive capabilities. The study also documents the challenges with 

estimation of latent MDCEV models – a useful exercise for transportation modellers estimating 

latent segmentation models of various kinds.  

The current study is not without limitations. The continuous budget constraint in the 

MDCEV model is exogenous and assumes that the overall mileage component is “known” to the 

analyst. The assumption is quite restrictive and in order to enhance our understanding of the 

choice process it will be useful to endogenize the budget information. 
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TABLE 1: Model Fitness Measures 

 

                                                                  Models 

Model Fitness Criteria 
MDCEV 

Latent MDCEV With 

Two Segments 

Latent MDCEV With 

Three Segments 

Latent MDCEV With 

Four Segments 

Number of  Parameters 73 111 140 206 

Log Likelihood -17082.69 -16528.46 -16283.86 -16362.56 

Bayesian information criterion (BIC) 34724.06 33906.40 33639.13 34301.63 

Akaike information criterion( AIC) 34311.39 33278.92 32847.71 33137.11 

Akaike information criterion 

Correction(AICc) 
34316.70 33291.38 32867.79 33182.00 
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TABLE 2:  Comparison of Latent Segmentation MDCEV Three Model with Exogenous Segmentation Based MDCEV Models 

 

Segmentation Variables N 
Sub-dataset MDCEV  

Log Likelihood 

Total MDCEV  

Log Likelihood 

Gender 
Male 840 -7456.2 

-17033.4 
Female 1097 -9577.2 

Age 
Under 21 years 207 -1670.9 

-17047.9 
Over 21 years 1730 -15377.0 

Household size 
<3 ppl 1068 -8684.6 

-17035.6 
≥3 ppl 869 -8351.0 

Residential density 
≤10K/sq mi 1517 -14047.7 

-17012.6 

 
>10K/sq mi 420 -2965.0 

Season 
Spring 394 -3564.4 

-17047.4 
Not Spring 1543 -13483.0 

Gender and Age Classification 

Males Under 21 years 109 -879.8 

-16966.6 
Males Over 21 years 731 -6536.7 

Female Under 21 years 98 -760.0 

Female Over 21 years 999 -8790.2 

Gender and Household size 

Male * Household Size <3 491 -4101.9 

-16958.5 
Male * Household Size ≥3 349 -3316.1 

Female *  Household Size <3 577 -4547.0 

Female * Household Size ≥3 520 -4993.5 

Three-segment MDCEV 
A function of Male,  Age under 21 years, Household size,  

Residential density >10K/sq mi, and  Spring 
1937 - -16283.86 
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TABLE 3: Effects of Exogenous Variables on Segmentation Baseline Performance in the Latent Segmentation MDCEV Three 

 

Explanatory Variables 

(Segment 1 is base) 

Segment Two 

(Segment 1 is base) 
Segment Three 

Parameter t-stat Parameter t-stat 

Individual Characteristics 

Male - - 0.34 1.96 

Age less than 21years 0.51 2.32 - - 

Household Characteristics 

Household size 0.17 3.18 - - 

Residential density>10K/sq mi - - -0.83 -2.96 

Contextual Variables Spring -0.86 -3.62 - - 

Constant -1.36 -7.53 -0.97 -7.14 

Number of cases 1937 

Log Likelihood at convergence -16283.86 
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TABLE 4:  Latent Segmentation MDCEV Three Segment Characteristics 

Share (%) 

Segmentation Variables 
Segment One Segment Two Segment Three Sample (Total) 

Male 41.51 41.81 49.82 43.37 

Age less than 21years 8.78 17.17 9.05 10.69 

Household size 

<3 ppl 57.79 46.07 57.43 55.14 

≥3 ppl 42.21 53.93 42.57 44.86 

Residential density >10K/sq mi 24.29 24.26 12.25 21.68 

Spring 22.58 11.87 23.12 20.34 
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TABLE 5A: Effects of Exogenous Variables on Segment One Baseline Performance in the  Latent Segmentation MDCEV Three 

 
Individual Socio-demographics Household (HH) Socio-Demographics 

 Male White 
University 

Degree 

22≤Age 

<60 
Age≥60 HH size 

Kids age 

≤5 yrs  

Kids age 

6-15 yrs  

Kids age 

16-21 yrs  

Income 

40k -

70k 

Income ≥ 

70K 

 

Urban 

area 

Residential 

density 

>10K/sq 

mi 

A
ct

iv
it

y
 P

u
rp

o
se

 D
im

en
si

o
n

 

(B
a

se
li

n
e:

 S
h

o
p

p
in

g
) 

   Social/Recreational - 
0.52 

(3.02) 
- 

-1.69 

(-6.05) 

-1.72 

(-6.11) 
- - - - - 

0.33 

(2.65) 
- - 

Transport Someone - - 
0.74 

(2.98) 
- - 

0.30 

(2.87) 

3.06 

(6.60) 

2.97 

(6.92) 
 - - 

-0.59 

(-2.12) 

