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Abstract 

Recent success of bicycle-sharing systems (BSS) have led to their growth around the world. Not 

surprisingly, there is increased research toward better understanding of the contributing factors for 

BSS demand. However, these research efforts have neglected to adequately consider spatial and 

temporal interaction of BSS station’s demand (arrivals and departures). It is possible that bicycle 

arrival and departure rates of one BSS station are potentially inter connected with bicycle flow 

rates for neighboring stations. It is also plausible that the arrival and departure rates at one time 

period are influenced by the arrival and departure rates of earlier time periods for that station and 

neighboring stations. Neglecting the presence of such effects, when they are actually present will 

result in biased model estimates. The major objective of this study is to accommodate for spatial 

and temporal effects (observed and unobserved) for modeling bicycle demand employing data 

from New York City’s bicycle-sharing system (CitiBike). Towards this end, Spatial Error and 

Spatial Lag models that accommodate for the influence of spatial and temporal interactions are 

estimated. The exogenous variables for these models are drawn from BSS infrastructure, 

transportation network infrastructure, land use, point of interests, and meteorological and temporal 

attributes. The results provide strong evidence for the presence of spatial and temporal dependency 

for BSS station’s arrival and departure rates. A hold out sample validation exercise further 

emphasizes the improved accuracy of the models with spatial and temporal interactions. 

 

Keywords: bicycle sharing systems, CitiBike New York, spatial panel models, spatial lag, spatial 

error, bicycle infrastructure, land use and built environment 
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1. INTRODUCTION 

Many benefits of bicycle sharing systems (BSS) have led to the rapid growth of these systems 

around the world in the recent years. In fact, over 1000 cities have already started or are 

considering the initiation of a BSS (Meddin, and DeMaio, 2015). A bicycle sharing system 

provides individuals increased flexibility to bicycle without the traditional burdens of owning a 

bicycle (such as the need to secure their bicycles or perform regular maintenance). BSS provides 

a healthier and affordable transport mode for short trips especially in dense urban areas. A well 

designed and planned bicycle-sharing system can serve as an access/egress for other public 

transportation systems mode – a potential last mile solution (Jäppinen et al., 2013). BSS are in 

tune with the millennials’ proclivity for shared transportation systems (Davis et al., 2012; Dutzik 

and Baxandall, 2013). Further, earlier research efforts provide evidence that BSS were successful 

in improving the driver awareness towards cyclists and consequently increased the safety for 

cyclists (Murphy and Usher, 2015). BSS have also assisted in encouraging the public perception 

of cycling as an everyday travel mode and thus broadening the cycling demographic (Goodman et 

al., 2014). Cities, by installing BSS, are focusing on inducing a modal shift to cycling, and 

subsequently decrease traffic congestion and air pollution. 

Given the growing attention towards bicycle-sharing systems, it is important to examine 

the current performance of BSS operation to improve the effectiveness of BSS schemes (Fishman 

et al., 2013). Further, understanding factors influencing BSS demand will allow us to better 

coordinate the installation of new systems or modify existing systems. A useful characterization 

of BSS demand involves considering bicycle usage as arrivals (depositing bicycles) and departures 

(removal of bicycles) at BSS stations. Researchers have examined BSS usage to determine 

contributing factors to BSS demand (Nair et al., 2013; Rixey, 2013; Faghih-Imani et al., 2014; 

Gebhart and Noland, 2014; O’Brien et al., 2014; Rudloff and Lackner, 2014). These studies usually 

examine the impact of various attributes on BSS usage at different levels of temporal and spatial 

aggregation. Variables considered include BSS infrastructure (such as number of BSS stations and 

stations’ capacity), transportation network infrastructure (such as length of bicycle facilities, 

streets and major roads), land use (such as population and job density), point of interests (such as 

presence of subway stations, restaurants, businesses and universities), and meteorological and 

temporal attributes (such as temperature and time of day). However, the earlier research efforts 

have neglected to adequately consider spatial and temporal interaction of BSS station’s demand 

(arrivals and departures). To elaborate, it is possible that bicycle arrival and departure rates of one 

BSS station are potentially inter connected with bicycle flow rates for neighboring stations. The 

demand (for an empty slot or a bicycle) might materialize at a neighboring station when a station 

is totally full or empty. It is also plausible that the arrival and departure rates at one time period 

are influenced by the arrival and departure rates of earlier time periods for that station and 

neighboring stations. Neglecting the presence of such effects, when they are actually present will 

result in biased model estimates.  

The major objective of this study is to accommodate for spatial and temporal effects 

(observed and unobserved) for modeling bicycle demand in a bicycle-sharing system. For this 

purpose, trip data from New York City’s bicycle- sharing system (CitiBike) is used to obtain hourly 

stations’ arrivals and departures. Along with the compiled arrivals and departures data, we take 

into account the impact of several exogenous attributes including BSS infrastructure, 

transportation network infrastructure, land use, point of interests, and meteorological and temporal 

attributes. The proposed research effort allows us to examine the impact of these aforementioned 
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factors on BSS demand while incorporating the spatial and temporal interaction of arrivals and 

departures. We also account for any spatial dependency between the stations’ usage and their 

nearby stations. We investigate the relation between arrivals (departures) at one station with 

arrivals (departures) at its neighbouring stations.  Furthermore, as we have multiple repeated 

observations of the dependent variable (hourly rates for each station) we employ spatial panel 

models in our analysis. Although spatial panel models have recently become prevalent in 

econometric literature in general, we believe our study is the first attempt to adopt such models 

with such a large number of repeated observations.    

The remainder of the paper is organized in the following order. A brief overview of earlier 

research is presented in Section 2. Section 3 describes the data and the sample formation 

procedures. In Section 4, the methodology used and model structures are described. Section 5 

presents the model results and validation. Finally, Section 6 summarizes and concludes the paper. 

