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Abstract 
The current study contributes to literature on transit ridership by considering daily boarding and 

alighting data from a recently launched commuter rail system of Orlando - SunRail. The analysis 

is conducted based on daily boarding and alighting data for ten months for the year 2015. With the 

availability of repeated observations for every station the potential impact of common unobserved 

factors affecting ridership variables are considered. The current study develops an estimation 

framework, for boarding and alighting separately, that accounts for these unobserved effects at 

multiple levels – station, station-week and station-day. In addition, the study examines the impact 

of various observed exogenous factors such as station level, transportation infrastructure, transit 

infrastructure, land use, built environment, sociodemographic and weather variables on ridership. 

The model system developed will allow us to predict ridership for existing stations in the future as 

well as potential ridership for future expansion sites.  

 

Keywords: SunRail, Boarding, Alighting, Panel linear regression model, Policy analysis. 
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Introduction 

The economic development and the associated growth in household incomes in the United States 

post Second World War resulted in increased household and vehicle ownership, population and 

employment decentralization and urban sprawl. While population has increased nearly 72% 

between 1950 and 1990, aggregate population in central cities declined by 17% (Baum-Snow, 

2007). In terms of commute to central cities, only 38% of commute trips in 2000 were destined to 

central cities; a reduction from 66% in 1960 (Baum-Snow, 2010). These population and 

employment changes resulted in a drastic reduction in public transit ridership. In fact, in fifty years 

since 1940, transit ridership in the US decreased by 31% - a drop of about 4 billion trips (Baum-

Snow & Kahn, 2000). The ridership reduction occurred while a near doubling of the population 

happened in the same time frame (O'Sullivan, 1996). Not surprisingly, the rapid decline in public 

transit ridership is associated with nearly 44% growth in personal vehicle miles traveled. The 

consequences of the drastic transformation of the transportation system include negative 

externalities such as traffic congestion and crashes, air pollution associated environmental and 

health concerns, and dependence on foreign fuel (Schrank et al., 2012). 

In recent years, transportation professionals and policy makers have recognized the 

potentially beneficial role of public transit in enhancing mobility for urban residents while also 

reversing (or at least reducing) the negative externalities of car dependence. Several major 

investments in public transit projects are under consideration in cities including New York, San 

Francisco, Los Angeles, Detroit, Charlotte and Orlando (Megan Barber, 2016). The investments 

include bus and subway system expansions, streetcar additions, light rail and commuter rail system 

addition (and expansion). With the increasing investments in public transit, federal transit 

administration and various agencies supporting these initiatives are interested in examining the 

influence of these investments on transit ridership. A major analytical tool to analyze the impact 

of these investment is the development of statistical models that consider the impact of various 

exogenous factors on ridership.  

The current study contributes to literature on transit ridership evaluation by considering 

daily boarding and alighting data from a recently launched commuter rail system - SunRail that 

began operating in May 2014 in the greater Orlando region. The service has potential to alter travel 

patterns in the Orlando region. The system provides viable transit options for Central Florida 

residents who live along the Interstate-4 (I-4) corridor. The service is expected to alleviate 

congestion along I-4 corridor that is currently under multi-year construction associated with its 

expansion. Further, the system has the potential for improving overall livability, property values, 

and reducing overall carbon footprint. It is beneficial to evaluate factors influencing SunRail 

ridership to promote a viable and sustainable transit alternative. The analysis is conducted based 

on daily boarding and alighting data for ten months for the year 2015. The study examines the 

impact of various observed exogenous factors such as station level attributes, transportation 

infrastructure variables, transit infrastructure variables, land use and built environment attributes 

and sociodemographic and weather variables on ridership. Further, with the availability of repeated 

observations for every station, the potential impact of common unobserved factors affecting 

ridership variables is also considered. The current study develops an estimation framework that 

accounts for these unobserved effects at multiple levels: station, station-week and station day. The 

model system developed will allow us to predict ridership for existing stations in the future as well 

as potential ridership for future expansion sites.  

The remainder of the paper is organized as follows. A brief overview of earlier research is 

described in the literature review section. The methodology section briefly outlines the 
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econometric framework considered. The data section presents data source, data preparation for 

modeling. In the model estimation results section, we discuss the model results and validation. 

Policy analysis results to demonstrate the implications of the developed models are discussed in 

next section. Finally, the conclusion section provides a summary of the findings and concludes our 

paper. 

