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Abstract 

The traditional quantitative approach to studying Bicycle Sharing System (BSS) usage involves 

examining the influence of BSS infrastructure (such as number of BSS stations and capacity), 

transportation network infrastructure, land use and urban form, meteorological data, and temporal 

characteristics. These studies, as expected, conclude that BSS infrastructure (number of stations 

and capacity) have substantial influence on BSS usage. The earlier studies consider usage as a 

dependent variable and employ BSS infrastructure as an independent variable. Thus, in the models 

developed, the unobserved factors influencing the measured dependent variable (BSS usage) also 

strongly influence one of the independent variables (BSS infrastructure). This is a classic violation 

of the most basic assumption in econometric modeling i.e. the error component in the model is not 

correlated with any of the exogenous variables. The model estimates obtained with this erroneous 

assumption are likely to over-estimate the impact of BSS infrastructure. Our research effort 

proposes an econometric framework that remedies this drawback. We propose a measurement 

equation to account for the installation process and relate it to the usage equations thus correcting 

for the bias introduced in earlier research efforts by formulating a multi-level joint econometric 

framework. The econometric models developed have been estimated using data compiled from 

April 2012 to August 2012 for the BIXI system in Montreal. The model estimates support our 

hypothesis and clearly show over-estimation of BSS infrastructure impacts in models that neglect 

the installation process. An elasticity analysis to highlight the advantages of the proposed 

econometric model is also conducted. 

 

Keywords: Bicycle Sharing Systems, Bicycle Sharing System Installation, Arrivals and 

Departures, and Endogeneity 
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1. Introduction 

There has been growing interest in bicycle sharing systems (BSS) as an alternative and 

complementary mode of transportation (Faghih-Imani et al. 2014). BSS systems are recognized to 

offer benefits such as flexible mobility, physical activity benefits, and support for multimodal 

transport connections (Shaheen et al. 2010). With the growing installation of BSS infrastructure 

across the world, there is a substantial interest in understanding how these systems impact the 

urban transportation system. The typical approach for analyzing BSS usage involves examining 

the influence of BSS infrastructure (e.g. number of BSS stations and stations’ capacity), 

transportation network infrastructure (e.g. length of bicycle facilities, streets and major roads), 

land use and built environment (e.g. population density, presence of metro and bus stations, 

restaurants, businesses and universities), meteorological data (e.g. temperature and humidity), and 

temporal characteristics (e.g. time of day, day of the week and month).  

Several studies demonstrate that increasing BSS infrastructure (number of stations and 

capacity) increases BSS usage (Faghih-Imani et al. 2014; Wang et al. 2015).  Land use and urban 

form variables such as higher job or population density also contribute to BSS usage (Rixey 2013; 

Faghih-Imani et al. 2014). Studies that examined usage at a fine time resolution (within a day) 

indicated that temporal characteristics affect BSS usage – with peak usage observed during the 

evening peak hours (Faghih-Imani et al. 2014; Faghih-Imani and Eluru, 2016). These studies have 

also found that BSS usage is higher on weekdays compared to weekends. While examining the 

impact of point of interests such as restaurants, retail stores, and universities near BSS stations, 

studies found evidence that BSS usage was higher for stations with the higher number of point of 

interests in the vicinity (Rixey 2013; Faghih-Imani et al. 2014). More studies have explored the 

effect of temperature and weather on usages (Gebhart and Noland 2014; Faghih-Imani et al. 2014). 

These studies, as expected, conclude that BSS usage is lower under adverse weather conditions 

(presence of rain, lower temperature). Furthermore, the relationship between BSS and other public 

transportation systems such as subway or bus transit system are also examined by several research 

efforts (Nair et al. 2013; Faghih-Imani et al., 2014; Faghih-Imani and Eluru, 2015; Faghih-Imani 

and Eluru, 2016). 

 

2. Current Study 

2.1. Earlier Research 

Earlier research efforts, while providing useful insights on the system level usage patterns, ignore 

the BSS infrastructure installation decision process i.e. BSS operators installed the infrastructure 

based on an expectation of system usage. The aforementioned research studies ignore this when 

they consider usage as a dependent variable and employ BSS infrastructure as an independent 

variable. Thus, in the models developed, the unobserved factors influencing the measured 

dependent variable (BSS usage) also strongly influence one of the independent variables (BSS 

infrastructure). This is a classic violation of the most basic assumption in econometric modeling 

i.e. the error component in the model is not correlated with any of the exogenous variables (Greene 

2012 pp. 63). The model estimates obtained with this erroneous assumption are very likely to over-

estimate the impact of BSS infrastructure - since the estimates related to BSS infrastructure include 

two impacts: the actual impact of BSS infrastructure on usage and part of the unobserved factors 

influencing usage. The current research effort proposes a joint econometric framework that 

remedies this drawback.  
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To obtain the “true” impact of BSS infrastructure on BSS usage, it is critical to consider 

infrastructure installation and usage decisions as an interconnected process. To correctly 

characterize the decision processes at hand, it is necessary to consider the bicycle-sharing 

infrastructure installation itself as a dependent variable - simultaneously along with usage patterns. 

To be sure, endogeneity has been widely investigated in transportation fields including travel 

behavior, transportation safety, and health. A comprehensive review is beyond the scope of the 

paper. We restrict ourselves to a brief reference to endogeneity related research efforts in various 

transportation fields. In travel behavior literature, the residential self-selection issue tied with 

travel behavior outcomes is well documented (see Bhat and Guo, 2007; Cao et al., 2009). Earlier 

research methods addressed potential self-selection between residential location and several travel 

behaviour dimensions such as vehicle ownership (Bhat and Guo 2007; Eluru et al. 2010), travel 

frequency and mileage (Greenwald and Boarnet 2001; Bhat and Eluru 2009; Ewing et al. 2015), 

bicycle ownership (Pinjari et at. 2008) and mode choice (Schwanen and Mokhtarian 2005). Other 

travel behavior themed endogeneity research efforts include transit influence on automobile 

ownership and mode choice (Hu, 2016), highway capacity on increased vehicle miles of travel 

(Noland and Cowart, 2000), and social influence and taste preference variables on mode choice 

(Walker et al., 2011; Vij and Walker, 2014). In the transportation safety field, documented 

endogeneity research efforts includeseat belt use and subsequent injury severity (Eluru and Bhat 

2007; Abay et al. 2013), speed limits in crash count modeling (Cheng et al., 2013), crash type and 

injury severity (Rana et al., 2010; Yasmin et al., 2014) and Emergency Medical Service response 

time and the time to fatality (Yasmin et al., 2015). Finally, in recent years, health research efforts 

have considered endogeneity in examining the relation between active transportation and health 

outcomes (Schauder and Foley, 2015).  