 

2. LITERATURE REVIEW 

The bicycle-sharing systems have evolved since its initiation in the 1960s (DeMaio, 2009; Shaheen 

et al., 2010). There is increased research on bicycle-sharing systems over the past few years (See 

Fishman 2015 for a review of recent literature on BSS). There have been several quantitative 

studies examining bicycle-sharing systems from different dimensions – BSS and bicycling 

infrastructure, land use and built environment, public transportation infrastructure, temporal and 

meteorological attributes, and user socio-demographics (Nair et al., 2013; Rixey, 2013; Faghih-

Imani et al., 2014; Gebhart and Noland, 2014; O’Brien et al., 2014; Rudloff and Lackner, 2014). 

For example, several studies demonstrate that increasing BSS infrastructure (number of stations 

and capacity) or increasing bicycle routes around stations increases BSS usage (Buck and Buehler, 

2012; Faghih-Imani et al., 2014; Wang et al., 2015). The impact of land use and urban form 

attributes on BSS usage are also investigated. Studies found that stations in areas with higher job 

or population density or stations with higher number of point of interests (such as restaurants, retail 

stores and universities) in the vicinity experience higher arrivals and departures (Rixey, 2013; 

Faghih-Imani et al., 2014). Another study showed that ignoring the self-selection impact of BSS 

infrastructure installation decision process in modelling usage results in an over-estimation of BSS 

infrastructure effect on usage (Faghih-Imani and Eluru, 2014). Furthermore, the relationship 

between BSS and other public transportation systems such as subway or bus transit system are also 

examined by several research efforts (Nair et al., 2013; Faghih-Imani et al., 2014; Faghih-Imani 

and Eluru, 2015; González et al., 2015).  

The analyses on temporal attributes of BSS show that the peak arrivals and departures are 

observed during the evening peak hours while weekdays tend to have higher rates of usage 

compared to weekend. The results indicate the presence of a commuter usage of BSS on weekdays 

(O’Brien et al., 2014; Faghih-Imani et al., 2014; Murphy and Usher, 2015). Several studies analyze 

the impact of weather information (such as temperature and humidity) on the usage of the BSS 

(Gebhart and Noland, 2014, Faghih-Imani et al., 2014, Mahmoud et al., 2015). Users’ socio-

demographics and preference towards BSS is another aspect of recent research efforts on BSS. 

Convenience of BSS as well as having a BSS station closer to home location was found to be 

important reasons for individuals to use the system (Fuller et al., 2011; Bachand-Marleau et al., 

2012). Several studies highlighted the differences between BSS short-term users and BSS annual 

members’ preferences towards the use of the system (Lathia et al., 2012; Buck et al., 2013; Faghih-
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Imani and Eluru, 2015). Studies found that BSS users prefer shorter trips with all else same 

(Faghih-Imani and Eluru, 2015, Mahmoud et al., 2015). Gender gap between the users of BSS is 

found to be an issue where the majority of BSS users are male (Faghih-Imani and Eluru, 2015; 

Murphy and Usher, 2015). Further, research efforts demonstrated that BSS users prefer to use the 

existing bicycle facilities such as bicycle lanes (Faghih-Imani and Eluru, 2015; González et al., 

2015).  

 

2.1. Current Study in Context 

The earlier studies, while providing useful insights on the BSS system level usage patterns, ignored 

the possible spatial and temporal interaction of BSS’s demand. Several studies analyzed the effect 

of neighbouring stations in a bicycle-sharing system. Rudloff and Lackner (2014) employed count 

models to analyze demand profiles of Citybike Wien system in Vienna, Austria. They incorporated 

the neighbouring stations effect in the modelling framework by considering dummy variables 

whether a station is full or empty for the three closest stations. Several research efforts focused on 

the prediction of the BSS usage in the near future (Froehlich et al., 2009; Kaltenbrunner et al., 

2010; Borgnat et al., 2011; Giot and Cherrier, 2014; Han et al., 2014) by employing time series 

analysis considering temporal and meteorological variables while ignoring land-use and built 

environment effects. Faghih-Imani et al. (2014) analyzed hourly arrival and departure rates of 

Montreal BIXI system using a linear mixed model. They assessed the impact of meteorological 

data, temporal characteristics, bicycle infrastructure, land use and built environment attributes on 

arrival and departure flows at the station level. However, in their analysis the authors did not 

consider either observed or unobserved influence of surrounding stations on BSS usage. To 

elaborate, the demand at a neighboring BSS station for the preceding time period (hour or day or 

week) is a useful predictor for demand in the current hour. At the same time, the demand 

experienced at the neighboring stations at the current time or in the preceding time period (hour or 

day or week) also can enhance our model understanding. In summary, considering such 

spatio-temporal interactions when they exist can allow for improved accuracy in model estimates 

as well as model fit. Of course, considering such predictors requires us to develop models that are 

statistically valid.  

Towards this end, the current study draws heavily from spatial econometric literature. 

Spatial panel models have been used for examination and estimation of regional labor markets, 

economic growth, public expenditures, tax settings, and agricultural productions (Elhorst, 2014). 

Recently, several studies employed spatial panel models in transportation literature in various 

analyses including land use development (Frazier and Kockelman, 2005; Wang and Kockelman, 

2006; Wang et al., 2012; Ferdous and Bhat, 2013; Shen et al., 2014), real estate pricing (Efthymiou 

and Antoniou, 2013; Dubé et al., 2014), spillover effect of transportation infrastructure (Chen and 

Haynes, 2013; Tong et al., 2013; Yu et al., 2013), tourism activity (Yang and Wong, 2012), and 

airfare pricing (Daraban and Fournier, 2008). In the current study, we estimate comprehensive 

econometric models to incorporate for the influence of observed and unobserved spatio-temporal 

interactions on bicycle arrival and departure rates for a bicycle-sharing system. Specifically, we 

consider the pooled panel spatial lag and spatial error models in our analysis. The model 

development is undertaken at three levels: a) simple models without considering the spatial-

temporal effects; b) spatial error models with and without observed spatial-temporal effects; c) 

spatial lag models with and without observed spatial-temporal effects. We develop separate models 
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for arrivals and departures. The data for the analysis is drawn from hourly observation of arrival 

and departure rates for CitiBike system in New York City.   