 

Literature Review 

In recent years, an increased number of studies are undertaking detailed analysis of transit systems 

and associated ridership. These studies examine how various exogenous variables influence 

system level ridership. Literature has focused on different dimensions of transit mode such as bus 

transit (including bus rapid transit), light rail, subway and commuter rail. A comprehensive review 

of literature along all these dimensions is beyond the scope of the paper (see Chakour & Eluru, 

2016; Rahman et al., 2019 for a review). In our review, we focus our attention only on the rail 

alternative. Table 1 provides a summary of the literature on rail ridership with information on study 

region, the level of analyses (macro or micro), modeling methodology, consideration for repeated 

observations, and attributes considered in ridership analysis. Based on the review of the literature, 

it is clear that rail ridership is typically analyzed along two streams – macro level and micro level.  

 

[Table 1 near here] 

 

The macro level studies examine ridership for multiple urban regions or at the national 

level. In this stream, ridership is modeled as a function of population and employment, gasoline 

prices and transit fares, and transit service facilities. The preferred modeling approach employed 

is the multivariate linear regression and its variants such as time series models, generalized least 

squares and auto-regressive models. The studies have spanned various countries including U.S., 

Canada, Greece, and Great Britain. It is interesting to note that across macro level studies a 

reasonable proportion of studies accounted for the presence of common unobserved factors in 

panel data or data with repeated observations.  

The second stream of research is conducted at the micro-level (or station level) with the 

objective of identifying the determinants of ridership. In these studies, the emphasis is on station 

level infrastructure, transportation infrastructure in the vicinity of the station, urban form and built 

environment and sociodemographics. Multiple linear regression approach has been widely used in 

micro level rail ridership estimation at the station level. Advanced approaches considered include 

fixed effects linear regression models, distance-decay weighted regression models, network 

kriging regression. Within micro studies, accommodating for presence of repeated observation is 

not as common as the application of these methods is in macro level studies. It is possible that data 

availability at multiple time points is not as readily available. In micro level ridership analysis, 

most of the studies find significant effect of gasoline prices, transit fares, accessibility, reliability 

and land use patterns surroundings the rail station affecting ridership.  

 

Current Study in Context 

Based on the literature review, it is evident that earlier research on transit ridership has provided 

significant insights. However, the literature is not without limitations. At the micro level, the 

application of methodologies that accommodate for repeated observations is considered in only 

two studies. Even in these studies the authors have only accommodated for unobserved factors at 

a single level (such as station). However, transit ridership could potentially be influenced by 
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unobserved factors at multiple levels. For example, in an urban region, regular weekend concerts 

could potentially influence Friday ridership at downtown stations. Thus, Fridays from different 

weeks are likely to exhibit potential correlation. Similar dependency can be envisioned for weeks 

with festivals in the city core. Thus, to get an accurate estimation of various exogenous factors, 

accommodating for presence of unobserved effects at multiple configurations is beneficial. The 

current study contributes to transit ridership literature by developing a flexible panel linear 

regression model that accommodates for the presence of unobserved factors for various levels 

(such as station, station-week, station-day, weekday). The most appropriate model structure for 

the unobserved factors is guided by intuition and data fit metrics. The study is based on ridership 

data for ten months for the year 2015. Separate models are developed for boarding and alighting. 

The model developed is validated using hold-out sample data. 

 

Methodology 

The focus of our study is to model daily boarding and alighting by employing panel linear 

regression (PLR) modeling approach. The econometric framework for the PLR model is presented 

in this section. 

Let 𝑖 (𝑖 = 1,2,3, … , 𝑁)  be an index to represent weekdays, 𝑞 (𝑞 = 1,2,3, … , 𝑄) be the 

index to represent different level of repetition measures (station, station-day or station-week) and 

𝑟 (𝑟 = 0,1,2, … , 𝑅) be an index to represent the number of boardings or alightings. Then, the 

equation system for modeling boardings/alightings may be written as follows: 

𝑦𝑖𝑟 = (𝜷𝒓 + 𝜹𝒊𝒓 + 𝜸𝒒𝒓)𝒙𝑖𝑟 + 𝜀𝑞   (1)  

where,  𝒙𝒊𝒓 is a vector of exogenous variables specific to weekday 𝑖 and ridership component 𝑟, 

𝜷𝒓 is the associated vector of unknown parameters to be estimated (including a constant). 𝜹𝒊𝒓 is a 

vector of unobserved factors moderating the influence of attributes in 𝒙𝒊𝒓. 𝜸𝒒𝒓 is another vector of 

unobserved effects specific to repetition level 𝑞 and ridership component 𝑟. 𝜀𝑞 is normal 

distributed error term.  