2.2. Contributions of the Current Study 

Our research effort is different from earlier studies because the model system required in the 

context of BSS systems is challenging for multiple reasons. First, in all the earlier studies, self-

selection was considered in a choice framework based on a cross-sectional dataset where one 

measurement equation was coupled with one choice equation to disentangle the influence of 

endogeneity. However, in the BSS context, the infrastructure installation process has only one 

occurrence, while the infrastructure usage process has multiple repeated observations. Hence, the 

econometric model developed should account for self-selection while accounting for the 

availability of repeated observations of the choice process. To elaborate, the repeated observations 

of BSS usage from the same spatial aggregation are plausibly influenced by unobserved factors 

that influence choice processes. The impact of unobserved factors, given the availability of 

reasonable number of repeated observations, can also be accommodated at multiple levels. Hence, 

to correctly identify the presence of endogeneity in the choices process, the econometric 

framework needs to consider the potential presence of multiple levels of unobserved heterogeneity 

affecting BSS usage. For example, in our data, repeated observations can be considered to be at 

three levels– (1) unobserved heterogeneity across the spatial unit, (2) unobserved heterogeneity 

for the spatial unit in a day and (3) unobserved heterogeneity at a per observation level. The 

unobserved heterogeneity at multiple levels can be incorporated as random parameters moderating 

the influence of exogenous variables or error correlation between the BSS usage dimensions. 

Employing a cross-sectional model or employing a single level of unobserved heterogeneity for 

repeated BSS usage terms in the analysis might result in confounding the presence of endogeneity 

with unobserved heterogeneity.  
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Second, we need to recognize the presence of multiple BSS infrastructure variables 

(number of stations and capacity in a spatial unit) and presence of time varying multiple dependent 

variables (usage defined as arrivals and departures for many time-varying records). Retaining all 

BSS infrastructure variables and usage in their original form would result in a large number of 

choice equations (one per variable). Moreover, introducing joint unobserved effects at multiple 

levels across the large equation system will result in a computationally intensive probability 

function that will require higher dimensions of integration to evaluate the simulated log-likelihood 

function. Hence, to simplify the econometric model development we propose a single measure of 

BSS infrastructure that simultaneously encapsulates number of stations and total capacity in a 

traffic analysis zone (TAZ) (more detailed discussion in Section 3). Having a single equation for 

BSS infrastructure usage allows us to efficiently accommodate for the potential presence of 

endogeneity in the proposed model system1.  

2.3. Research Approach 

The generated BSS infrastructure index is categorized subsequently as an ordinal variable. Other 

dependent variables in our study are the BSS usage variables defined as arrivals and departures. 

Rather than employ these variables as continuous values – we adopt an ordinal categorization in 

our analysis. The rationale behind this characterization is that imposing a strictly linear response 

structure for usage is restrictive. While one could consider non-linear variable forms (such as 

square and cube terms) within a linear system – the mapping of the impact of exogenous variables 

on usage is still strictly linear. Particularly, given the significant variation in the usage patterns 

spatially and temporally imposing a strictly linear structure (as imposed by linear regression) might 

result in biased estimation of the “true” influence of exogenous variables. On the other hand, in an 

ordinal structure, the probability of a category is mapped with the observed response through a 

much more flexible non-linear response profile. The number of ordered categories can be increased 

in a simple and intuitive fashion if a fine resolution is deemed necessary2. The reader would note 

that the discretization would also preclude the need for exclusion restrictions (see Section 3,2 of 

Abay et al., 2013 for more details).  

In summary, the proposed joint modeling process thus estimates a more accurate impact of 

BSS infrastructure on usage. More importantly, the consideration of the installation process and 

unobserved heterogeneity at multiple levels allows us to generate consistent estimates of the 

impact of other exogenous variables (such as land use and urban form). We formulate a multi-

level joint econometric framework. The framework considers the bicycle-sharing infrastructure 

installation process (a one-time process) while allowing for a multi-level analysis of arrivals and 

departures. We consider an ordered representation for all the dependent variables yielding a three 

                                                 

1 It is not apparent how to define the spatial aggregation of the installation decisions – as it is not possible that each 

station was decided independently. It is possible to explore a number of spatial aggregation metrics (census tract, 

block level and Traffic Analysis Zone (TAZ)). However, determining the accurate spatial aggregation employed is 

quite challenging. Since transportation planners are likely to consider the traffic analysis zone (TAZ), we opt for TAZ 

system as the spatial aggregation unit. The proposed methodology can be extended appropriately to any spatial 

aggregation. 

2 The number of threshold parameters required to be estimated increases linearly with the number of ordered 

alternatives. However, in the BSS context, the sample sizes are large enough to accommodate for such increases in 

the number of parameters. The reader would note that an ordered response model with a large number of categories is 

a true non-linear extension of a continuous linear model which restricts the categories through a single slope (see 

Chakour and Eluru, 2016 for similar ordinal discretization). 
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dimensional panel ordered formulation. Specifically, we adopt a repeated observation based panel 

multi-level mixed (or random parameters) ordered logit model. The proposed model is estimated 

using data compiled from the Montreal bicycle-sharing system, BIXI, from April to August 2012.  

The remainder of the paper is organized in the following order. Section 3 provide a 

discussion on the proposed BSS infrastructure measure. In Section 4, econometric model structure 

and estimation procedure are described. Section 5 describes the data and the sample formation 

procedure. Empirical results and policy analysis are presented and discussed in Section 6. Finally, 

Section 7 summarizes and concludes the paper. 

 

3. BSS Infrastructure Measure  

As discussed earlier, within a TAZ, number of stations and total capacity represent different spatial 

components of BSS infrastructure. To facilitate the model development process, we propose and 

compute a single BSS infrastructure measure. This TAZ level measure accounts for the influence 

of both number of bicycle stations and the total capacity in the zone simultaneously while 

considering the area of the TAZ. Several forms of the infrastructure index were examined prior to 

settling on the index presented here. 

