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ABSTRACT 

An important tool to evaluate the influence of these public transit investments on transit ridership 

is the application of statistical models. Drawing on stop level boarding and alighting data for the 

Greater Orlando region, the current study estimates spatial panel models that accommodate for the 

impact of spatial and temporal observed and unobserved factors on transit ridership.  Specifically, 

two spatial models: (1) Spatial Error Model and (2) Spatial Lag Model are estimated for boarding 

and alighting separately by employing several exogenous variables including stop level attributes, 

transportation and transit infrastructure variables, built environment and land use attributes, 

sociodemographic and socioeconomic variables in the vicinity of the stop along with spatial and 

spatio-temporal lagged variables. The model estimation results are further augmented by a 

validation exercise. These models are expected to provide feedback to agencies on the benefits of 

public transit investments while also providing lessons to improve the investment process. 

 

Keywords: Ridership, Transit, Public Transport, Panel regression model, Temporal, Spatial.  
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1. INTRODUCTION 

The over-reliance on private automobile in the US over the last few decades has resulted in various 

negative externalities including traffic congestion and crashes, air pollution associated 

environmental and health concerns, and dependence on foreign fuel (Schrank et al., 2012). There 

is renewed enthusiasm among policy makers and transportation professionals to counter the private 

automobile reliance. Several urban regions are promoting public transportation and non-motorized 

modes of travel through infrastructure investments such as public transit extensions, new 

commuter rail addition, and bicycle sharing systems (see Jaffe, 2015 and TP, 2018 for public 

transportation projects under construction or consideration). While non-motorized modes of 

transportation are beneficial in the urban core, public transit with its reach to serve populations 

residing throughout the urban region can enhance mobility for a large share of urban residents.  

The public transit investments are critical in growing urban regions such as Orlando, 

Florida. In recent years, the Greater Orlando region has experienced rapid growth. In fact, 

according to the US Census Bureau, Orlando is the fastest growing urban region among the 

country’s thirty large urban regions (Brinkmann, 2016). It is reported that the majority (about 74%) 

of the population growth in the region is driven by domestic and international migration. The rapid 

increase in population elevates the stress on the existing transportation system. Thus, it is not 

surprising that several transportation and public transit investments are underway in the region to 

alleviate traffic congestion and improve mobility for Greater Orlando residents. An important tool 

to evaluate the influence of these public transit investments on transit ridership is the application 

of statistical models. Transit system managers and planners mostly rely on statistical models to 

identify the factors that affect ridership while also quantifying the magnitude of the impact (for 

example see Chakour & Eluru, 2016; Pulugurtha & Agurla, 2012). These models provide feedback 

to agencies on the benefits of public transit investments while also providing lessons to improve 

the investment process.  

Orlando, a typical American city in the south, represented by urban sprawl, excessive 

dependence on automobile and a captive ridership, provides an ideal test bed to identify factors 

influencing public transit ridership. Drawing on stop level public transit boarding and alighting 

data for 6 four-month periods from May 2013 to April 2015, the current study estimates stop-level 

ridership models. Specifically, we apply a spatial panel regression model that accommodates for 

the influence of observed exogenous factors as well as unobserved factors. In terms of exogenous 

factors, we consider stop level attributes (such as headway), transportation infrastructure variables 

(such as secondary highway length including major and minor arterials, and major collectors; rail 

road length; local road length and sidewalk length), transit infrastructure variables (bus route 

length, presence of shelter and distance of bus stop from central business district (CBD)), land use 

and built environment attributes (land use mix, household density, employment density) and 

demographic and socioeconomic variables in the vicinity of the bus stop (income, vehicle 

ownership, age and gender distribution).  

The repeated observation data at a stop-level offers multiple dimensions of unobserved 

factors including stop-level, spatial and temporal factors. For instance, it is possible that bus 

ridership of one bus stop is potentially influenced by the ridership of the neighbouring bus stops. 