In estimating the PLR model, it is necessary to specify the structure for the unobserved 

vectors 𝜹 and 𝜸 represented by Ω. In this paper, it is assumed that these elements are drawn from 

independent realization from normal population: Ω~𝑁(0, (𝝅𝟐, 𝝈𝑞
2)). Thus, conditional on Ω, the 

likelihood function for the panel model can be expressed as: 

𝐿𝑞𝑟 = ∫ (∏ ∏ (𝑦𝑖𝑟)𝑁
𝑖=1

𝑄
𝑞=1 )

Ω
𝑑Ω   (2)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑞𝑟)

𝑞

 (3)  

The parameters to be estimated in the PLR model are: 𝜷𝒓, 𝝅 and 𝝈𝒒. In the current study 

context, we estimate 𝝈𝒒 for different levels of repetition measures (𝑞). Specifically, we evaluate 

unobserved effects at station, station-day and station-week levels. In accommodating unobserved 

effects at different levels, random numbers are assigned to the appropriate observations of the 

repetition measures. For example, at station level, we have 12 stations. Thus, in evaluating 
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unobserved effect at the station level, 12 sets of different random numbers are generated specific 

to 12 stations and assigned to the data records based on their station ID. The station-day level 

repetition measure represents unobserved effects across different day of week (from Monday to 

Friday) at each station level. Thus, the station-day has a total 60 (12 stations*5days) records and 

in evaluating the unobserved effect at the station-day level, 60 sets of different random numbers 

are generated and assigned to the data records based on their station-day combinations. Finally, 

the station-week level repetition measure represents unobserved effect across different weeks at a 

station level. In our data, we have total 43 weeks of ridership records for each station resulting in 

516 (12 stations*43 weeks) records. Thus, in evaluating unobserved effect at the station-week 

level, 516 sets of different random numbers are generated and assigned to the data records based 

on their station-week combinations. All the parameters in the model are estimated by maximizing 

the logarithmic function 𝐿𝐿 presented in equation 3.  

 

Data 

Orlando metropolitan region is the 24th largest metropolitan area in the United States. Greater 

Orlando region has experienced rapid growth in recent years. In fact, according to the US Census 

Bureau, Orlando is the fastest growing urban region among the country’s thirty large urban regions 

(Brinkmann, 2016). The rapid growth in population increases the stress on the existing 

transportation system. Thus, it is not surprising that several transportation and public transit 

investments are underway in the region to alleviate traffic congestion and improve mobility for 

Greater Orlando residents. 

  

Data Description 

In our study, the rail ridership analysis is focused on the 12 active stations shown in Figure 1. The 

main data source of SunRail daily ridership is the SunRail authority. For the purpose of our 

analysis, we have compiled stop level daily boarding and alighting ridership data for ten months 

from January 2015 to October 2015. The daily ridership data includes weekdays only as SunRail 

did not operate during weekends during the data collection period. This ridership data is processed 

and analyzed to ensure data availability and accuracy. A summary of the system level ridership 

(boarding and alighting) is provided in Table 2. The average daily boarding (alighting) across the 

10-month periods range from 124.26 (134.09) to 451.17 (512.18). It is interesting to observe that 

the two end stations (Sand Lake and Debary Stations) have the highest difference in daily boarding 

and alighting values relative to other stations. The 10-month, 12 station data provided us 2,496 

observations. Out of 2,496 observations, 2,124 observations were randomly selected for model 

estimation and remaining 372 observations were set aside for model validation.  

 

[Figure 1 near here] 

[Table 2 near here] 

 

Independent Variable Generation 

In addition to the rail ridership, we assembled variables from multiple sources including 2010 US 

census data, American Community Survey (ACS), Florida Geographic Data Library (FDGL), 

Florida Department of Transportation (FDOT) and Florida Automated Weather Network (FAWN) 

databases. For the empirical analysis, the explanatory variables can be grouped into three broad 

categories: temporal and seasonal variables, transportation infrastructure, land use variables, 

sociodemographic variables, and weather variables.  
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  The data at the station level was generated by creating a buffer around the rail station using 

ArcGIS. However, the influence buffer size area may vary across different variables (see Chakour 