Specifically, BSS infrastructure index (BSSI) takes the following form: 

𝐵𝑆𝑆𝐼 = 𝐿𝑛(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑇𝐴𝑍

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑇𝐴𝑍𝑠
×

𝑇𝐴𝑍 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑇𝐴𝑍𝑠
×

1

𝑇𝐴𝑍 𝑎𝑟𝑒𝑎
)                    (1) 

The proposed index concurrently considers the influence of number of stations and 

capacity of stations in a TAZ while normalizing for the TAZ area. Considering only number of 

stations in a TAZ as the measure of BSS infrastructure cannot recognize the difference between 

two TAZs with the same number of stations but with different capacities. On the other hand, using 

only total capacity of stations in a TAZ as BSS infrastructure index overlooks the distinction in 

spatial distribution in the TAZ. The variation of BSS infrastructure for an average sized TAZ in 

Montreal with respect to the number of stations in the TAZ and TAZ capacity is illustrated in 

Figure 1. The average number of stations in TAZs and the average capacity of TAZs for BIXI 

system and an average TAZ area are assumed for BSSI calculations in Figure 1. It is evident from 

the figure that for the same total capacity in a TAZ, higher number of stations has a higher BSSI 

value – accounting for better spatial distribution.  

The distribution of the BSSI variable for the Montreal BIXI system is presented in Figure 

2. As is expected, the highest values of the variable are observed in downtown Montreal and the 

bicycle-friendlier neighbourhood of Plateau-Mont Royal (highlighted). The BSSI variable defined 

in our study forms the first dimension of our three-level econometric framework. Specifically, we 

employ the proposed BSSI measure as the dependent variable to characterize the bicycle-sharing 

infrastructure installation process.  

 

4. Methodology 

This section describes the structure and estimation procedure of the proposed three dimensional 

panel mixed multi-level ordered logit (3PMMOL) model. The three dimensions correspond to the 

installation process, arrivals and departures. The framework allows for random parameters, error 
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correlations at multiple levels while accommodating for endogeneity between installation process 

and BSS usage dimensions.  

4.1. Model Structure 

The mathematical framework is described below (see Figure 3 for a conceptual representation of 

the econometric framework): 

Let q (q = 1, 2, …, Q; in our case Q = 235) be an index to represent traffic analysis zones 

(TAZ), j (j = 1, 2, 3, …, J) be an index to represent the different levels of bicycle infrastructure, 

and k (k = 1, 2, 3, …, K) and l (l = 1, 2, 3, …, L) be an index to represent the TAZ level bicycle 

arrival and departure categories, respectively. Further, to accommodate for time period specific 

bicycle arrivals and departures, let d (d = 1, 2, 3, …, D; in our case D =7) represent the different 

days and t (t = 1, 2, 3, …, T; in our case T =5) represent the different time periods for TAZ q. In 

our sample, each TAZ q, has 35 repeated observations (7 days * 5 time periods). 

The existence of endogeneity is a time invariant impact to be examined. On the other hand, 

for the usage processes (arrivals and departures) the observed impact of exogenous variables are 

based on whether the variable is time variant or not (such as temperature in the time period). The 

unobserved heterogeneity (characterized as random parameters or error correlations) on the other 

hand has three components: (1) TAZ level, (2) TAZ - Day level and (3) TAZ – Day - Time period 

level. The reasoning behind this decomposition is that there are potential unobserved factors at 

every resolution (TAZ, day or time period) that influence arrival and departure rates. Ignoring the 

presence of such multi-level relationships might result in over-estimation of the presence of 

endogeneity.  

The equation system in its most generic form for modeling the bicycle-sharing 

infrastructure index and the departure and arrivals may be written as follows: 

𝑢∗
𝑞 = (𝛽′ + 𝛾′

𝑞
) 𝑥𝑞 + 𝜂𝑞 + 𝜀𝑞 ,  𝑢𝑞 = 𝑗  if 𝜓𝑗−1 < 𝑢∗

𝑞 < 𝜓𝑗 (2)      

 

𝑦∗
𝑞𝑑𝑡

= (𝛼′ + 𝛿′
𝑞 + 𝛿′

𝑞𝑑 + 𝛿′
𝑞𝑑𝑡)𝑓 + (𝜃′ + 𝜇′

𝑞
+ 𝜇′

𝑞𝑑
+ 𝜇′

𝑞𝑑𝑡
) 𝑔 ± 𝜂𝑞 + 𝜉𝑞𝑑𝑡 ,  𝑦𝑞𝑑𝑡 = 𝑘  if 

𝜔𝑘−1 < 𝑦∗
𝑞𝑑𝑡

< 𝜔𝑘                             (3) 

 

𝑧∗
𝑞𝑑𝑡 = (𝜏′ + 𝜆′

𝑞 + 𝜆′
𝑞𝑑 + 𝜆′

𝑞𝑑𝑡)ℎ + (𝜃′ + 𝜇′
𝑞

+ 𝜇′
𝑞𝑑

+ 𝜇′
𝑞𝑑𝑡

) 𝑔 ± 𝜂𝑞 + 𝜁𝑞𝑑𝑡  ,  𝑧𝑞𝑑𝑡 = 𝑙  if 

𝜔𝑙−1 < 𝑧∗
𝑞𝑑𝑡 < 𝜔𝑙                                           (4) 

Equation (2) is associated with the BSSI installation propensity 𝑢∗
𝑞 for TAZ q, and 

q
x  is 

an (M × 1)-column vector of attributes associated with TAZ q (for example, job density, bicycle 

lane density, etc.) and 𝜓 represents threshold vector for BSSI installation. β represents a 

corresponding (M × 1)-column vector of mean effects of the elements of 
q

x  while 𝛾′
𝑞
 is another 

(M × 1)-column vector with its mth element representing unobserved factors specific to TAZ q and 

its choice environment that moderate the influence of the corresponding mth element of the vector 

q
x . 𝜀𝑞 is an idiosyncratic random error term assumed to be identically and independently standard 

Logistic distributed across TAZs. 
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Equation (3) is associated with 𝑦∗
𝑞𝑑𝑡

 being the latent (ordered) bicycle propensity for 

arrivals of TAZ q on day d and tth time occasion. This latent propensity 𝑦∗
𝑞𝑑𝑡

 is mapped to the 

actual grouped arrival category 𝑦𝑞𝑑𝑡 by the ω thresholds (𝜔0 = −∞ and 𝜔k = ∞) in the usual 

ordered-response modeling framework. 𝜉𝑞𝑑𝑡 is an idiosyncratic random error term, assumed 

identically and independently logistic distributed (across TAZs, days and time periods). Equation 

(3) similarly posits the departure rates of TAZ q on day d and tth time occasion with the latent 

ordered propensity of 𝑧∗
𝑞𝑑𝑡 , ω thresholds (𝜔0 = −∞ and 𝜔l = ∞), and error term 𝜁𝑞𝑑𝑡. 