It is also possible that ridership of a bus stop is influenced by the ridership levels of the previous 

time slots for the stop, while also being interconnected with the ridership of the neighbouring bus 

stops of the earlier time periods. Neglecting such spatial and temporal interconnections (if present) 

may result in biased estimates of the underlying ridership mechanism. To that extent, the major 

objective of this study is to accommodate for spatial and temporal effects (observed and 
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unobserved) for modeling bus stop level ridership. In our analysis, we apply a framework proposed 

by Elhorst (2014) to accommodate for the aforementioned observed and unobserved factors 

(spatial and temporal effects). Further, to accommodate for the repeated observations of ridership, 

we employ spatial panel model in the current study context. The panel models developed include 

panel spatial error and panel spatial lag formulations (see Faghih-Imani & Eluru, 2016 for a similar 

formulation in another context). A validation exercise is conducted to illustrate the applicability of 

the model framework.  

The remainder of the paper is organized as follows. An overview of earlier research is 

described in Section 2 along with the current study section. In Section 3, the methodology has been 

outlined. In Section 4, the empirical analysis has been presented along with the data source, and 

data preparation description for modeling. The model estimation results has been presented in 

Section 5 along with the discussion on the model results and validation. Finally, Section 6  provides 

a summary of the findings and concludes the paper. 

 

2. LITERATURE REVIEW AND CURRENT STUDY 

Traditional travel demand modeling research has focused on automobile travel. Only recently 

studies have begun to undertake detailed analysis of transit systems and associated ridership. These 

studies examine transit ridership to identify the impact of socioeconomic characteristics, built 

environment, and transit attributes on ridership across different contexts (Chakour & Eluru, 2016).  

These studies broadly examine macro-level ridership (Chakraborty & Mishra, 2013; Taylor et al., 

2009), study impact of financial attributes such as fare, fuel price and parking cost (Chen et al.,  

2011; Currie & Phung, 2007; Hickey, 2005; Lane, 2010, 2012; Mattson, 2008, Tsekeris & Voß,  

2010), effect of transit attributes, transit level of service (de Ona et al., 2013; Eboli & Mazzulla) 

and built environment on transit ridership. For the current research effort, the last group of studies 

are particularly relevant. These studies can be classified by the transit mode of interest such as rail, 

metro and bus. As the focus of our current work is bus transit ridership, we limit our review to bus 

ridership studies. For studies on rail and metro, we refer the reader to (Chakour & Eluru, 2016; 

Rahman et al., 2017). For bus ridership studies, at the bus-stop level, the most common dependent 

variables of interest include daily level or time-period specific boarding and alighting variables or 

a sum of boarding and alighting variables. A brief review of most relevant literature follows. 

Ryan and Frank (2009) highlighted the value of walkability of an area – computed based 

on land use mix, street patterns and density – in determining transit ridership for San Diego. 

Johnson (2003) studied transit boarding’s in the Twin Cities region using an ordinary least square 

approach. The analysis highlighted the value of vertical mixed-use and retail establishments close 

to the stops. The study also found that population density in the larger vicinity of the stop is more 

critical to ridership compared to population immediately close to the stop. Pulugurtha and Agurla 

(2012) applied spatial proximity and spatial weighting methods to analyze stop level ridership data 

from Charlotte. The models were estimated under various buffer sizes and the authors concluded 

that 0.25-mile buffer provided adequate model fit. Dill et al. (2013), using data from Portland, 

Eugene-Springfield and Jackson County, estimated separate log-linear regression models for each 

region and concluded that improving transit level-of-service and developing pedestrian friendly 

environment near the stops positively influenced ridership.  

Employing a simultaneous model that accommodates for interaction between transit supply 

and demand in Bogotá, Estupiñán and Rodríguez (2008) concluded that promoting walking and 

creating barriers to car use are likely to increase ridership. Banerjee et al. (2005) examined two 

corridors in Los Angeles and concluded that several land use and sociodemographic variables 
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affected ridership on rapid bus transit systems. Tang and Thakuriah (2012), highlighted that the 

value of real-time bus information is slightly increasing the bus ridership in Chicago. Chakour and 

Eluru (2016) employed a composite maximum likelihood approach based ordered response model 

to accommodate for common unobserved factor influencing time-period specific boardings and 

alightings. The results clearly highlighted the presence of such unobserved dependencies in 

addition to the impact of land-use and urban form variables. More recently, using the same data as 

adopted in the current paper, Rahman et al. (2017) formulated a grouped ordered response model 

structure that allowed for correlation between daily boardings and alightings at a stop level. The 

study also accommodated for repeated measures of data available. The study found that transit 

service affected ridership significantly while the effect of land use and urban form variables was 

substantially different across various buffer sizes. Further, in their analysis, bus route length, 

sidewalk length, the presence of low-income population, the proportion of no vehicle population 

was likely to increase stop-level ridership.  