& Eluru, 2016). To accommodate for such an effect on transit ridership, we have computed 

attributes of different variables by using 1500m, 1250m, 1000m, 750m, and 500m buffer sizes 

around each station. Temporal and seasonal variables considered include day of week and month 

of the year. Transportation infrastructure variables considered include local roadway length, 

number of bus stops, and presence of free parking facilities at stations. Land use variables 

considered include number of commercial centers, number of educational centers, number of 

financial centers and land use mix. Land use mix is computed as “Land-use mix = [
− ∑ (𝒑𝒌(𝒍𝒏𝒑𝒌))𝒌

𝒍𝒏𝑵
]”, 

where 𝒌 is the category of land-use, 𝒑 is the proportion of the developed land area devoted to a 

specific land-use, 𝑵  is the number of land-use categories in a buffer. Sociodemographic variables 

considered include number of households with zero, one and two vehicle ownership level. 

Sociodemographic variables are computed within the influence area of Sunrail stations at census 

tract level. Finally, weather variables considered include temperature, average wind speed and 

rainfall.  

  Table 3 offers a summary of the sample characteristics of the exogenous factors used in 

the estimation data set. Table 3 represents the definition of variables considered for final model 

estimation along with the minimum, maximum and average values of the exogenous variables. 

The final specification of the model development was based on removing the statistically 

insignificant variables in a systematic process based on statistical confidence (95% confidence 

level). The specification process was also guided by prior research and parsimony considerations. 

In estimating the models, several functional forms and variable specifications are explored. The 

functional form that provided the best result is used for the final model specifications. For 

determining the appropriate buffer sizes, each variable for a buffer size was systematically 

introduced (starting from 1500m to 500m buffer size) and the buffer variable that offered the best 

fit was considered in the final specification. 

 

[Table 3 near here] 

 

Model Estimation Results 

 

Model Specification and Overall Measures of Fit 

A simple linear regression model was estimated to serve as a benchmark for the panel models. The 

log-likelihood values for simple linear regression (LR) model of boarding and alighting are -

11815.132 (with 23 parameters) and -12090.381 (with 23 parameters), respectively. The log-

likelihood values at convergence for the boarding and alighting models estimated are as follows: 

PLR for boarding (with 25 parameters) is -11,781.170, and PLR for alighting (with 24 parameters) 

is -12,051.406. Prior to discussing the estimation results, we compare the performance of these 

models in this section. We employ log-likelihood ratio test for comparing these models. The log-

likelihood test statistic is computed as 2[𝐿𝐿𝑈 − 𝐿𝐿𝑅], where 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood 

of the unrestricted and the restricted models, respectively. The computed value of the LR test is 

compared with the ℵ2 value for the corresponding degrees of freedom (dof). The resulting LR test 

values for the comparison of LR/PNL for boarding and alighting models are 67.926 (2 dof) and 

77.951 (1 dof), respectively. The log-likelihood ratio test values indicate that PLR models 

outperform the LR models at any level of statistical significance for both boarding and alighting 

models.  
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Variable Effects 

The estimated results for boarding and alighting are presented in Table 4. In PLR models, the 

positive (negative) coefficient corresponds to increased (decreased) ridership propensities. The 

constant does not have any substantive interpretation after adding exogenous variables. The 

variable results across different exogenous variable categories are discussed below.  

 

[Table 4 near here] 

 

Temporal and Seasonal Variables 

The day of the week variables offer interesting results. Specifically, the result indicates that 

boarding and alighting are likely to be lower on Mondays while on Fridays an opposite trend is 

observed. The higher ridership value on Friday is possibly associated with transit being adopted 

for cultural, sports and social activities (such as Orlando Lions football games or restaurants) in 

downtown Orlando with limited parking. To accommodate for seasonal variation in ridership we 

also consider the month variable. We considered the months of September and October as the base 

for the month variable. We find that, compared to the base months, the month of March is 

associated with highest positive impact on boarding and alighting. It is also observed that the 

association of various months with boarding and alighting are very similar.  

 

Transportation Infrastructures 

Several transportation infrastructure variables for various buffer sizes were considered in the 

model. Local highway length for a 1500m buffer area around rail stations presents a significant 

negative impact on boarding and alighting. On the other hand, number of bus stops within 1500m 

buffer variable highlights the symbiotic influence of bus transit on rail ridership. For both boarding 

and alighting, increase in number of bus stops is associated with higher ridership. The result while 

encouraging is also possibly indicative of presence of higher number of bus stops near the rail 

station. Finally, the availability of free parking space at SunRail stations also significantly affects 

both boarding and alighting ridership. The parking facilities have significantly higher impact on 

alighting relative to boarding.  