𝑓 matrix composed of  𝑓𝑞, 𝑓𝑞𝑑 and 𝑓𝑞𝑑𝑡 in Equation (3) is the set of attributes that solely 

influence the TAZ’s bicycle arrival rate while ℎ matrix composed of  ℎ𝑞, ℎ𝑞𝑑 and ℎ𝑞𝑑𝑡 in Equation 

(4) is the set of attributes that solely affect the TAZ’s bicycle departure rates. In addition, 𝑔 matrix 

composed of 𝑔𝑞, 𝑔𝑞𝑑 and 𝑔𝑞𝑑𝑡 in Equation (3, 4) is the set of common attributes that 

simultaneously impacts both arrival and departure rates. The reader would note that there is no 

overlap in the variables in  𝑓 and 𝑔 as well as in  ℎ and 𝑔. 𝛼, 𝜏, and 𝜃 are corresponding vectors of 

mean effects for matrices f, g and h respectively. 𝛿, 𝜆 and 𝜇 are the corresponding vectors for 

unobserved factors moderating the influence of attributes on f, g and h respectively at multiple 

levels. The random parameters or error correlations can potentially be separated into three levels 

of influence as captured by the TAZ level (q), TAZ and Day level (qd) and TAZ – Day and Time 

Period level (qdt)3.   

𝜂𝑞 represents the endogeneity effect by capturing the unobserved factors that 

simultaneously impact BSS infrastructure installation and BSS usage for TAZ q.  The   sign in 

front of 𝜂𝑞 in the bicycle usage equation indicates that the correlation in unobserved factors 

between the BSS infrastructure installation and the bicycle arrival and departure rates may be 

positive or negative. A positive sign implies that unobserved factors that increase the propensity 

of BSS installation will also increase the bicycle flows, while a negative sign suggests that 

unobserved factors that increase the propensity of BSS installation for a certain TAZ will decrease 

the BSS usage. Clearly, one expects, from an intuitive standpoint, that the former case will hold. 

However, one can empirically test the models with both ‘+’ and ‘−’ signs to determine the best 

empirical result.  

To complete the model structure of the system in Equations (2) through (4), it is necessary 

to specify the structure for the unobserved vectors 𝛾, 𝛿, 𝜆, 𝜇 and 𝜂. In this analysis, we assume 

that the elements are independent realizations from normal population distributions and we 

estimate the standard deviation of the distribution. With these assumptions, the probability 

expression for the infrastructure installation conditional on 𝛾 and 𝜂  is given as: 

𝑃𝑞𝑗 = Λ [𝜓𝑗 − ((𝛽′ + 𝛾′
𝑞

) 𝑥𝑞 + 𝜂𝑞)] − Λ [𝜓𝑗−1 − ((𝛽′ + 𝛾′
𝑞

) 𝑥𝑞 + 𝜂𝑞)]                                  (5) 

where Λ[.] is the cumulative distribution of the standard logistic distribution.  

                                                 
3 For example, a TAZ level variable, population density has one observed variable impact and could potentially have 

three random parameters – one for each resolution. Thus, we allow for the TAZ population density variable to impact 

the entire TAZ, TAZ and Day combination or TAZ - Day and Time period combination. Of course, it is possible 

population density variable does not influence the usage processes at all three possible levels.   
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Similarly, conditional on 𝛿, 𝜆, 𝜇 and 𝜂, the probability of bicycle arrivals and departures 

are respectively given by: 

𝑃𝑞𝑑𝑡𝑘 = 𝛬 [𝜓𝑘 − ((𝛼′ + 𝛿′
𝑞 + 𝛿′

𝑞𝑑 + 𝛿′
𝑞𝑑𝑡)𝑓 + (𝜃′ + 𝜇′

𝑞
+ 𝜇′

𝑞𝑑
+ 𝜇′

𝑞𝑑𝑡
) 𝑔 ± 𝜂𝑞)]

−  𝛬 [𝜓𝑘−1

− ((𝛼′ + 𝛿′
𝑞 + 𝛿′

𝑞𝑑 + 𝛿′
𝑞𝑑𝑡)𝑓 + (𝜃′ + 𝜇′

𝑞
+ 𝜇′

𝑞𝑑
+ 𝜇′

𝑞𝑑𝑡
) 𝑔 ± 𝜂𝑞)]            (6) 

𝑃𝑞𝑑𝑡𝑙 = 𝛬 [𝜓𝑙 − ((𝜏′ + 𝜆′
𝑞 + 𝜆′

𝑞𝑑 + 𝜆′
𝑞𝑑𝑡)ℎ + (𝜃′ + 𝜇′

𝑞
+ 𝜇′

𝑞𝑑
+ 𝜇′

𝑞𝑑𝑡
) 𝑔 ± 𝜂𝑞)]

−  𝛬 [𝜓𝑙−1

− ((𝜏′ + 𝜆′
𝑞 + 𝜆′

𝑞𝑑 + 𝜆′
𝑞𝑑𝑡)ℎ + (𝜃′ + 𝜇′

𝑞
+ 𝜇′

𝑞𝑑
+ 𝜇′

𝑞𝑑𝑡
) 𝑔 ± 𝜂𝑞)]            (7) 

In the joint model of Equations 5 to 7, the parameters to be estimated are the vectors of 

𝛽, 𝛼, 𝜏, 𝜃, the 𝜓 thresholds, and the variance terms of 𝛾2, 𝛿2, 𝜆2, 𝜇2, 𝜂2. Thus, the joint likelihood 

function can be written for TAZ q as follows: 

𝐿𝑞|𝛾, 𝛿, 𝜆, 𝜇, 𝜂 = (𝑃𝑞𝑗|𝛾, 𝜂) (∏ ∏(𝑃𝑞𝑑𝑡𝑘|𝛿, 𝜇, 𝜂)

𝑇

𝑡=1

𝐷

𝑑=1

∗  ∏ ∏(𝑃𝑞𝑑𝑡𝑙|𝜆, 𝜇, 𝜂)

𝑇

𝑡=1

𝐷

𝑑=1

)                          (8) 

The unconditional likelihood function is given by: 

𝐿𝑞 = ∫ (𝑃𝑞𝑗|𝛾, 𝜂) (∏ ∏(𝑃𝑞𝑑𝑡𝑘|𝛿, 𝜇, 𝜂)

𝑇

𝑡=1

𝐷

𝑑=1

∗  ∏ ∏(𝑃𝑞𝑑𝑡𝑙|𝜆, 𝜇, 𝜂)

𝑇

𝑡=1

𝐷

𝑑=1

) 𝑑𝐹(𝛾, 𝛿, 𝜆, 𝜇, 𝜂)

𝛾,𝛿,𝜆,𝜇,𝜂

      (9) 

where F is the multidimensional cumulative normal distribution. The log-likelihood function is: 

𝐿𝑛 𝐿 = ∑ 𝐿𝑞

𝑞

                                                                                                                                             (10) 

The likelihood function in Equation (9) involves the evaluation of a multi-dimensional 

integral of size equal to the total number of elements in 𝛾, 𝛿, 𝜆, 𝜇 and 𝜂.  