 

Current Study 

The review of earlier research indicates the burgeoning research in the bus transit ridership field. 

However, the literature is not without limitations. First, earlier work is usually based on a cross-

sectional – a single time snapshot – ridership data (except for Rahman et al., 2017). Second, earlier 

literature on bus transit ridership has not accommodated for observed and unobserved spatial 

effects on ridership. Toward addressing these limitations, we formulate and estimate a spatial panel 

model structure that accommodates for repeated ridership data for the same stop as well as the 

impact of spatial and temporal observed and unobserved factors.  

In our data, we have average daily boarding and alighting ridership, for weekdays only, for 

6 four-month time periods between May 2013 and April 2015. Toward accommodating for spatial 

factors, we consider the most commonly employed spatial error and spatial lag variants employed 

for cross-sectional data analysis. The models are developed separately for boardings and 

aligthings. The results from the spatial error and lag models are compared with the results from 

simple linear regression models to identify the improvement in model fit with accommodation of 

spatial unobserved effects and panel repeated measures. The model estimation process is 

conducted employing a host of exogenous variables generated for the study region. The estimated 

models are validated using a hold-out sample.  

 

3. METHODOLOGY 

In this paper, we considered boarding and alighting data for each bus stop for six time periods. 

The brief overview of the econometric methodology is presented in this section (see Elhorst, 2014 

for complete econometric model details).  

Let q = 1, 2, …, Q (in our study Q=3,495) be an index to represent each station (spatial 

unit) and t = 1, 2, …, T (in our study T=6) be an index for each time period. A pooled linear 

regression model for panel data considering spatial specific effects without considering spatial 

dependency can be written as: 

𝑦𝑞𝑡 = 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜖𝑞𝑡                                                                                                                           (1) 

Where 𝑦𝑞𝑡 is the log-normal of boarding and alighting, 𝑥𝑞𝑡 is a column vector of attributes at 

station q and time t, and 𝛽 is the corresponding coefficient column vector of parameters to be 

estimated. The random error term 𝜖𝑞𝑡, is assumed to be an independently and identically distributed 
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normal error term for q and t with zero mean and variance σ2 , and 𝜇𝑞 represent a spatial specific 

effect to account for all the station-specific time-invariant unobserved attributes. This spatial 

specific effect can be treated as fixed effects or random effects. In the fixed effects model, for 

every station a dummy variable is created while in the random effects model, 𝜇𝑞 is treated as 

random term that is independently and identically distributed with zero mean and variance 𝜎𝜇
2. 

The spatial random effects and random error term are assumed to be independent. The fixed effects 

methodology is not appropriate in the presence of time-invariant independent variables. In 

addition, the fixed effects models estimate a large number of parameters (one parameter specific 

to each station); thus, are computationally cumbersome for large systems as ours. Therefore, in the 

current study, we restrict ourselves to a spatial random effects model1. 

In traditional econometric literature, spatial dependency can be incorporated by employing 

different modeling frameworks, such as spatial lag or spatial autoregressive model (SAR), spatial 

error model (SEM), geographically weighted regression (GWR) and spatial durbin model. In the 

current study, we have considered two different forms spatial autocorrelations in examining bus 

ridership: 1) SAR model which accounts for spatial endogenous interactions by a spatially lagged 

dependent variable and 2) SEM model which accounts for spatial interactions by a spatial 

autocorrelation process in the error term. Specifically, the first model comprises endogenous 

interactions effects with dependent variable at other stops and in the second model the spatial 

interaction is captured through the error term.  