 

Land Use Variables 

Land use variables including presence of commercial centers, educational centers and financial 

centers within 1500 m distance from SunRail station have significant influence on ridership. The 

presence of higher commercial centers in 1500m buffer surrounding the station positively 

influences boarding and alighting. The number of commercial centers variable impact varies 

substantially across the stations as evidenced by the significant standard deviation parameters for 

both boarding and alighting models. The presence of financial centers affects boarding positively 

while having no impact on alighting. SunRail stations are located near downtown Orlando and 

provide access to commercial and financial hubs of Orlando city. In these locations, availability of 

parking spaces, cost of parking, and traffic congestion encourage the adoption of SunRail. On the 

other hand, the presence of education centers around rail stations reduces rail ridership. The result 

is quite intriguing. It is possible that driving is the preferred option to educational centers; 

particularly for parents driving their children to the education center and then proceeding to another 

location.  

 



9 

 

Sociodemographic Variables 

Several socioeconomic variables were tested in the boarding and alighting models. Of these 

variables only one variable offered a statistically significant impact. The number of households 

with access to no vehicles in the influence area around the station at a census tract level is 

negatively associated with boarding and alighting. While the result is counterintuitive on first 

glance, it is possible that the result is a surrogate for lower job participation in these neighborhoods. 

The result warrants more detailed analysis.  

 

Weather Variables 

We also account for the impact of weather variables on ridership. While we cannot control weather 

patterns, these variables are included in the model to ensure that the impact of other attributes is 

accurately determined. The average temperature variable indicates that with higher temperature, 

boarding and alighting are likely to be higher. On the other hand, higher average wind speed is 

associated with lower boarding and alighting. The wind speed might be an indicator for possible 

wind gusts from hurricanes in the Orlando region. Finally, rain occurrence discourages rail usage 

as indicated by the negative coefficient in boarding and alighting components. The result is 

expected for any public transit alternative.  

 

Station Specific Unobserved Effects  

In estimating SunRail daily average ridership models (for boarding and alighting), we estimated 

several unobserved effects. Specifically, we estimated unobserved effects at station, station-day 

and station-week level. Among different considered levels, we found that the station level effects 

have significant influence on both boarding and alighting components of ridership. The estimation 

results of the station specific standard deviation is presented in last row panel of Table 4. The 

significant standard deviation parameters at station level provide evidence toward supporting our 

hypothesis that it is necessary to incorporate these unobserved effects in examining rail ridership. 

The station specific standard deviation variables for boarding and alighting indicate that the daily 

average ridership may vary for different stations based on the unobserved effects.  

   

Model Validation 

We also performed a validation exercise with the data set aside to evaluate model performance. 

To examine the fit of the model, we used 372 (31*12 = 372) records. We calculated the observed 

mean and predicted mean for panel regression model. The predictive mean for PLR models are 

calculated as 309.31 and 310.72 for boarding and alighting, respectively. The values are almost 

similar for observed mean ridership for the validation sample (309.42 and 308.13). The validation 

exercise shows that the predictive performance of the panel model is good.  

 

Policy Analysis 

The parameter effects of exogenous variables in Table 4 do not directly provide the magnitude of 

the effects on exogenous variables on SunRail ridership. For this purpose, we compute aggregate 

level “elasticity effects” of exogenous variables. Specifically, we identified the average daily 

boarding and alighting ridership for changes in some selected exogenous variables. We consider 

the number of bus stops, land use mix and the number of commercial centers in 1500 m buffer 

around the SunRail stations for this purpose. In calculating the expected average predicted daily 

ridership, we increase the value of these variable by 10% and 25%. The computed ridership due 

to the change in these variables are shown in Figure 2 along with the observed daily ridership.  
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[Figure 2 near here] 

 

Several observations can be made from Figure 2. First, increased number of bus stops in 

1500 m buffer have higher impacts in increasing the ridership on almost every SunRail station, 

with highest impact on AMTRAK, Church Street and Lynx Central stations. This result indicates 

that in the downtown area, the ridership is sensitive to bus stops around SunRail station; thus 

supporting investments on transit infrastructure for encouraging an integrated transit system. 

Second, the effect of land use mix indicates that improving the mix of land use patterns has positive 

impact on ridership. The land-use mix variable has almost similar impact across all stations. 

Finally, increasing the number of the commercial centers also considerably increases the ridership. 