4.2. Model Estimation 

We apply Quasi-Monte Carlo simulation techniques based on the scrambled Halton sequence to 

approximate this integral in the likelihood function and maximize the logarithm of the resulting 

simulated likelihood function across individuals with respect to 𝛾, 𝛿, 𝜆, 𝜇 and 𝜂 (Bhat 2003). Since, 

we are decomposing the unobserved heterogeneity influencing arrivals and departures to three 

levels (i.e. TAZ component, TAZ - Day component, and TAZ - Day - Time period combination), 

different levels of simulation draws are needed to obtain simulated likelihood function. The code 

was programmed in Gauss matrix programming language. The maximum simulated likelihood 

estimator described is consistent under weak regularity conditions (see Hajivassiliou and Ruud, 

1994; Lee 1992; Eluru and Bhat, 2007).   

 

5. Data 
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5.1. Sample Formation 

For this study, the arrival and departure rates are obtained from the minute-by-minute BIXI bicycle 

availability data for all stations in service (410 stations) between May and August 2012. The raw 

data extracted from the BIXI website was processed to generate the minute-by-minute arrival or 

departure rate of bicycles for every station (see Faghih-Imani et al. 2014 for more details on basic 

data preparation methods).  

5.2. Dependent Variable Generation 

By observing the bicycle flow pattern for arrivals and departures we categorized a day into five 

time periods: AM (6:00-10:00), Midday (10:00-16:00), PM (16:00-20:00), Evening (20:00-24:00), 

and Night (0:00-6:00). By aggregating obtained arrivals and departures for every station, we 

generated arrival and departure rates for these five time periods. Then, by adding arrivals and 

departures of all stations in a TAZ for the corresponding time period we obtained the TAZ level 

flows for every time period. BIXI stations are spatially located in 235 TAZs in Montreal. To retain 

a manageable data sample, we randomly selected seven consecutive days for every TAZ in our 

database (distinct set of 7 consecutive days for each TAZ). This sampling process provides 

reasonable coverage of data from May through August. The final sample consists of 8225 records 

(5 time periods * 7 days * 235 TAZs) of arrival and departure rates at a TAZ level.  

The three dependent variables employed in our study - BSSI, arrivals and departures - are 

categorized as three ordered variables. The BSSI categories considered in our analysis (and sample 

shares) are ≤0 (16.2%), 0-1 (25.5%), 1-2 (26.8%), 2-3 (20.4%), >3 (11.1%). The arrivals and 

departures are categorized in four groups: very low-rate (<1 bicycle per hour), low-rate (1-5 

bicycles per hour), medium-rate (6-10 bicycles per hour), and high-rate (10+ bicycles per hour). 

The proportion of arrivals and departures categories are as follows, respectively: very low-rate 

(31.4%, 32.1%), low-rate (47.3%, 45.6%), medium-rate (11.7%, 12.4%), and high-rate (9.6%, 

9.9%).  

5.3. Independent Variables Considered 

Various independent variables are used to examine the determinants of bicycle usage for each 

TAZ. We controlled for weather and temporal variables to better capture determinants of BSS 

usage of every TAZ in our analysis. Weather variables include average temperature and average 

relative humidity for every time period. Also, weather condition is represented as a categorical 

variable - whether it rained or not for every time period. Temporal variables considered include 

time of the day and day of the week effects. The influence of weekend and weekday were also 

accounted for. Land-use and built environment characteristics considered include the distance 

from central business district (CBD), an indicator for TAZs in the downtown area, the presence of 

transit in the TAZ, various points of interest, and job and population density. The size of TAZ is 

considered by normalizing the spatial variables with respect to the TAZ’s area. The length of 

transportation network including major and minor roads and bicycle facilities (such as bicycle 

lanes, bicycle paths) is considered to identify cyclist preference of routes. The bicycle-sharing 

infrastructure is taken into account by using our proposed BSSI measure. To provide an illustration 

of the data compiled, a descriptive analysis of the sample is presented in Table 1. 

 

6. Empirical Analysis 
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As part of the model estimation exercise, four model structures are estimated: (1) three simple 

ordered logit models (3OL) model, (2) two dependent variable panel mixed ordered logit (2PMOL) 

model  which only has TAZ level unobserved components (3) two dependent variable panel mixed 

multi-level ordered logit (2PMMOL) model which has all the three level unobserved components 

and (4) three dimensional panel mixed multi-level ordered logit (3PMMOL) model which has the 

three level unobserved components and the endogeneity parameter. The final specification of each 

of these models is obtained based on a systematic process of removing statistically insignificant 

variables guided by prior research, intuitiveness and parsimony considerations.  

6.1. Model fit measures 

To compare these four model frameworks, we employ three statistical measures: (1) Log-

likelihood ratio test, (2) Akaike Information Criterion (AIC) and (3) Bayesian Information 

Criterion (BIC). The AIC and BIC penalize the modelling frameworks for additional parameters. 

For a given empirical model, 𝐴𝐼𝐶 =  2𝐾 −  2𝑙𝑛(𝐿) where K is the number of parameters and 

ln(L) is the log–likelihood value at convergence. The model with the lowest value of AIC is 

preferred. For a given empirical model, 𝐵𝐼𝐶 = −2𝑙𝑛(𝐿) + 𝐾𝑙𝑛(𝑄) where Q is the number of 

observations. The BIC imposes higher penalty than AIC for over-fitting. The model with the 

lowest BIC values is the best model in terms of goodness of fit. Model fit measures are summarized 

in Table 2. 