A spatial lag model can be written as follows: 

𝑦𝑞𝑡 = 𝛿 ∑ 𝑤𝑞𝑗𝑦𝑗𝑡

𝑄

𝑗=1

+ 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜖𝑞𝑡                                                                                                (2) 

where 𝛿 is called the spatial autoregressive coefficient and 𝑤𝑞𝑗 is an element from a spatial weight 

matrix W. The diagonal elements of W matrix are zero and define the spatial arrangement of the 

stops. Again, in some literature, other types of spatial matrices are introduced. In our study, the 

spatial W matrix is a 3495×3495 matrix with elements equal to 1 for the stations that are within 

800m buffer area of each other and zeros for the rest of the elements. It must be noted that diagonal 

of W matrix is set to be zero to prevent the use of 𝑦𝑞𝑡 to model itself. For stability in estimation, a 

row-normalized form of the W matrix is employed as our spatial weight matrix (see Elhorst, 2014) 

for more details on W matrix). 

A spatial error model may be written as follows:  

𝑦𝑞𝑡 = 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜑𝑞𝑡                                                                                                                        (3𝑎) 

 
1 We restrict ourselves to spatial random effects model as opposed to developing a spatial fixed effects model for 

multiple reasons. First, in a spatial fixed effects model several additional parameters are estimated to account for bus 

stop specific effects. In a dataset with over 3000 stops, this would mean estimating a large number of parameters. The 

presence of such large number of parameters might lead to over-fitting of the data. Second, in the presence of bus stop 

specific fixed effects, the impact of other variables that are common across the system are unlikely to be meaningful. 

Therefore, the results from such an exercise are not transferable to the future or other locations in any meaningful 

form. Hence, we have not considered spatial fixed effects models.  
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𝜑𝑞𝑡 = 𝜌 ∑ 𝑤𝑞𝑗𝜑𝑗𝑡

𝑄

𝑗=1

+ 𝜖𝑞𝑡                                                                                                                     (3𝑏) 

where 𝜑𝑞𝑡 accounts for the spatial autocorrelated error term and 𝜌 reflects the spatial 

autocorrelation coefficient. Both spatial lag model and spatial error model can be estimated using 

maximum likelihood approach (see Elhorst (2014) for details on likelihood functions). In this 

paper, we use Matlab routines provided by Elhorst (Elhorst, 2003; Elhorst, 2014), to estimate 

pooled spatial lag and error models with spatial specific random effects.  

 

4. EMPIRICAL ANALYSIS 

The Greater Orlando region with a population of 2.3 million in 2016 is a typical American city in 

the south with an automobile-oriented transportation system with the following mode shares: 

automobile (85.7%), Public transit (1.0%), walk (9.2%) and bike (1.2%). The main public transit 

service in the region is the Lynx system that serves an area of approximately 2,500 square miles 

within Orange, Seminole, Osceola and Polk County in Central Florida. The bus system operates 

77 daily routes with average weekday ridership of around 105,000. The number of bus stops 

considered for the analysis includes 3,745 stops. Of these, 3,495 stops data are used for model 

estimation while 250 stops data are set aside for validation. In addition to Lynx, the transit system 

includes a newly launched commuter rail system – SunRail. The rail line is 31 mile long with 12 

stations with average weekday ridership of about 3,800 in 2015. Figure 1 represents the study area 

along with the Lynx bus route, bus stops, SunRail line and SunRail station locations. 

 

[Figure 1 near here] 

 

The ridership data was obtained from Lynx transit authority. For our analysis, weekday 

boarding and alighting data for the following 6 time periods are considered: May through August 

2013, September through December 2013, January through April 2014, May through August 2014, 

September through December 2014, and January through April 2015. The final sample consists of 

20,970 records (3,495 stations × 6 quarters). The average daily stop level boarding (alighting) is 

around 21.03 (20.86) with a minimum of 0 (0) and maximum of 7,022 (6,770). The average daily 

ridership for January through April 2015 quarter is presented in Figure 2 (Figure 2(a) – Boarding 

and Figure 2(b) – Alighting). A summary of the system-level ridership (boarding and alighting) 

are provided in Table 1. The standard deviation is large as the ridership is different across different 

bus stops in our analysis. 