However, there was no impact on ridership for SFS and DBS stations as expected because the 

original variables were 0 for these stations (an increase by percentage does not result in an 

increase). The elasticity analysis conducted provides an illustration on how the proposed model 

can be applied for policy evaluation for SunRail ridership.     

 

Conclusions 

The current study contributes to literature on transit ridership by considering daily boarding and 

alighting data from a recently launched commuter rail system - SunRail that began operating in 

May 2014 in the greater Orlando region. The analysis is conducted based on daily boarding and 

alighting data for ten months for the year 2015. With the availability of repeated observations for 

every station, the potential impact of common unobserved factors affecting ridership variables are 

considered. The current study developed an estimation framework that accounts for these 

unobserved effects at multiple levels – station, station-week and station-day. In addition, the study 

examined the impact of various observed exogenous factors such as station level attributes, 

transportation infrastructure variables, transit infrastructure variables, land use and built 

environment attributes and sociodemographic and weather variables on ridership. Separate models 

were developed for boarding and alighting. The final specification of the model development was 

based on removing the statistically insignificant variables in a systematic process (at the 95% 

confidence level). For variables computed for various buffer sizes, each variable for a buffer size 

was systematically introduced (starting from 1500m to 500m buffer size) and the buffer variable 

that offered the best fit was considered in the final specification. 

The model estimation results clearly highlighted how the model that considers unobserved 

factors offered improved fit. In terms of model estimates, the day of the week variables offer 

interesting results. Specifically, the result indicates that boarding and alighting are likely to be 

lower on Mondays while on Fridays an opposite trend is observed. Based on the estimates, month 

of March is associated with largest positive impact on boarding and alighting. Local highway 

length and number of bus stops within a 1500m buffer area around rail stations presents a 

significant positive impact on boarding and alighting. The availability of free parking space at 

SunRail stations also positively affected boarding and alighting ridership. Land use variables 

including presence of commercial centers, educational centers and financial centers within 1500 

m distance from SunRail station have significant influence on ridership. The number of households 

with access to no vehicles in the 1500m buffer around the station is negatively associated with 

boarding and alighting. In estimating SunRail daily average ridership models (for boarding and 

alighting), we estimated several station specific unobserved effects at station, station-day and 

station-week level. Among different considered levels, we found that the station level effects have 

significant influence on both boarding and alighting components of ridership. The station specific 
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standard deviation variables for boarding and alighting indicate that the daily average ridership 

may vary for different stations based on the unobserved effects. The model system developed will 

allow us to predict ridership for existing stations in the future as well as potential ridership for 

future expansion sites. Finally, a policy analysis was performed to demonstrate the implications of 

the developed models.  

 The study is not without limitations. The data used in the study, while is quite rich with 

several repetitions per station, would benefit from expanding the time frame of data (to multiple 

years). As more data becomes available, this would be an appropriate direction for future research. 
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Baum-Snow & 

Kahn (2000) 

Boston, Atlanta, 

Chicago, Portland, 

and Washington 

DC 

Multivariate regression Macro Yes Yes Yes Yes Yes No No Yes 

Baum-Snow and 

Kahn (2005) 

16 cities of U.S Regression analysis Macro Yes No No Yes Yes No No Yes 

Cervero (2002) Montgomery 

County, Maryland 

Multinomial mode choice 

model 

Macro No Yes No Yes Yes No Yes Yes 

Kohn ( 2000) Canada Multiple regression analysis Macro Yes Yes No Yes Yes No Yes Yes 

Chen et al. 

(2011) 

New Jersey to New 

York 

ARFIMA (auto-regressive 

fractionally integrated 

moving average) model 

Macro Yes Yes No No No No Yes Yes 

Kain and Liu 

(1999) 

Houston Cross-section and time series 

model 

Macro Yes Yes Yes Yes Yes No Yes No 

Kim et al. (2007) St. Louis Metro 

Link 

Multinomial logit (MNL) 

model 

Macro No Yes Yes Yes Yes No Yes Yes 

Lane (2008) 35 city of USA Multiple regression analysis Macro No Yes Yes No No No No Yes 

Taylor et al. 

(2009) 

265 urbanized 

areas of USA 

Multiple regression analysis  

and 

single-stage OLS model 

Macro No Yes Yes Yes Yes Yes No No 

Chiang et al. 