All the statistical measures employed - Log-likelihood ratio test, AIC, and BIC - clearly 

illustrate the superiority of the 3PMMOL model in terms of data fit. This comparison provides 

strong evidence in support of our hypothesis that model incorporating the common unobserved 

factors and endogeneity effect in the modelling of BSS usage offers a enhanced estimation 

framework4. For the sake of brevity, only the 3PMMOL model estimation results are discussed in 

this section and presented in Table 3. 

6.2. Bicycle-sharing infrastructure installation model 

As expected, bicycle facility density has a positive impact on the propensity of bicycle-sharing 

infrastructure installation in a TAZ. On the contrary, the propensity of installing BIXI 

infrastructure decreases as highway density and rail length increase. Highway and railway reflect 

locations that hinder cyclist’s movements. Thus, it is expected that bicycle-sharing operators 

allocate stations away from such infrastructure. Moreover, distance to CBD negatively influences 

the propensity of BSS infrastructure installation while TAZs in the downtown area are more likely 

to have higher BSSI. Population density has a positive impact on bicycle-sharing infrastructure 

installation which is expected as the bicycle-sharing operators provide more stations and capacity 

where more people reside. The positive impact of job density and the number of restaurants in a 

TAZ on the propensity of BSS infrastructure installation illustrate that bicycle-sharing operators 

are likely to consider not only where people reside but also on activity opportunities in their 

decision process.  

                                                 
4 It is also important to recognize that the 2PMMOL and 2PMOL models perform substantially better than the 3OL 

model indicating that considering the impact of unobserved factors influencing arrivals and departures offers 

substantial improvement in fit. At the same time, we can clearly see that the 2PMMOL model outperforms the 2PMOL 

model in terms of goodness of fit, demonstrating the benefits of decomposing the unobserved effects in to the three 

levels. 
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The results evidently indicate that bicycle-sharing infrastructure is not randomly allocated 

in the urban region. Considering Montreal’s BIXI system as a mature system with reasonable 

success, the estimated BSS installation model results provide a guiding template for transportation 

planners and engineers across the world to model their installation decisions for a TAZ (or 

neighbourhood) as a function of existing land-use, built environment and bicycle infrastructure 

attributes. 

6.3. Arrivals and departures model 

Prior to discussing the arrival and departure models, it is important to recognize that several 

possible specifications were tested in model development. Specifically, the variables were 

considered to have distinct effects on arrivals (f matrix from Equation (3)) and departures (h matrix 

from Equation (4)). In cases where the mean parameter impacts across the two equations were not 

different a model that constrains the impact to be same across the two models was estimated (based 

on g matrix in Equation (3) and (4)). The final estimation results clearly show variable impacts 

from f, g and h matrices. The same approach was employed for estimation of random parameters.  

Weather and Temporal variables: There is a positive correlation between temperature and 

BSS usage. On the other hand, rainy weather conditions and humidity have negative impacts on 

arrival and departure rates, expectedly. People tend to bicycle more on weekdays than weekends 

as highlighted by the negative coefficient of the weekend variable. The result indicates that 

bicycle-sharing system is used more for daily activities than weekend leisure activities. The 

interpretation of time of day variables needs to be judiciously undertaken due to the presence of 

interaction effects with population density, job density, and university variables. Nevertheless, we 

clearly observe that BIXI system is predominantly used during the PM and less during night period 

relative to other times of the day. One plausible explanation for higher usage of the system in PM 

is that employed people might also consider riding the BIXI as a useful exercise after work or 

might make short trips within the system area — for instance, going from work to a restaurant. 

Furthermore, it is also possible that during the evening peak hour the population using BIXI 

includes tourists, non-member users and other individuals without the typical work schedule (e.g., 

students).  

Land-use and built environment characteristics: It is expected that the arrival and departure 

rates decrease when the station location is farther from CBD as highlighted by the negative 

coefficient of distance to CBD variable. The positive coefficient of the presence of metro station 

variable indicates that BIXI stations near metro system are more likely to have higher usage; a 

strong evidence in favour of the bicycle-sharing systems support of multimodal transport. The 

number of restaurants in a TAZ is associated with a positive impact on usage of BIXI system. The 

coefficients for the presence of university in a TAZ show interesting results. In AM period, the 

presence of university in a TAZ has a positive impact on arrivals while a negative impact on 

departures propensity. On the other hand, it has a negative impact on arrivals and a positive impact 

on departure propensity in PM period. These findings evidently demonstrate the use of BIXI 

system for commuting to/from universities. A similar pattern also can be observed from the 

interaction of population and job density variables with time periods. TAZs with higher population 

density tend to have higher departure and lower arrival rates in the AM and higher arrival rates in 

the PM. People use BIXI service as commute mode to their work in the morning peak hour which 

is recognized by the coefficient of TAZ job density in AM period. 
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 Bicycle infrastructure variables: Bicycle-sharing infrastructure variables are introduced 

as the following dummy variables: Low BSS (BSSI<1), Medium BSS (1≤BSSI<2) and High BSS 

(2≤BSSI). As expected, the medium and high BSS variables have a significant positive effect on 

arrivals and departures propensity. As expected, the propensity of arrivals and departures increase 

in zones with higher bicycle facilities (bicycle lanes, bicycle paths, etc.) while the density of 

highways in TAZ has a negative impact on arrivals and departures.  

 

6.4. Endogeneity and Unobserved Heterogeneity 

The estimated standard deviation results for unobserved heterogeneity as well as endogeneity are 

presented at the bottom part of Table 3. In the model estimation exercise, several alternative 

specifications have been examined for the unobserved effect variables (𝛾, 𝛿, 𝜆, and 𝜇) at the three 

level of variations. The specification that offered superior fit was retained; i.e. 10 parameters 

capturing common unobserved effects between usage dimensions, and the endogeneity parameter 

recognizing the BSS installation impact on usage. The final specification has 5 common 

unobserved effect parameters estimated influencing arrivals and departures at TAZ level (𝜇𝑞), 2 

at the TAZ - Day level (𝜇𝑞𝑑), and 3 at TAZ – Day - Time period level (𝜇𝑞𝑑𝑡).  

TAZ level estimates: The estimates for the standard deviation of unobserved factors exhibit 

significant variability across the various TAZs in impacting usage for several exogenous variables. 