 

[Figure 2 near here] 

 

[Table 1 near here] 

 

In our study, we have conducted an extensive literature review and identified factors 

considered in public transit ridership field for identifying the universal set of attributes. GIS shape 

files from Lynx were used to generate the number of bus stops and bus route length. For creating 

the exogenous variables, we considered various buffer distances (800m, 600m, 400m, and 200m) 

from each bus stop. The exogenous variable information was generated based on multiple data 

sources including 2010 US census data, American Community Survey, Florida Geographic Data 
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Library, and Florida Department of Transportation databases. The exogenous attributes considered 

in our study can be divided into five broad categories: (1) Stop level attributes (such as headway), 

(2) Transportation and transit infrastructure variables (secondary highway length including major 

and minor arterials, and major collectors; rail road length and local road length, sidewalk length, 

Lynx bus route length, presence of shelter and distance of bus stop from CBD), (3) Built 

environment and land use attributes (such as land use mix, household density, employment 

density) (4) Sociodemographic and socioeconomic variables in the vicinity of the stop (income, 

vehicle ownership, age and gender distribution) and (5) Temporal and spatio-temporal lagged 

variables (such as stop boarding (alighting) in the last time period). 

Temporal lagged variables were calculated for each bus stop by computing the boarding 

(alighting) variables from previous time period. Spatio-temporal lagged variables were created 

based on stops within the buffer (for various buffer sizes including 800m, 600m, 400m and 200m). 

The boarding (alighting) from previous time period for stops within the buffer were generated for 

spatio-temporal lag variables. The descriptive statistics of exogenous variables are presented in 

Table 2. 

 

[Table 2 near here] 

 

5. MODEL ESTIMATION RESULTS 
 

5.1 Model Specification and Overall Measures of Fit 

The empirical analysis in our study is based on two different models: 1) Spatial Error Model (SEM) 

and 2) Spatial Lag Model (SAR) for boarding and alighting ridership. The log linear independent 

models were estimated to serve as benchmark for advanced models. In this section, we compare 

SEM and SAR models. For each model type, the log-likelihood at convergence, R-square value, 

the number of parameters estimated, Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) were calculated (Burnham and Anderson, 2004). The AIC and BIC 

for a given empirical model are equal to: 

𝐴𝐼𝐶 =  2𝐾 −  2𝐿𝐿  (1)  

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (2)  

where 𝐿𝐿 is the log-likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 is the 

number of observations. The model with the lower AIC or BIC is the preferred model. The log-

likelihood values at convergence for the models estimated are as follows: (1) simple linear 

regression model for boarding (with 18 parameters) is -22,957.537, (2) simple linear regression 

model for alighting (with 18 parameters) is -22,911.193, (3) SEM for boarding (with 16 

parameters) is –13,029.935, (4) SEM for alighting (with 15 parameters) is –12,361.319, (5) SAR 

for boarding (with 13 parameters) is –12,801.731 and (6) SAR for alighting (with 11 parameters) 

is –12,022.572. The BIC (AIC) values for the six models are as follows: (1) simple linear 

regression for boarding – 46,094.188 (45,951.073), (2) simple linear regression for alighting – 

46,001.501 (45,858.386), (3) SEM for boarding is – 24,752.690 (26,091.870), (4) SEM for 

alighting is – 24,871.903 (26,219.084), (5) SAR for boarding is – 24,067.144 (25,629.462) and (6) 
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SAR for alighting is – 24,154.603 (25,732.823). Based on the information criteria, SAR model 

performs better for boarding and alighting. However, the number of explanatory variables are 

higher in SEM model. Hence, we consider both frameworks for our discussion. The results from 

the models for boarding and alighting are presented in Table 3.  

 

[Table 3 near here] 

 

5.2 Variable Effects 

The final specification of the model development was based on removing the statistically 

insignificant (90% significance level) variables from the model. We considered various buffer size 

(800m, 600m, 400m and 200m buffer size) and considered the buffer size that offered the best data 

fit. Columns 2 through 5 present results from SEM and SAR models for boarding while columns 

6 through 9 present results from SEM and SAR models for alighting. The model results are 

described by variable categories below. 

 

Stop level Variables 

The headway between buses at a stop has a significant influence on ridership. The result from all 

models confirms this. An increase in headway is associated with significant drop in ridership. The 

findings are in accordance with the previous literature (Abkowitz & Tozzi, 1986; Ding & Chien, 

2001; I-Jy Chien, 2005; Kuah & Perl, 1988; Rahman et al., 2017; Ruan, 2009; Turnquist, 1981).  