  

3. DATA 

New York’s CitiBike system is the latest major public bicycle-sharing systems around the world 

and the largest in United States. The CitiBike started its service in May 2013 with 330 stations and 

6000 bicycles in the lower half of Manhattan and some parts of Northwest Brooklyn. The system 

is set up around the city’s main commercial business districts and some residential areas with an 

average daily ridership of 34,000 trips. New York City is the most populous city in the US and a 

host to millions of visitors every year. In 2013, the mode share of cycling in New York City 

reached 1% from about 0.5% in the 2007 (Kaufman et al., 2015). According to NHTS 2009, 

bicycle trips accounts for about 0.4% of total trips in New York metropolitan area while 71.7% of 

trips are made by private vehicles. About 49.7% of trips are less than 2 miles; among these trips, 

the share of private vehicles reduces to 57.1% while the share for bicycle mode increases to 0.7%.  

These numbers clearly indicate that there is substantial potential for the success of a well-designed 

BSS in New York City as one of the dense urban cores in the world. Moreover, about 74% of 

CitiBike stations are within a half mile of subway stations, providing a solution for the public 

transit users’ problem “last-mile to destination”. The city’s dense and walkable urban form provide 

a good opportunity for the success of a well-designed BSS. 

The data used in our research was obtained from CitiBike website 

(https://www.citibikenyc.com/system-data). The CitiBike website provides trip dataset for every 

month of operation since July 2013. The trip dataset includes information about origin and 

destination stations, start time and end time of trips, user types i.e. whether the user was a customer 

with an annual membership pass or a temporary pass, and the age and gender for members’ trips 

only. Additionally, the stations’ capacity and coordinates as well as trip duration are also provided 

in the dataset. The built environment attributes such as bicycle routes and subway stations are 

derived from New York City open data (https://nycopendata.socrata.com/) while the socio-

demographic characteristics are gathered from US 2010 census and the weather information are 

for Central Park station from National Climatic Data Center. 

 

3.1. Data Assembly and Exogenous Variable Generation 

A series of data compilation exercises were required to create the sample of hourly arrivals and 

departures used for analysis in this study. Earlier studies showed that there is a significant 

difference between the behaviour of annual members and customers with temporary pass towards 

the use of BSS (Lathia et al., 2012; Buck et al., 2013; Faghih-Imani and Eluru, 2015). In this paper, 

we distinguish between arrivals and departures made by different type of users. Number of trips 

originated from and destined to one station are equal to the number of departures and arrivals for 

that station. Thus, we aggregated the number of trips originated from/destined to one station by 

different user types at an hourly level to obtain hourly arrivals and departures by members and 

daily customers at a station level. Then we normalized stations’ arrivals and departures with station 

capacity to consider the station capacity effect on demand. In our modeling efforts, we employ 

logarithm of the hourly normalized arrivals and departures as the dependent variable. We focused 

on the month of September, 2013; i.e. the peak month of the usage in 2013. Therefore, the final 
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sample consists of 237,600 records (330 stations × 24 hours × 30 days). The data assembled has a 

panel structure of 720 repetitions per station. 

The exogenous attributes considered in our study can be broadly classified into three 

categories: (1) weather, (2) temporal and (3) spatial variables. For the first group of variables, we 

consider hourly temperature and relative humidity, and the hourly weather condition characterized 

as an indicator variable for presence of rain. The second group of variables, temporal variables, 

recognizes the impact of time-of-day and day-of-the-week on BSS usage. Specifically, five time 

periods were created considering the start time of the trips for departures and end time of the trips 

for arrivals,: AM (7:00-10:00), Midday (10:00-16:00), PM (16:00-20:00), Evening (20:00-24:00), 

and Night (0:00- 7:00). A categorical variable indicating weekends was created to capture the 

differences in BSS usage between weekday and weekends.  

Several variables were considered under spatial variables group. Population density was 

calculated at census block level and employment density at zip code level. Other attributes were 

considered at a station buffer level1. For the station buffer level variables, we employed a radius 

of 250-meter around each station considering the distances between CitiBike stations and the dense 

urban form of New York City; a typical New York City block is about 60 meter (Kaufman et al., 

2015). The transportation system attributes including the length of bicycle routes and streets, the 

presence of subway and Path train stations, the number and capacity of CitiBike stations (excluding 

the origin/destination station) are considered at the station buffer level. These variables recognize 

the impact of street network and cycling facilities, public transit and the BSS infrastructure on 

arrival and departure rates. Further, the number of restaurants (including coffee shops and bars), 

and area of parks within the 250-meter vicinity of CitiBike stations were also considered as point 

of interest attributes in our analysis2.  

  

3.2. Sample Characteristics 

A descriptive summary of sample characteristics is presented in Table 1. It can be observed that 

arrivals and departures of annual members are significantly higher than the daily customers’ rates; 

indicating that regular users form a larger component for BSS usage in New York. Moreover, the 

temporal trend of arrival and departure rates are clearly different for the two type of users: 

members’ arrivals and departures have morning and afternoon peak while the daily customers’ 

arrivals and departures have only the afternoon peak. In general, the BSS usage is substantially 

higher in the PM period compared with any other time of day. Furthermore, the BSS usage is 

spatially different by user types. Figure 1 and 2 illustrate average arrival and departure rates in AM 

and PM by annual members and daily customers, respectively. It must be noted that due to different 

level of usage by members and daily customers, in these two figures, arrival and departure rates 

categories are different. For members figure, the average hourly arrivals and departures are 

                                                 

1 Considering all variables at the same spatial unit level would be ideal; however, due to data availability we considered 

variables in the 250-meter buffer, census tract and zip code level. To reduce potential bias due to various spatial units, 

we consider density representations of the variables for census tract and zip code level. For the 250-meter buffer, by 

maintaining a constant area, we are effectively considering a density representation. 