-1.62 

(-3.65) 

Meals - 
0.53 

(1.34) 
- 

-1.24 

(-3.40) 

-1.48 

(-4.08) 
- - - - - - - - 

Others - - - 
-1.21 

(-3.75) 

-1.33 

(-4.11) 
- - - - - - - - 

A
cc

o
m

p
a

n
im

e
n

t 

D
im

en
si

o
n

 

(B
a

se
li

n
e:

 A
lo

n
e)

 

  With Household 

Member 
- - 

-0.64 

(-5.66) 
- - - 

1.45 

(9.89) 

1.20 

(8.96) 
- - - - 

-1.44 

(-8.76) 

With HH & non-HH 

Member 

 

- - - 
-2.77 

(-10.40) 

-3.82 

(-9.82) 
- - - - - - - - 

T
ra

v
el

 M
o

d
e 

D
im

e
n

si
o

n
 

(B
a

se
li

n
e:

 C
a

r)
 

Van/ Other Vehicles 
1.40   

(4.88) 
- - - - 

0.96 

(9.28) 
- 

2.22 

(8.19) 
- - - - - 

SUV 
1.64 

(8.97) 
- - - - - - - - - - - - 

Transit - - - - 
-1.15 

(-2.88) 

0.46 

(5.33) 
- - - 

-0.55 

(-2.17) 
- - 

4.11 

(13.73) 

Walk/Bike - - - 
-1.04 

(-2.85) 
- 

0.36 

(6.45) 
- - - - - - 

2.78 

(14.22) 
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TABLE 5B:  Effects of Exogenous Variables on Segment Two Baseline Performance in the Latent Segmentation MDCEV Three 

 

Individual Socio-Demographics 
Household (HH) Socio-

Demographics 
Contextual Variables 

 Male 22<Age<60 Age≥60 HH size 
Kids age 

≤5 yrs 

Kids age 

6-15 yrs 
Summer Spring Winter Friday 

A
ct

iv
it

y
 P

u
rp

o
se

 D
im

en
si

o
n

 

(B
a

se
li

n
e:

 S
h

o
p

p
in

g
) 

   Social/Recreational - - - - - - 
0.53 

(2.25) 
- - - 

Transport Someone - 
1.74 

(4.48) 

1.57 

(3.64) 

-0.45 

(-4.49) 
- 

1.67 

(5.98) 
- 

1.17 

(3.93) 

0.71 

(3.65) 

-0.93 

(-3.15) 

Meals - - - - - - - - - - 

Others - - - - - - - - - - 

A
cc

o
m

p
a

n
im

e
n

t 

D
im

en
si

o
n

 

(B
a

se
li

n
e:

 A
lo

n
e)

 

  With Household Member - 
-1.84 

(-6.70) 
- - 

2.79 

(6.29) 
- - 

-3.24 

(-9.34) 
- - 

With HH & non-HH 

Member 

 

- 
-1.40 

(-5.22) 
- 

0.42 

(6.21) 
- - - - - - 

T
ra

v
el

 M
o

d
e 

D
im

e
n

si
o

n
 

(B
a

se
li

n
e:

 C
a

r)
 

Van/ Other Vehicles - - - - 
9.38 

(4.71) 
- - - - - 

SUV 
-1.84 

(-3.21) 
- 

-2.83 

(-4.76) 
- - - - - 

6.67 

(3.03) 

-5.44 

(-6.63) 

Transit - - - - - - - - - - 

Walk/Bike - - - - - - - - - - 
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TABLE 5C: Effects of Exogenous Variables on Segment Three Baseline Performance in the Latent Segmentation MDCEV Three 
 

Individual Socio-Demographics Household (HH) Socio-Demographics Contextual Variables 

 Male 
University 

Degree 
Age≥60 HH size 

Kids age 

≤5 yrs 

Kids age  

6-15 yrs 

Income 

40k -70k 

Income ≥ 

70K 

 

Urban area Spring Friday 

A
ct

iv
it

y
 P

u
rp

o
se

 D
im

en
si

o
n

 

(B
a

se
li

n
e:

 S
h

o
p

p
in

g
) 

   Social/Recreational - - 
-1.78 

(-5.45) 
- - - 

-1.54 

(-4.71) 
- - - - 

Transport Someone - - - 
0.35 

(4.69) 
- - - - - - - 

Meals - - - - - - - - - - - 

Others - - - - - - - - - - - 

A
cc

o
m

p
a

n
im

e
n

t 

D
im

en
si

o
n

 

(B
a

se
li

n
e:

 A
lo

n
e)

 

  With Household 

Member 
- 

0.62 

(2.65) 

1.55 

(6.46) 
- 

1.15 

(2.28) 
- - - 

-0.96 

(-4.22) 

1.98 

(7.96) 
- 

With HH & non-HH 

Member 

 

-0.97 

(-5.33) 
- - - - - - - - - - 

T
ra

v
el

 M
o

d
e 

D
im

e
n

si
o

n
 

(B
a

se
li

n
e:

 C
a

r)
 

Van/ Other Vehicles - - - 
-1.22 

(-6.63) 
- - - - - 

1.86 

(3.15) 
- 

SUV 
-3.18 

(-4.64) 
- - - - 

3.14 

(5.50) 
- - - - 

1.82 

(3.97) 

Transit - - 
-1.72 

(-3.97) 
- - - - 

-1.42 

(-3.56) 
- - - 

Walk/Bike - - 
-3.12 

(-6.73) 
- - 

1.00 

(3.26) 

-2.38 

(-5.87) 
- - - - 
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TABLE 6: Validation Results for the 2009 NHTS Sample 

  Accompaniment Dimension Activity Purpose Dimension Travel Mode Dimension 

  Alone 

With 

Household 

Member 

With HH & 

non-HH 

Member 

 

Shopping 
Social/ 

Recreational 

Transport 

Someone 
Meals Others Car 

Van/ 

Other 
SUV Transit Walk/Bike 

O
b

se
r
v

ed
 

Participation 1365 744 370 1198 883 325 448 634 990 211 370 200 583 

Participation 

Rate (%) 
70.47 38.41 19.10 61.85 45.59 16.78 23.13 32.73 51.11 10.89 19.10 10.33 30.10 

M
D

C
E

V
 

Predicted 

Participation 

Rate (%) 

67.11 49.70 24.48 48.95 50.13 18.73 20.03 30.08 57.47 13.96 25.38 12.33 28.50 

Percentage 

Error (%) 
-4.77 29.40 28.18 -20.85 9.96 11.65 -13.40 -8.11 12.43 28.15 32.86 19.40 -5.31 

RMSE 9.55 

MAE (%) 17.27 

T
w

o
-s

eg
m

en
t 

 

M
D

C
E

V
 

Predicted 

Participation 

Rate (%) 

67.29 47.09 22.90 50.48 49.76 16.93 20.54 30.99 56.36 13.28 23.45 13.12 28.81 

Percentage 

Error (%) 
-4.52 22.60 19.90 -18.37 9.16 0.91 -11.18 -5.33 10.27 21.87 22.76 27.02 -4.27 

RMSE 7.85 

MAE (%) 13.71 

T
h

re
e
-s

eg
m

e
n

t 
 

M
D

C
E

V
 

Predicted 

Participation 

Rate (%) 

67.23 45.94 21.77 51.59 49.83 17.51 20.80 30.99 54.79 11.87 22.63 13.25 28.38 

Percentage 

Error (%) 
-4.60 19.60 13.95 -16.59 9.31 4.36 -10.07 -5.32 7.20 8.96 18.45 28.36 -5.72 

RMSE 6.89 

MAE (%) 11.73 
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TABLE 7: Validation Results of the Hold Out Sample for the 2009 NHTS Dataset 

 
  

Accompaniment Dimension Activity Purpose Dimension Travel Mode Dimension 

  

Alone 

With 

Household 

Member 

With HH & 

non-HH 

Member 

 

Shopping 
Social/ 

Recreational 

Transport 

Someone 
Meals Others Car 

Van/ 

Other  
SUV Transit Walk/Bike 

O
b

se
r
v

ed
 

Participation 264 142 85 242 156 76 81 129 198 34 78 34 125 

Participation 

Rate (%) 
69.84 37.57 22.49 64.02 41.27 20.11 21.43 34.13 52.38 8.99 20.63 8.99 33.07 

M
D

C
E

V
 

Predicted 

Participation 

Rate (%) 

67.08 49.51 24.04 48.79 49.18 19.18 19.55 29.89 57.38 10.87 25.58 12.51 29.71 

Percentage 

Error (%) 
-3.96 31.79 6.92 -23.80 19.16 -4.59 -8.77 -12.41 9.54 20.85 23.97 39.03 -10.17 

RMSE 2.01 

MAE (%) 16.54 

T
w

o
-s

eg
m

en
t 

 

M
D

C
E

V
 

Predicted 

Participation 

Rate (%) 

67.21 47.07 22.27 50.20 48.94 17.37 20.23 30.68 55.91 10.79 23.27 13.36 30.16 

Percentage 

Error (%) 
-3.77 25.31 -0.98 -21.58 18.57 -13.61 -5.58 -10.11 6.74 19.92 12.77 48.54 -8.80 

RMSE 1.76 

MAE (%) 15.10 

T
h

re
e
-s

eg
m

e
n

t 
 

M
D

C
E

V
 

Predicted 

Participation 

Rate (%) 

67.10 45.86 21.03 51.37 48.94 17.74 20.47 30.64 54.84 9.76 22.79 13.50 29.52 

Percentage 

Error (%) 
-3.92 22.09 -6.47 -19.76 18.58 -11.76 -4.47 -10.21 4.70 8.47 10.45 50.05 -10.74 

RMSE 1.63 

MAE (%) 13.98 

 

 

 