 

Transportation Infrastructures Variables 

Several transportation infrastructure variables significantly affect boarding and alighting. Bus 

route length in a 600m buffer is associated with increase in boarding and alighting across all 

models. The result indicates that increase in the presence of bus route around the stop results in an 

increased adoption of public transit for the Greater Orlando region. This is an important finding 

highlighting how when adequate infrastructure for bus transit exists, it is likely to be used.     

Sidewalk length in an 800m buffer is observed to positively influence boarding and alighting in 

the SEM model. The corresponding coefficient was not significant in the SAR models. It is 

possible that the presence of sidewalk is serving as surrogate for walkable neighborhoods in the 

SEM model. The secondary highway length in a 600m buffer and local road length in an 800m 

buffer is positively associated with boarding for SEM and SAR models. However, these variables 

are statistically insignificant in the alighting models. Railroad length in an 800m buffer is 

negatively associated with alighting in only the SEM model. Finally, the presence of bus shelter 

at the bus stop is likely to positively influence boarding and alighting in SEM and SAR models. 

 

Built Environment Variables 

Several built environment variables are found to influence boarding and alighting. Land use mix 

variable is associated positively for boarding and alighting in SEM and SAR models. The result is 

quite encouraging toward promoting policies favoring mixed land use developments in urban 

regions. An increase in household density of census tract, where the bus stop is located, is 

negatively associated with alighting in SEM model. On the other hand, increasing employment 

density (of census tract) is negatively associated with boarding in SEM model. The distance of the 

stop from CBD variable impact follows an expected trend. Specifically, as the stop is away from 

CBD, the ridership is likely to reduce. The result confirms our expectation that large share of transit 

ridership occurs near the urban core.  
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Sociodemographic and Socioeconomic Variables 

Several sociodemographic and socioeconomic variables based on census tract, where the bus stops 

are located, were found to significantly influence boarding and alighting. The proportion of people 

aged between 0 to 17 years is observed to positively influence boarding in both SEM and SAR 

models. The result is intuitive as an increase in the proportion of young individuals’ increases, 

population without access to car is also likely to increase. For alighting, the variable has a 

significant influence only in the SEM model. An increase in proportion of individuals 65 and 

higher is associated with a reduction in boarding and alighting (except for alighting in SAR model). 

The result while counter intuitive on first glance is representative of vehicle access among this age 

group. As the number of households in the high-income category increase, the model results 

indicate a possible reduction in boarding and alighting (except for boarding SAR model). The 

result is expected in a city like Orlando where high-income individuals are more likely to use their 

personal vehicle for travel. Finally, the number of households renting in a census tract is positively 

associated with boarding and alighting (except for boarding SAR model). The relationship between 

rent and ridership is along expected lines. 

  

Spatial and Spatio-temporal Effects 

The temporal lagged variables are positively associated with boarding and alighting ridership for 

SEM and SAR models. On the other hand, spatio-temporal lag variables present a reverse trend. 

To elaborate, the results indicate that stops with larger ridership in adjacent station for previous 

time period are likely to have a lower ridership. The result is indicative of competition from nearby 

stops. The result represents a system where the same ridership in the urban region is being split 

across stops.  

 

Spatial Error and Spatial Lag Effects 

The study estimated SEM and SAR models to account for the presence of spatial effects. The 

model fit measures clearly confirmed our hypothesis. In the SEM model, the results indicate the 

presence of a significant spatial auto-correlated error term. In the SAR model, the spatial 

autoregressive coefficient indicates a significant impact of unobserved effects.  

 

5.3 Model Validation 

A hold-out sample of 250 stops (250*6=1500 observation) was set aside for validation purposes. 

We used both SEM and SAR model to compute predicted boarding and alighting at the stop level. 

The predicted rates were compared with the observed boarding and alighting in the sample. We 

computed Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to compute the 

deviation from observed values. The MAE (RMSE) values for the four models are as follows: (1) 

boarding SEM – 0.815 (1.011), (2) boarding SAR – 0.837 (1.083), (3) alighting SEM – 0.809 

(1.016), and (4) alighting SAR 0.897 (1.123). The results indicate a satisfactory performance for 

boarding and alighting models across the two systems. Overall, between the two model systems, 

the SEM models perform slightly better.  