2 The reader would note that we employed a 250-meter buffer around the CitiBike stations for variable generation. It 

might be more appropriate to adopt a 250-meter network distance based approach. However, it increases the 

complexity of the task substantially and is beyond the scope of our research effort.  



7 

 

categorized as: Very Low (0-4 bicycles), Low (4-8 bicycles), Medium (8-12 bicycles), and High 

(12+ bicycles) while for the customers with temporary passes, the categories are: Very Low (0-0.5 

bicycles), Low (0.5-1.5 bicycles), Medium (1.5-3 bicycles), and High (3+ bicycles). The figures 

clearly show the distinct usage pattern of members and daily customers. 

 

4. METHODOLOGY 

In this paper, the usage is characterized as the hourly arrivals and departures for each station for a 

month of data. In order to recognize the multiple repeated observation of a spatial unit (CitiBike 

stations), we employ spatial panel models in our analysis (see Elhorst, 2014 for complete 

econometric model details). Let q = 1, 2, …, Q (in our study Q=330) be an index to represent each 

station (spatial unit) and t = 1, 2, …, T (in our study T=24hr×30days=720) be an index for each 

hour. A pooled linear regression model for panel data considering spatial specific effects without 

considering spatial dependency can be written as: 

𝑦𝑞𝑡 = 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜖𝑞𝑡     (1) 

Where 𝑦𝑞𝑡 is the log-normal of normalized arrival and departure rates as dependent variable, 𝑥𝑞𝑡 

is a column vector of attributes at station q and time t, and 𝛽 is the corresponding coefficient 

column vector of parameters to be estimated. The random error term, 𝜖𝑞𝑡, is assumed to be an 

independently and identically distributed normal error term for q and t with zero mean and variance 

σ2 , and 𝜇𝑞 represents a spatial specific effect to account for all the station-specific time-invariant 

unobserved attributes3. This spatial specific effects can be treated as fixed effects or random 

effects. In the fixed effects model, for every station a dummy variable is created while in the 

random effects model, 𝜇𝑞 is treated as random term that is independently and identically 

distributed with zero mean and variance 𝜎𝜇
2. In addition, the spatial random effects and random 

error term are assumed to be independent. The fixed effects methodology is not appropriate in the 

presence of time-invariant independent variables (such as population density or length of bicycle 

routes in the buffer in our empirical context). In addition, the fixed effects models estimate a large 

number of parameters (one parameter specific to each station) thus are computationally 

cumbersome for large systems as ours. Therefore, in our study, we restrict ourselves to spatial 

random effects. 

In traditional econometric literature, spatial dependency is incorporated in model in two 

main forms: 1) by a spatially lagged dependent variable known as spatial lag model, or 2) by a 

spatial autocorrelation process in the error term known as spatial error model. In our study, the 

spatial lag model proposes that arrivals (departures) at one station depend on the arrivals 

(departures) in neighbouring stations while spatial error model posits that unobserved factors are 

correlated across neighbouring stations.  

A spatial lag model can be written as follows: 

𝑦𝑞𝑡 = 𝛿 ∑ 𝑤𝑞𝑗𝑦𝑗𝑡

𝑄

𝑗=1

+ 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜖𝑞𝑡     (2) 

                                                 
3 The reader would note that temporal lag variables are considered within 𝑥𝑞𝑡. 
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Where 𝛿 is called the spatial autoregressive coefficient and 𝑤𝑞𝑗 is an element from a spatial weight 

matrix W. The spatial weight matrix W defines the spatial arrangement of the stations or in the 

other words the neighbouring stations. Several types of spatial matrices are introduced in earlier 

literature. For example, W could be based on inverse of square distance between stations or 

neighboring stations within a threshold distance. In our study, we adopt the second approach by 

considering stations within a 500 m network distance (not the direct distance). While it is possible 

to explore several distance thresholds, for active modes of transportation accounting for spatial 

dependency within a 500 m distance seems more reasonable. Hence, the spatial W matrix is a 

330×330 matrix with elements equal to 1 for the stations that are within 500m of each other and 

zeros for the rest of elements. It must be noted diagonal of W matrix is set to be zero to prevent the 

use of 𝑦𝑞𝑡 to model itself. For stability in estimation, a row-normalized form of the W matrix is 

employed as our spatial weight matrix (see Elhorst, 2014 for more details on W matrix).  

A spatial error model may be written as follows:  

𝑦𝑞𝑡 = 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜑𝑞𝑡     (3𝑎) 

𝜑𝑞𝑡 = 𝜌 ∑ 𝑤𝑞𝑗𝜑𝑗𝑡

𝑄

𝑗=1

+ 𝜖𝑞𝑡     (3𝑏) 

where 𝜑𝑞𝑡 accounts for the spatial autocorrelated error term and 𝜌 reflects the spatial 

autocorrelation coefficient. Both spatial lag model and spatial error model can be estimated using 

maximum likelihood approach (see Elhorst, 2014 for details on likelihood functions). In this paper, 

we adopt Matlab routines provided by Elhorst (2003, 2009), to estimate pooled spatial lag and 

error models with spatial specific random effects.  

 

5. ANALYSIS AND DISCUSSION 

In our research effort, a systematic procedure was employed to demonstrate the influence of spatial 

and temporal interactions on modeling arrival and departures rates. The models were estimated for 

two user groups (members and daily customers) - separately for arrivals and departures. Thus we 

estimated 4 groups of models. More importantly, for each model group, the effort was to evaluate 

the improvement in data fit with addition of spatial and temporal interactions. Towards this end, 

we started with a pooled spatial model with random effects (model described in Equation 1 – IM1). 