The BSSI levels (Low, Medium and High) exhibit reasonably varied impact across the region. For 

example, while the mean impact of BSSI Low category is 0 the parameter estimate in the 

unobserved heterogeneity component indicates the existence of a substantial variance of the BSSI 

low variable across the Montreal region. Similarly, BSSI Medium and High categories also exhibit 

variation across the region. It is important to note while there exists substantial variability across 

the three BSSI levels, the distribution of parameters (mean and standard deviation) are such that 

for a large number of cases the relationship between three levels is along expected lines (BSSI 

High > BSSI Medium > BSSI Low). The results also indicate significant variation temporally 

across the TAZs. Specifically, the Night time period and Peak periods (AM and PM) exhibit large 

variations across the TAZs. These parameter estimates confirm the presence of unobserved factors 

that jointly affect arrivals and departures at a TAZ level.  

TAZ – Day level estimates: We observe significant variability in the usage for each day 

across the TAZs highlighted by the unobserved effect for a constant term at the day level. The 

results also demonstrate significant variation in the impact of bicycle facility density variable. 

While the bicycle facility density variable is a TAZ specific variable, the random parameter is 

significant for the TAZ – Day level highlighting how the unobserved heterogeneity of exogenous 

variable can be at a different resolution. 

TAZ – Day – Time period level estimates: The results for model estimation at the finest 

resolution indicate the presence of significant variations across time periods. There is an overall 

unobserved effect captured by the constant term. Further, the population and job density variables 

also reveal substantial variability at this resolution. The results indicate that although population 

and job density variables are time invariant variables, their effects vary for every time period; thus 

highlighting how the influence of population and job density can be affected by time period. The 

existence of such multi-level variations supports our hypothesis that decomposing the unobserved 

effects is beneficial. The population, job, or bicycle facility density variables did not have 

significant variation when we considered them at the TAZ level variation. However, by employing 
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different levels in the specification of unobserved effects, we can capture the impact of these 

variables better.  

Endogeneity variable: The final row of Table 3 presents the standard deviation estimate 

related to the endogeneity component of the 3PMMOL model with a positive sign in usage 

equations. The magnitude and significance of the endogeneity parameter indicate the presence of 

the impact of BSS installation process on usage. More significantly, the introduction of the 

endogeneity component substantially reduces the magnitude of the BSSI variables in the model 

(relative to the estimates in 3OL, 2PMOL and 2PMMOL models). This reduction in magnitude 

(which is further confirmed and presented through elasticity analysis in next section) supports our 

hypothesis that ignoring the BSS installation process results in over-estimating the impact of BSS 

infrastructure while under-estimating the impact of other exogenous variables. 

6.5. Elasticity Effects 

The proposed approach focuses on accounting for the influence of the bicycle-sharing 

infrastructure installation process on the usage models while recognizing the effect of bicycle-

sharing infrastructure itself on the arrival and departure rates. To further examine the model results 

obtained, we conduct an elasticity analysis for a select set of exogenous variables. The elasticity 

measures are computed by calculating the percentage change in the TAZ bicycle arrivals and 

departures due to the change in the exogenous variables. The elasticity computation is conducted 

by computing the difference in the probability distribution for the ordered alternatives and 

multiplying it with the mean value of the category. Rather than employ a point estimation of 

elasticity approach, we consider estimating the distribution of the elasticity effects (see Eluru et 

al., 2008 for a similar exercise in a different context). These measures are computed for the entire 

sample as well as for the specific time periods of AM and PM. The scenarios considered include: 

a) increasing only the number of stations in a TAZ without increasing the capacity in a TAZ, i.e., 

reallocating current capacity to add new stations, b) increasing only the capacity in a TAZ without 

increasing the number of stations in a TAZ, c) increasing number of stations and capacity in a 

TAZ, d) increasing population density by 25%, e) increasing job density by 25%, and f) increasing 

bicycle facility density by 10% and 25%.  

 To conduct a comparison across all model frameworks the elasticity measures and their 

standard deviations are generated for three models - 3OL, 2PMMOL and 3PMMOL – and 

presented in Table 4. Several significant observations can be made based on the results. First, the 

3OL and 2PMMOL models over-estimate the expected impact of BSS infrastructure.  For instance, 

for arrivals’ model, the over-estimation in the average effect is 66% for the number of stations 

scenario while the corresponding value is 103.5% for station capacity scenario. Similar trends are 

observed for departures’ model as well. Second, the impact of BSS infrastructure is very similar 

in 3OL and 2PMMOL models highlighting that it is not adequate to consider common unobserved 

factors affecting arrivals and departures in the modeling exercise. Third, although the mean 

expected impact of population, job and bicycle facility density are marginally different for the 

three models, the differences between 2PMMOL and 3PMMOL are not statistically significant. 

Fourth, we observe that AM period has the highest sensitivity to changes in exogenous variables 

across the board. Finally, we observe that the models offer very slight differences across arrivals 

and departures indicating a symmetric impact on the two usage dimensions. 

Overall, the elasticity analysis clearly demonstrates the need to incorporate the BSS 

installation process in order to estimate the “true” impact of BSS infrastructure on the BSS usage. 
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The analysis shows that ignoring the BSS installation process leads to a statistically significant 

over-estimation of the BSS infrastructure variable impact. However, comparisons for the land-use 

and urban form variables impacts on BSS usage do not yield statistically significant differences to 

characterise them either as an under-estimation or an over-estimation. 

 

7. Conclusions 

The typical approach for analyzing BSS usage involves examining the influence of BSS 

infrastructure (e.g. number of BSS stations and stations’ capacity), transportation network 

infrastructure, land use and urban form, meteorological data, and temporal characteristics. Several 

studies demonstrate that increasing BSS infrastructure (number of stations and capacity) increases 

BSS usage. Earlier research efforts ignore the BSS infrastructure installation decision process i.e. 

BSS operators installed the infrastructure based on an expectation of system usage. The model 

estimates obtained with this erroneous assumption are very likely to over-estimate the impact of 

BSS infrastructure. The current research effort proposes a joint econometric framework that 

remedies this drawback. 

We opt for TAZ system as the spatial aggregation unit for our study. Considering all BSS 

infrastructure variables and usage variables in their original form would result in a large number 

of choice equations (one per variable). Hence, to simplify the econometric model development we 

propose a single measure of BSS infrastructure that simultaneously encapsulates the number of 

stations and total capacity in a TAZ. Having a single equation for BSS infrastructure allows us to 

efficiently accommodate for the potential presence of endogeneity in the model system. Of course, 

alternate BSSI index structures could be explored in future research.  