 

6. CONCLUSION 

Toward encouraging higher level of public transport adoption, it is of utmost importance to 

examine the critical factors that contributes to public transport ridership. An important tool to 

evaluate the influence of the critical factors and the future public transit investments opportunities 
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is the application of statistical models.  Drawing on stop level boarding and alighting data for 6 

four-month periods for Greater Orlando region from May 2013 to April 2015, the current study 

estimated spatial panel models that accommodate for impact of spatial and temporal observed and 

unobserved factors.  

Two spatial models: 1) Spatial Error Model (SEM) and 2) Spatial Lag Model (SAR) were 

estimated for boarding and alighting separately by employing several exogenous variables 

including stop level attributes, transportation and transit infrastructure variables, built environment 

and land use attributes, sociodemographic and socioeconomic variables in the vicinity of the stop 

and spatial and spatio-temporal lagged variables. The model fit measures clearly confirmed our 

hypothesis that spatial unobserved effects influence boarding and alighting through the presence 

of spatial auto-correlated error term in the SEM model and the spatial autoregressive coefficient 

in the SAR model. Further, the validation exercise results confirmed that the two model performed 

adequately. The outcomes of the estimated models can be employed to evaluate the changes in the 

public transport demand due to the changes in the future supply (adding or removing stops in the 

system). The optimal ridership could be predicted by employing the results of the estimated models 

while considering the spatial location of the proposed stops in relation to the existing bus stops 

(distance matrix). To be sure, the research is not without the limitations. In our model, we have 

considered both boarding and alighting model separately. The observed and unobserved factors 

for boarding and alighting ridership at the same stop can have an impact on ridership. Incorporating 

such station level dependency between boarding and alighting along with spatial unobserved 

factors is a potential avenue for future research. In the future, it would be beneficial to examine 

how individual level behavioral preferences for using private vehicle can be incorporated within 

transit ridership frameworks. There is also a need to accommodate for the endogeneity between 

transit agency decisions (with regards to headway and new bus routes) and ridership. In the current 

study, we have estimated SAR and SEM models which account for spatial endogenous interactions 

and spatial interactions in the error structures. In future, it might be interesting to estimate a spatial 

Durbin model which takes into account the advantage of both SAR and SEM models while also 

allowing for flexible spillover effects. 
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FIGURE 2 Public transit Ridership for April-15 Quarter, 2(a) Boarding and 2(b) Alighting 
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TABLE 1 Summary Statistics of Lynx Bus Ridership (August 2013 to April 2015) 

Time-

period 

Quarter Name Boarding Alighting 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

1 August-13 22.30 160.51 21.95 152.86 

2 December-13 20.88 151.85 20.61 143.49 

3 April-14 20.54 157.83 20.32 151.89 

4 August-14 21.51 162.01 21.38 154.30 

5 December-14 20.32 151.18 20.39 146.65 

6 April-15 20.65 156.02 20.52 149.57 
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TABLE 2 Descriptive Statistics of Exogenous Variables 

Variable Name Variable Description Minimum Maximum Mean 

Stop Level Attributes         

Headway (min) Ln(headway)   0.105 4.094 3.491 

Transportation Infrastructure Around the Stop 

Bus route length in a 600m buffer Bus route length in kilometers (Bus route length in 600 m buffer/10) 0.105 6.064 0.513 

Side walk length in an 800m buffer Side walk length in kilometers 0.000 13.270 3.159 

Secondary highway length in an 800m buffer Secondary highway length in 800 m buffer / Total road length in 800 m 

buffer 

0.000 1.000 0.339 

Rail road length in an 800m buffer Rail road length in kilometers 0.000 6.038 0.307 

Local road length in an 800m buffer Local road length in 800 m buffer / Total road length in 800 m buffer 0.000 1.000 0.653 

Presence of shelter in bus stop (1 = Yes and 0 = No) 0.000 1.000 0.227 

Built Environment Around the Bus Stop  

Land use mix area in a 800 m buffer Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-use, 𝑝 is 

the proportion of the developed land area devoted to a specific land-use, 

𝑁  is the number of land-use categories within 1mile buffer of the 

roadway segment. 