To this model we added temporally lagged observed variables i.e. the dependent variable for the 

station from previous time periods including 1 hour, 1 day, and 1 week as independent variables. 

The model is labelled as IM2. As a next step, we added spatially lagged dependent variables using 

the W matrix. The model accounts for the impact of neighborhood station from earlier time periods 

on the dependent variable. The model is labelled as IM3. The three independent models account 

for random effects specific to the station but do not consider any spatial autoregressive (spatial 

lag) or autocorrelation (spatial error) parameters. For each of these independent models a 

corresponding spatial lag and spatial error versions are estimated thus giving rise to SL1, SL2, 

SL3, SE1, SE2 and SE3 models. For instance, the difference between IM1 and SL1 is the additional 

autoregressive parameter estimated for lagged dependent variables (see equation 2).  The 

difference between IM3 and SE3 is the additional spatial autocorrelation term estimated in the 

spatial error format (see Equation 3a and 3b). We estimated 9 models per group thus yielding 36 

models in total. 
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5.1. Model fit measures 

Table 2 presents a summary of the goodness of fit measures. The reader would note that the final 

specifications were obtained after a systematic procedure of examining several specifications 

based on intuitiveness supported by statistical inference. The final results for members’ and daily 

customers’ usage models are presented in Table 2. For each model type, the log-likelihood at 

convergence, the number of parameters estimated, and the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) which penalize the modelling frameworks for additional 

parameters are presented. For a given empirical model, 𝐴𝐼𝐶 =  2𝐾 −  2𝑙𝑛(𝐿) where K is the 

number of parameters and ln(L) is the log–likelihood value at convergence and, 𝐵𝐼𝐶 = −2𝑙𝑛(𝐿) +
𝐾𝑙𝑛(𝑄) where Q is the number of observations. The BIC imposes higher penalty than AIC for 

over-fitting. The lower the AIC or BIC is, the more preferable the model is in terms of goodness 

of fit. The following observation can be made from a comparison between models. First, 

incorporating observed interactions - either as temporally lagged dependent variables or 

temporally and spatially lagged dependent variables significantly improve model fit measures. 

Second, addition of spatial autoregressive (spatial lag) or autocorrelation (spatial error) parameters 

offers substantial improvement in model fit, with the spatial lag model offering more improvement. 

Finally, the spatial lagged model with both temporally lagged and temporally spatial lagged 

variables provide the best model fit.  

The comparison exercise provides strong evidence in support of our hypothesis that model 

incorporating the spatial and temporal observed or unobserved effects in the modelling of BSS 

usage offers a more accurate estimation framework. Ignoring these spatial and temporal 

dependencies would result in biased and inaccurate parameters estimates. Presenting all the 36 

models is not possible in the context of this paper. So, for the sake of brevity, only the spatial 

lagged model of arrivals and departures that provided the best fit measures are discussed in this 

section and presented in Table 3.  

 

5.2. Model estimation results  

5.2.1. Time and Weather Variables 

Time period specific indicator variables corresponding to AM, Midday, PM, and Evening have 

statistically significant impact on arrivals and departures for both users’ types. It must be noted 

that the effect of AM and PM variables should be carefully taken into account because of the 

interaction of these variables with population and job density variables. Still, the results 

demonstrate that the CitiBike system is extensively used during the PM period compared to other 

times of the day by both annual members and daily customers. The weekend variable provides 

interesting results. Annual members are prone to use the system more on weekdays than weekends, 

while daily customers tend to bicycle more on weekends. It might indicate that the usage of 

CitiBike system by customers with temporary passes are more likely for recreational activities. As 

expected, people are less likely to use CitiBike system in rainy or very humid time periods as 

highlighted by negative coefficients of rainy and relative humidity variables. The temperature 

variable did not yield a statistically significant effect.  

 

5.2.2. Built Environment variables 



10 

 

In this section, we discuss the estimate results for built environment and land use attributes. The 

length of bicycle routes in the 250-meter buffer around CitiBike stations has positive impact on 

the arrivals and departures for daily customers. However, the variable has no significant effect for 

members. The results indicate that placing BSS stations near bicycle facilities increases the non-

members’ usage of the system. It is possible that daily customers are less familiar with the city 

street network and are generally more cautious; thus prefer being close to city’s bicycle routes. On 

the contrary, the length of railway line near a CitiBike station decreases the usage of system for 

both user types as the railways are barrier’s to cyclist’s movement. As expected, the presence of 

subway station near CitiBike station has positive significant impact on the station’s arrival and 

departure rates with slightly higher impact in members’ models. For the daily customers, the area 

of parks in the buffer variable has positive impact on the arrival and departure rates. This impact 

is higher on weekends. For annual members, the parks area variable does not have significant 

impact on weekdays but on weekends there is positive effect on members’ arrivals and departures. 

As expected, both user types’ arrivals and departures increase when there are higher number of 

restaurants around CitiBike station.  

The arrival and departure rates of daily customers are less sensitive to population and job 

density variables than the arrival and departure rates of members. As expected, the population 

density variable has positive impact on arrivals and departures by members. Although the 

interaction of population density with AM and PM variables are both positive for members’ 

departure model, these variables have interestingly opposite impact on arrivals for members. The 

impact is also opposite for arrivals by daily customers as highlighted by negative coefficient of 

population density in AM and positive coefficient in PM period. CitiBike stations in areas with 

higher job density are more likely to have higher arrivals in AM and higher departures in the PM 

as highlighted by positive coefficients of the interaction of job density variable with AM and PM 

variables. The population and job density variables become statistically insignificant in the 

departure model for customers with daily passes. Overall the coefficients of population density, 

job density and their interaction with AM and PM periods clearly demonstrate the use of CitiBike 

system for daily commute to work in the morning and back to home in the evening especially for 

regular member users (similar to findings of Faghih-Imani et al., 2014 study for Montreal system). 