(2011) 

Metropolitan Tulsa Regression analysis (with 

autoregressive error 

correction), neural networks, 

and ARIMA models 

Macro Yes No No Yes Yes No Yes No 

Gkritza et al. 

(2011) 

Athens, Greece Generalized least squares 

method 

Macro Yes No No Yes Yes No Yes No 

Paulley et al. 

(2006) 

Great Britain Comparison Macro No Yes No No Yes No Yes No 
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Kuby et al. 

(2004) 

Nine cities in USA Cross-sectional/Linear 

regression analysis 

Micro, Station 

level 

No Yes Yes Yes Yes Yes No Yes 

Voith ( 1997) Southeastern 

Pennsylvania 

Fixed-effects ridership level 

model 

Micro, Station 

level 

Yes Yes No Yes Yes No Yes Yes 

Lee et al. (2015) Korea Sketch level ridership models 

Linear Regression 

Micro, Block 

level 

No  No Yes Yes No No No 

Gutiérrez et al. 

(2011) 

Madrid, Spain Distance-decay weighted 

regression model 

Micro, Station 

level 

No Yes Yes Yes Yes Yes No Yes 

Huang et al. 

(2017) 

Wuhan, China Accessibility-weighted 

ridership model 

Micro, Station 

level 

Yes Yes No No Yes No No Yes 

Liu et al. (2016) Maryland Direct ridership models 

(DRM) 

Micro, station 

level 

No Yes Yes Yes Yes No No Yes 

Beko (2004) Slovenia Multivariate Regression Micro, Station 

level 

No No No Yes Yes No Yes No 

Saur et al. (2004) California Multivariate Regression Micro, Station 

level 

No No Yes Yes Yes No No No 

Lane et al. 

(2006) 

17 U.S. regions Multivariate Regression Micro, Station 

level 

No No Yes Yes Yes No No Yes 

Choi et al. 

(2012) 

Seoul, Korea Multiplicative model and the 

Poisson regression model 

Micro, Station 

level 

No Yes Yes Yes Yes No No Yes 

Parks et al. 

(2012) 

U.S regions Linear Regression Micro, station 

level 

No Yes No Yes Yes No No Yes 

Zhao et al. 

(2014) 

Nanjing, China Linear, Multiplicative 

Regression 

Micro, station 

level 

No Yes No Yes Yes No No Yes 

Zhang and Wang 

(2014) 

New York Network Kriging regression Micro, station 

level 

No Yes No Yes Yes No No Yes 

Sun et al. (2016) Beijing, China Direct ridership models 

(DRM)/Multiple Regression 

Analysis 

Micro, station 

level 

No No No No No No No Yes 

 1 

 2 



 

18 

 

TABLE 2 Summary Statistics for SunRail Average Daily Ridership (January 2015 to 

October 2015) 

Station Name Boarding Alighting 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

Sand Lake Station (SLR) 451.168 82.127 512.178 111.112 

Amtrak Station (ARTRAK) 124.260 20.507 134.091 16.969 

Church Street Station (CSS) 393.135 79.184 400.962 96.775 

Lynx Central Station (LCS) 403.769 35.282 377.813 34.610 

Florida Hospital (FLHS) 201.976 26.562 224.168 29.862 

Winter Park Station (WPS) 411.707 205.107 443.433 203.524 

Maitland Station (MLS) 180.962 27.084 183.697 23.986 

Altamonte Springs station (ATSS) 244.163 40.788 251.135 35.830 

Longwood Station (LWS) 240.909 36.959 227.024 29.418 

Lake Mary Station (LMS) 337.005 55.139 312.221 51.052 

Sanford Station (SFS) 258.952 45.735 235.202 38.199 

Debary Station (DBS) 445.178 90.608 391.260 93.938 
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TABLE 3 Descriptive Statistics of Exogenous Variables 

Variable Name Variable Description Minimum Maximum Mean 

Temporal and Seasonal Variables 

Day of week         

Monday Rail ridership on Monday 0.000 1.000 0.190 

Friday Rail ridership on Friday 0.000 1.000 0.206 

Month of the Year 2015         

January Rail ridership on January 2015 0.000 1.000 0.094 

February Rail ridership on February 2015 0.000 1.000 0.095 

March Rail ridership on March 2015 0.000 1.000 0.109 

April Rail ridership on April 2015 0.000 1.000 0.105 

May Rail ridership on May 2015 0.000 1.000 0.095 

June Rail ridership on June 2015 0.000 1.000 0.106 

July Rail ridership on July 2015 0.000 1.000 0.111 

August Rail ridership on August 2015 0.000 1.000 0.103 

Transportation Infrastructures  

Local roadway length in a Local roadway length in 

kilometers 

      