0.001 0.810 0.501 

Household (HH) density HH Density = HH size / Census area/1000 0.005 3.718 0.476 

Employment density Employment Density = Employment / Census area/1000 0.000 37.339 1.096 

Central business district (CBD) distance (Central business area distance in km from bus stop)/10 0.003 5.058 1.178 

Sociodemographic and Socioeconomic Variables in Census Tract  

Age 0 to 17 years Ln(People age 0 to 17 years)/Census Area -6.584 3.682 -0.282 

Age 65 and up Ln(People age 65 and up)/Census Area -6.356 3.231 -1.067 

High income (>80k) Ln(High income People (>80k)/Census Area) -8.526 2.740 -1.827 

Household rent Ln(Household rent / Census Area) -7.210 3.978 -0.528 

Spatial and Spatio-Temporal Effect 

Temporal lagged variable for boarding Ln(temporal lagged variable for boarding 0.000 8.857 1.459 

Temporal lagged variable for alighting Ln of temporal lagged variable for alighting 0.000 8.820 1.490 

Spatio-Temporal lagged variable for boarding 

in a 800 m buffer 

Ln of spatio-temporal lagged variable for boarding in a 800 m buffer 0.000 9.623 3.811 

Spatio-Temporal lagged variable for alighting 

in a 800 m buffer 

Ln of spatio-temporal lagged variable for alighting in a 800 m buffer 0.000 9.584 3.815 
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TABLE 3 Spatial Error Model (SEM) and Spatial Lag Model (SAR) Results 

Variable Name Boarding Alighting 

SEM SAR SEM SAR 

Estimates t-stat Estimates t-stat Estimates t-stat Estimates t-stat 

Constant 2.423 19.260 1.723 172.504 3.084 27.137 2.090 182.354 

Stop Level Attributes         

Headway (Ln of headway)  -0.526 -29.285 -0.403 -3.473 -0.510 -28.956 -0.346 -3.894 

Transportation Infrastructure Around the 

Bus Stop 

        

Bus route length in a 600m buffer 0.307 7.222 0.208 5.502 0.303 7.623 0.208 5.555 

Side walk length in a 800m buffer 0.044 5.360 -2 - 0.058 7.383 - - 

Secondary highway length in a 600m buffer 0.769 7.047 0.677 36.325 - - - - 

Local road length in a 800m buffer 0.708 10.919 0.528 -16.331 - - - - 

Rail road length in a 800m buffer - - - - -0.071 -3.006 - - 

Presence of shelter in a bus stop 0.775 19.904 0.739 39.254 0.553 14.185 0.518 27.966 

Built environment around the stop         

Land use mix area in a 800m buffer 0.409 2.712 0.316 3.230 0.628 4.027 0.472 41.242 

Household density - - - - -0.114 -2.115 - - 

Employment density -0.016 -2.242 - - - - - - 

Central Business District area distance (km) -0.110 -5.460 -0.064 -3.920 -0.148 -6.901 -0.055 -3.517 

Sociodemographic and Socioeconomic 

Variables in Census Tract 

        

Age 0 to 17 years  0.116 4.685 0.102 1.725 0.100 4.165 - - 

Age 65 and up -0.106 -5.086 -0.087 -4.737 -0.095 -4.591 - - 

High income (>80k) -0.054 -4.122 - - -0.067 -5.178 -0.048 -3.941 

HH rent 0.051 2.518 - - 0.065 3.114 0.056 1.741 

Spatial and Spatio-Temporal Effect         

Temporal lagged variable 0.052 13.320 0.050 0.349 0.051 13.513 0.048 0.344 

Spatio-temporal lagged variables in a 800 m 

buffer 

-0.032 -12.685 -0.025 -6.305 -0.027 -11.098 -0.023 -6.087 

Spatial auto correlated term 1.617 39.268 - - 1.710 104.83 - - 

Spatial autoregressive term - - 0.336 174.130 - - 0.374 200.094 

 

 
2 “-“ means insignificant at 90% confidence interval 