 

5.2.3. Spatial and temporal observed effects 

In this section, the estimate results for the temporally lagged dependent variables and the 

temporally lagged spatial lag variables are discussed. All the three temporally lagged dependent 

variables – the observed dependent variable from 1 hour, 1 day and 1 week before – have strongly 

positive impact on the arrival and departure rates for members’ and daily customers’ models. The 

results show that incorporating the observed demand in the modelling procedure substantially 

enhances the accuracy of the model estimation.  Furthermore, incorporating the observed spatial 

lag variable for earlier time period (in our analysis 1 hour, 1 day and 1 week before) also has strong 

impact in the usage models. The significant impact of spatial lag variable and the temporally lagged 

spatial lag variables confirm our hypothesis that the arrival and departure rates in one station are 

correlated with the arrival and departure rates of neighboring stations.   

 

5.2.4. Autoregressive parameter and random effects 
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In the spatial lag model, an autoregressive parameter that relates the usage (arrivals and departures) 

from the current stations to the usage of stations in the vicinity is considered. As expected, the 

parameter is positive indicating a positive dependency in BSS usage. The magnitude of this impact 

in members models is almost double than the one in daily customers. This spatial effect might have 

several plausible explanations. One possible explanation might be that stations in the same vicinity 

share the same attractors (jobs, restaurants or tourist spots). Another reason might be that when we 

have higher arrivals (departures) for one station, it is possible that station becomes full (empty). 

Thus, people go to the nearby stations to return (pick up) their bicycles thus transferring the 

demand to stations in the vicinity.  

The random effects parameter accounts for common unobserved factors specific to a station 

that affect usage. In our context, we observe that the common unobserved factors are drawn from 

a zero mean distribution with a standard deviation ranging from 0.0811 through 0.0967 across the 

models. 

 

5.3. Model Validation 

For the model validation purposes, we use data from first week of October, 2013 (exactly one 

week after the data employed for estimating the model) for CitiBike system. The same data 

processing exercises presented in section 3.1 were undertaken to prepare the validation sample for 

annual members and daily customers. The SL3 model discussed in previous section was used to 

compute predicted arrival and departure rates. For members’ and daily customers’ arrivals and 

departures SL3 model, the predicted rates were compared with the observed arrivals and departures 

in validation sample. The reader would note that the spatial panel models can be applied in the 

planning process of BSS even when the future usage rates are not observed (see Elhorst 2014 for 

exact prediction equations for spatial panel models). Further, we computed Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE) as overall metrics for error in prediction. In 

addition, we summed the absolute error of members’ and daily customers’ model predictions to 

obtain total arrivals or departures absolute error as a proportion of station capacity and examined 

the number of stations with error less than 5%, 10%, 15%, 20% and 25% of station capacity. We 

presented these error metrics for the entire sample and for specific time periods of the day. Table 

4 presents the validation results. 

 The validation exercise results demonstrate an outstanding predictive performance by the 

proposed SL3 model. It is observed that the daily customers’ models provide better results with 

the MAE of about 0.68 bicycles per hour compared to the MAE of about 1.8 for members’ models. 

The better performance of daily customers’ models is expected; the range of usage values for daily 

customers is much lower than the corresponding usage values for members. Further, it can be seen 

that the prediction for the arrival model is marginally better than the prediction for the departure 

model. Specifically, considering the error in prediction within 10% of station capacity as threshold, 

the validation results showed that about 90% of the records for arrivals and more than 75% of the 

records for departures demonstrated satisfactory prediction. Throughout the day, the prediction 

performance of models are superior during the PM and Evening periods. Overall, the validation 

exercise shows the enhanced predictive capability of the models incorporating spatio-temporal 

interactions in analyzing BSS usage.  
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6. CONCLUSION 

With the recent growing installation of BSS infrastructure there is a substantial interest in 

identifying factors contributing to the demand of these systems (arrivals and departures). Earlier 

research efforts have neglected to adequately consider spatial and temporal interaction of BSS 

station’s demand. It is possible that bicycle arrival and departure rates of one BSS station are 

potentially inter connected with bicycle flow rates for neighboring stations. It is also plausible that 

the arrival and departure rates at one time period are influenced by the arrival and departure rates 

of earlier time periods for that station and neighboring stations. Neglecting the presence of such 

effects, when they are actually present will result in biased model estimates. This paper presented 

comprehensive econometric models to incorporate for the influence of observed and unobserved 

spatio-temporal interactions on bicycle arrival and departure rates employing data from CitiBike 

system in New York City  

In our research effort, a systematic procedure was employed to evaluate the effects of 

spatial and temporal interactions on modeling arrival and departures rates. The model estimation 

was conducted in three increments: (1) a pooled spatial model with random effects, (2) temporally 

lagged observed variables and (3) temporally and spatially lagged dependent variables using the 

W matrix. For each of three increments, an independent pooled model, spatial error pooled model 

and spatial lag pooled model are developed. The models were estimated for two user groups 

(members and daily customers) - separately for arrivals and departures. We estimated 9 models 

per group thus yielding 36 models in total. We observed that incorporating observed interactions 

- either as temporally lagged dependent variables or temporally and spatially lagged dependent 

variables significantly improve model fit measures. We observed that addition of spatial 

autoregressive (spatial lag) or autocorrelation (spatial error) parameters offers substantial 

improvement in model fit, with the spatial lag model offering more improvement. The spatial lag 

model with both temporally lagged and temporally spatial lagged variable provided the best model 

fit. The results indicate strong evidence for the presence of spatial and temporal dependency 

between of BSS station’s arrival and departure rates. Ignoring these dependencies would lead to 

biased and inaccurate parameters estimates. Further, separating the demand modelling for 

members and daily customers demonstrated that there is clear distinction in the usage of the system 

by daily customers and annual members especially in temporal pattern of system usage.  