1500 m buffer 16.113 141.443 77.956 

Number of bus stops in a  Number of Lynx bus stop in 1500 

m buffer from SunRail station 

      

1500 m buffer 0.000 205.000 55.667 

Free Parking Facility  Free Parking Facility (Yes and 

No) 

0.000 1.000 0.667 

Land Use Patterns 

Number of Commercial centers in a  Number of Commercial centers in 

a 1500m buffer 

      

1500 m buffer 0.000 6.000 2.750 

Number of Educational centers in a  Number of Educational centers in 

a 1500m buffer 

      

1500 m buffer 0.000 11.000 4.250 

Number of Financial centers in a  Number of Financial centers in a 

1500m buffer 

      

1500 m buffer 0.000 55.000 17.833 

Land Use mix in a  “Land-use mix = [
− ∑ (𝒑𝒌(𝒍𝒏𝒑𝒌))𝒌

𝒍𝒏𝑵
]”, 

where 𝒌 is the category of land-

use, 𝒑 is the proportion of the 

developed land area devoted to a 

specific land-use, 𝑵  is the 

number of land-use categories in 

a 1500 m buffer 

 0.263  0.811  0.638 

1500 m buffer 

Sociodemographic Variables 

Vehicle Ownership – No vehicle Vehicle Ownership – number of 

HH with No Vehicle in the 

influence area of station at census 

tract level  

52.000 4532.000 1326.250 
 

Vehicle Ownership – One vehicle Vehicle Ownership – number of 

HH with One Vehicle in the 

influence area of station at census 

tract level 

734.000 15139.000 5425.333 
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Vehicle Ownership – Two vehicles Vehicle Ownership – Number of 

HH with Two Vehicles in the 

influence area of station at census 

tract level 

2000.000 9189.000 4898.667 

Weather Variables 

Average Temperature in air Average Temperature in air at 2 

m height in degree Celsius  

4.889 30.204 23.222 

Average Wind speed in air Average wind speed in air at 10 m 

height in miles per hour  

2.892 12.040 5.566 

Rainfall Sum of rainfall at 2 m in inches 0.000 1.577 0.132 
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TABLE 4 Station-Week Level Panel Linear Regression Model Results 

Variable Name Boarding Ridership Alighting Ridership 

Coefficient t-stat Coefficient t-stat 

Constant 410.053 20.191 228.535 8.818 

Temporal and Seasonal Variables 

Day of week (Base: Tuesday, Wednesday, Thursday)         

Monday -21.058 -3.978 -22.072 -3.492 

Friday 48.155 11.852 48.004 10.604 

Season/Month of the Year (Base: September, October)     

January 51.085 5.908 61.701 6.111 

February 48.283 4.248 53.774 4.305 

March 69.643 10.948 74.101 9.798 

April 40.127 5.655 44.357 5.125 

May 23.001 2.670 24.675 2.660 

June 43.559 4.368 41.215 4.078 

July 48.178 6.392 46.287 5.135 

August 26.462 3.803 28.013 3.246 

Transportation Infrastructures   

Local roadway length in a         

1500 m buffer -7.189 -38.125 -6.948 -36.956 

Number of bus stop in a      

1500 m buffer 9.587 22.573 10.096 23.146 

Free Parking Facility  18.315 2.210 91.194 10.437 

Land Use Patterns 

Number of Commercial centers in a      

1500 m buffer 50.317 13.918 68.541 16.568 

Standard Deviation 1.869 25.513 2.068 31.388 

Number of Educational centers in a      

1500 m buffer -46.088 -10.034 -38.291 -14.896 

Number of Financial centers in a      

1500 m buffer 5.442 5.924 --1 -- 

Land Use mix in a      

1500 m buffer 347.969 20.089 538.002 29.858 

Sociodemographic Variables 

Vehicle Ownership - No vehicle -0.307 -18.523 -0.326 -21.788 

Weather Variables 

Average Temperature in air 1.753 2.813 1.844 2.257 

Average Wind speed in air -3.924 -3.603 -3.832 -3.036 

                                                 
1 “ -- “ means insignificant at 95% confidence level  
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Rainfall -27.756 -4.028 -25.528 -2.962 

Unobserved Effects     

Standard deviation at Station level  2.545 9.689 2.844 14.972 

 

 