The best spatial lag model estimation results were used to predict usage for a hold-out 

sample. Overall, the proposed framework provided satisfactory predictions of usage. The daily 

customers’ models provided better results with the MAE of about 0.68 bicycles per hour compared 

to the MAE of about 1.8 for members’ models. Further, it is observed that the output for the arrival 

model is marginally better than the output for the departure model. The results also showed that 

for arrivals about 90% of the records have the error in prediction within 10% of station capacity 

while for departures more than 75% of the records have the error in prediction within 10%. The 

results indicated that incorporation of observed and unobserved spatial-temporal interactions 

improved the accuracy of parameters estimated and the predictive capability of modelling 

frameworks. 

The proposed framework is applicable for analyzing an existing BSS or a future BSS. For 

an existing BSS system, the model developed can be employed directly to study how redistribution 

of capacity will enhance BSS usage. In this process, the analysts will have to identify potential 

station locations and the distance matrix for the new stations in relation to the existing system. 

Further, the land use variables around proposed stations will need be generated. Subsequently, the 
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model developed can be applied to generate new usage values for the existing stations and newly 

added stations. Thus the proposed model provides improved ability for decision makers to study 

changes to demand prior to adding or removing stations in the system. For the installation of a new 

BSS, the proposed model for New York can be employed to obtain expected demand by 

considering various planned station locations (with information on the inherent distance matrix, 

and land-use buffer variables) and station capacity. An iterative process that generates optimum 

usage can be developed by altering the location and capacity variables. To be sure, the iterative 

application requires the analyst to be aware of the urban region and inherent bicycling patterns. 

The analysis will allow for developing a reasonable quantitative framework for demand estimation 

for the new system. 

To be sure, the proposed study is not without limitations. In our model development, we 

have considered arrivals and departures separately. However, it is possible that arrivals and 

departures share common observed and unobserved attributes that affect each other. Incorporating 

such unobserved dependencies would increase the complexity of the model framework and would 

require substantial additional work. This is an avenue for future work.  
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Figure 1 Average Hourly Arrival and Departure Rates for Members in Peak Hours 
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Figure 2 Average Hourly Arrival and Departure Rates for Daily Customers in Peak Hours 
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Table 1 Descriptive Summary of Sample Characteristics 

Continuous Variables Min Max Mean 
Std. 

Deviation 

Hourly Arrivals (Annual Members) 0 83.00 3.74 5.26 

Hourly Arrivals (Daily Customers) 0 39.00 0.61 1.50 

Hourly Departures (Annual Members) 0 102.00 3.74 5.36 

Hourly Departures (Daily Customers)  0 34.00 0.61 1.49 

Temperature (°C) 8.3 34.4 19.64 4.82 

Relative Humidity (%) 27.0 94.2 60.96 16.01 

Length of Bicycle Facility in 250m Buffer (m) 0 1022.7 314.95 178.82 

Area of Parks in 250m Buffer (m2) 0 95209.9 10181.87 15169.65 

Number of Restaurants in 250m Buffer 0 545 54.35 92.21 

Number of CitiBike stations in 250m Buffer 0 4.00 1.24 1.01 

Capacity of CitiBike stations in 250m Buffer 0 169.00 43.93 38.93 

Station Capacity 3.00 67.00 34.35 10.76 

Pop Density (people per m2 ×1000)  0.01 67.20 24.87 14.68 

Job Density (jobs per m2 ×1000) 0 432.52 55.83 53.83 

Categorical Variables Percentage 

Rainy Weather 2.6 

Weekends 30.0 

Subway Station in 250m Buffer 49.7 

Path Train Station in 250m Buffer 4.2 

The Average Hourly Arrival and Departure Rates by Time of the Day and User Type 

 AM Midday PM Evening 

Arrivals (Annual Members) 5.260 4.536 7.664 2.987 

Arrivals (Daily Customers) 0.236 1.049 1.321 0.450 

Departures (Annual Members) 5.423 4.577 7.659 2.769 

Departures (Daily Customers)  0.294 1.118 1.236 0.405 

 

  



 

Table 2 Summary of Estimated Models 

   IM1 IM2 IM3 SE1 SE2 SE3 SL1 SL2 SL3 

 

M
o
d
el

 T
y
p
e Temporally Lagged Y No Yes Yes No Yes Yes No Yes Yes 

 Spatial Error No No No Yes Yes Yes No No No 

 Spatial Lag No No No No No No Yes Yes Yes 

 Temporally & 

Spatially Lagged Y 
No No Yes No No Yes No No Yes 

A
rr

iv
a
ls

 

M
em

b
er

s # Parameter 19 22 23 20 23 22 18 21 24 

LL -291388 -246056 -241249 -271578 -243884 -239445 -270913 -240844 -239354 

AIC 582814 492156 482545 543195 487814 478935 541862 481731 478755 

BIC 583014 492388 482787 543406 488056 479167 542051 481952 479008 

D
ai

ly
 

C
u
st

o
m

er
s # Parameter 14 17 22 15 18 19 17 20 23 

LL -213408 -203575 -200863 -210466 -202863 -200456 -210433 -202204 -200372 

AIC 426845 407184 401771 420962 405762 400950 420901 404448 400790 

BIC 426992 407363 402002 421120 405951 401150 421080 404659 401032 

D
ep

a
rt

u
re

s 

M
em

b
er

s # Parameter 19 21 21 20 22 21 18 20 22 

LL -289752 -250568 -245586 -271474 -247943 -243498 -271026 -244941 -243381 

AIC 579541 501179 491214 542988 495930 487038 542088 489922 486806 

BIC 579741 501400 491435 543198 496161 487259 542277 490133 487038 

D
ai

ly
 

C
u

st
o
m

er
 # Parameter 13 15 20 14 16 16 17 19 21 

LL -217584 -205929 -204019 -215288 -205425 -203723 -215217 -204908 -203656 

AIC 435193 411889 408078 430603 410882 407478 430469 409853 407355 

BIC 435330 412047 408289 430751 411050 407647 430648 410053 407576 
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Table 3 Estimates of Spatial Lag Model with Temporal and Spatial Lagged Variables  
  Members Daily Customers 

  Arrivals Departures Arrivals Departures 

  Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

 Constant -0.3611 -9.843 -0.3635 -9.633 -1.4010 -35.586 -1.4444 -39.453 

T
im

e 
&

 W
ea

th
er

 

v
ar

ia
b

le
s 

AM 0.2472 24.525 0.2356 26.516 0.0604 7.458 0.0774 18.996 

Midday 0.1524 28.284 0.1491 33.337 0.1952 50.106 0.2044 49.926 

PM 0.1561 16.036 0.1361 15.104 0.1857 25.949 0.1782 36.405 

Evening 0.0092 1.748 - - 0.0440 11.389 0.0423 10.896 

Weekend -0.0491 -13.617 -0.0493 -13.453 0.0863 27.156 0.0860 26.662 

Relative Humidity -0.1562 -14.960 -0.1604 -15.331 -0.0418 -4.781 -0.0245 -2.762 

Rainy -0.2201 -25.216 -0.2298 -25.905 -0.1011 -13.652 -0.1136 -15.120 

B
u

il
t 

E
n

v
ir

o
n

m
en

t 
A

tt
ri

b
u

te
s 

Length of Bicycle Routes in Buffer - - - - 0.0475 1.948 0.0418 1.988 

Length of Rails in Buffer -0.0828 -3.593 -0.0915 -3.761 -0.1052 -4.516 -0.0896 -4.458 

Presence of Subway Station in Buffer 0.0839 2.912 0.0937 3.081 0.0624 2.171 0.0564 2.274 

Area of Parks in Buffer - - - - 2.0842 2.214 1.5096 1.849 

Area of Parks in Buffer *Weekend 1.1051 5.694 1.0925 5.537 1.0257 6.203 0.9912 5.909 

Number of Restaurants in Buffer 0.3549 2.322 0.3865 2.394 - - 0.2338 1.754 

Population Density 2.4118 2.453 2.4503 2.360 - - - - 

Population Density*AM -1.5093 -5.329 0.9810 3.414 -0.4198 -1.749 - - 

Population Density*PM 2.1641 8.597 0.8257 3.240 0.6880 2.819 - - 

Job Density*AM 0.8418 10.790 - - 0.1819 3.230 - - 

Job Density*PM -0.1741 -2.549 0.2881 4.184 - - - - 

L
ag

 V
ar

ia
b

le
s 

Temporally lagged dependent variable         

1 hour 0.1916 99.137 0.1808 93.650 0.1379 68.178 0.1839 91.621 

1 day 0.1549 80.076 0.1441 74.223 0.0839 42.454 0.0983 50.198 

1 week 0.1994 102.068 0.1934 98.620 0.0995 49.664 0.0953 48.157 

Temporally & spatially lagged dependent variable         

1 hour 0.0807 27.213 0.0723 24.981 0.1340 37.013 0.0953 26.315 

1 day 0.0217 7.401 0.0343 11.748 0.0431 12.722 0.0296 8.818 

1 week 0.1060 34.066 0.1152 36.951 0.1195 33.417 0.1161 32.743 

 Spatial autoregressive coefficient 0.1620 60.759 0.1750 66.019 0.0839 30.543 0.0740 26.792 

 Spatial specific random effects SD 0.0967 18.250 0.0931 18.244 0.0811 18.225 0.0954 18.248 
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Table 4 Validation Results for Spatial Lag Model with Temporal and Spatial Lagged 

Variables 

  Overall Night AM Midday PM Evening 

A
rr

iv
a
l 

Mean Absolute Error       

Members 1.816 2.767 2.014 2.902 1.665 0.704 

Daily Customers 0.675 0.476 0.920 1.010 0.612 0.395 

Root Mean Square Error       

Members 3.085 4.667 2.901 4.383 2.465 1.282 

Daily Customers 1.071 0.595 1.439 1.560 0.820 0.480 

Percentage of Total Arrivals 

with Absolute Error less than 
      

5% Station Capacity 67.73 62.50 53.78 42.90 69.78 94.95 

10% Station Capacity 88.19 84.98 83.87 74.72 91.82 98.91 

15% Station Capacity 94.77 92.58 93.36 87.79 97.03 99.62 

20% Station Capacity 97.25 95.92 96.67 93.26 98.73 99.75 

25% Station Capacity 
98.37 97.33 98.09 96.00 99.37 99.83 

D
ep

a
rt

u
re

 

Mean Absolute Error       

Members 1.898 3.065 2.084 3.135 1.579 0.716 

Daily Customers 0.686 0.523 0.963 0.984 0.599 0.398 

Root Mean Square Error       

Members 3.362 5.138 3.008 4.957 2.413 1.520 

Daily Customers 1.092 0.675 1.493 1.553 0.815 0.474 

Percentage of Total Departures 

with Absolute Error less than 
      

5% Station Capacity 53.17 39.80 36.45 27.62 54.29 87.20 

10% Station Capacity 76.33 64.94 68.20 57.32 81.61 96.03 

15% Station Capacity 87.21 78.53 83.81 74.76 91.76 98.35 

20% Station Capacity 92.44 86.16 91.12 83.83 96.17 99.06 

25% Station Capacity 95.23 90.40 94.93 89.22 97.97 99.42 

 