We formulate a multi-level joint econometric framework to study the BSS installation 

process and usage. In all the earlier studies, self-selection was considered in a choice framework 

based on a cross-sectional dataset where one measurement equation was coupled with one choice 

equation to disentangle the influence of endogeneity. However, in the BSS context, the 

infrastructure installation process has only one occurrence, while the infrastructure usage process 

(arrivals and departures) has multiple repeated observations. Hence, the econometric model 

developed should account for self-selection while accounting for repeated measures of the choice 

process. Thus, to correctly identify the confounding factors the econometric framework needs to 

accommodate for endogeneity while considering the influence of unobserved factors on repeated 

observations at multiple levels (all records for the spatial unit, all records for the spatial unit in a 

day and unobserved heterogeneity for each observation). Hence, a common spatial unit specific 

component across the BSS infrastructure measurement and repeated usage equations needs to be 

augmented with multi-level common unobserved effects. 

The proposed joint modeling process thus estimates a more accurate impact of BSS 

infrastructure on usage. We consider an ordered representation for all the dependent variables 

yielding a three dimensional panel ordered formulation. The proposed model is estimated using 

data compiled from the Montreal bicycle-sharing system, BIXI, from April to August 2012. The 

proposed joint econometric model – a 3 dimensional panel multi-level mixed ordered logit model 

(3PMMOL) was compared with the three dimensional independent ordered logit model (3OL) that 

does not accommodate for common unobserved heterogeneity, a 2 dimensional panel multi-level 

mixed ordered logit model 2PMMOL model that ignores the presence of endogeneity of BSS 

infrastructure on the usage and 2PMOL model that restricts the common unobserved effects 
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between arrivals and departures to the TAZ level. The model fit measures clearly provide evidence 

to support our hypothesis that ignoring the installation process and decomposing the unobserved 

effects into finer resolutions affect model estimates. To further examine the advantages of the 

proposed model framework, elasticity impacts for a host of policy variables were computed. The 

elasticity effects predicted for changes in BSS infrastructure variables indicate that ignoring the 

potential relationship between BSS infrastructure installation process and usage could result in 

significant over-estimation of the impact of BSS infrastructure (varies between 66% and 118%). 

While the elasticity analysis results for population, job and bicycle facilities density variables do 

not yield statistically significant differences between different models, the mean errors can range 

from -57% to 125%. 

Besides, the empirical analysis has several findings. The results evidently indicate that 

bicycle-sharing infrastructure is not randomly allocated in the urban region. Considering 

Montreal’s BIXI system as a mature system with reasonable success, the estimated BSS 

installation model results can be used as a guiding template to model BSS installation decisions 

for a TAZ (or neighbourhood) as a function of existing land-use, built environment attributes. 

Moreover, our estimated results on factors influencing arrivals and departures provide interesting 

findings. The results demonstrate the significant impact of weather characteristics as well as the 

time of the day and weekend variables on BSS usage. The use of BIXI system for the daily 

commute to and from work and universities is also highlighted by the results. The findings provide 

useful information for designing or modifying bicycle-sharing systems with the goal of 

maximizing usage.  
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Figure 1: The variation of BSS infrastructure for an average sized TAZ in Montreal 
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Figure 2: Bicycle-Sharing Infrastructure Index in Montreal 
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Figure 3: Three dimensional panel mixed multi-level ordered logit (3PMMOL) framework 
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Table 1: Descriptive Summary of Sample Characteristics 

Continuous Variables Min Max Mean 
Std. 

Deviation 

Temperature (°C) 5.2 33 20.26 5.32 

Relative Humidity (%) 24 99 63.03 16.96 

Elevation (m) 14.8 139.3 47.54 24.60 

TAZ Distance to CBD (km) 0.17 9.00 3.53 1.96 

Length of Bicycle Facility in TAZ (km) 0 9.08 1.26 1.87 

Length of Streets in TAZ  (km) 0.62 39.48 8.01 5.95 

Length of Major Roads in TAZ (km) 0 10.30 1.03 1.23 

Length of Highways in TAZ (km) 0 8.36 0.39 0.93 

Length of Bus Lines in TAZ (km) 0 12.81 2.42 2.22 

Length of Railways in TAZ (km) 0 6.00 0.42 0.84 

Area of Parks in TAZ (km2) 0 1.45 0.03 0.14 

Number of Restaurants in TAZ 0 110 14.26 16.22 

Number of other Commercial Enterprises in 

TAZ 
0 1882 97.93 140.03 

Number of BIXI stations in TAZ 1 6 1.74 0.94 

Capacity of BIXI stations in TAZ 11 141 34.07 22.27 

Station Capacity 7 65 19.53 7.95 

TAZ Pop Density (people per m2 ×1000)  1.01 187.79 59.38 31.62 

TAZ Job Density (jobs per m2 ×1000) 0.07 4078.13 141.19 528.96 

Categorical Variables Percentage 

Rainy Weather 8.3 

Weekends 28.9 

Metro Station in TAZ 15.3 

TAZ in Downtown area 19.1 

University in TAZ  12.8 
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Table 2: Model Fit Measures 

 

 3OL 2PMOL 2PMMOL 3PMMOL 

Model description 
3 Independent 

Ordered Logit  

2 dimensional 

panel mixed 

ordered logit 

model 

2 dimensional 

panel mixed 

multi-level 

ordered logit  

3 dimensional 

panel mixed 

multi-level 

ordered logit  

Number of parameters 38 42 47 48 

LL at convergence -14725.2 -11528.2 -11474.9 -11452.7 

AIC 29526.4 23140.4 23043.7 23001.3 

BIC 29793.0 23435.0 23373.4 23338.0 

LL ratio test  

3PMMOL vs 3OL  6545 (23.2*)  

2PMMOL vs 2PMOL 106.6 (16.8*) 

3PMMOL vs 2PMMOL 44.4 (6.64*) 
* the corresponding chi-square value at 99% level of significance  
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Table 3: 3PMMOL Model Estimation Results 

Parameter  
BSS Infrastructure Arrival Rate Departure Rate 

Estimate t-stat. Estimate t-stat. Estimate t-stat. 

Threshold 1 -2.0132 -2.866 -3.1451 -7.621 -3.1451 -7.621 

Threshold 2 0.0756 0.113 1.7097 4.145 1.7097 4.145 

Threshold 3 1.9573 3.086 4.5364 10.945 4.5364 10.945 

Threshold 4 4.1434 5.489 N/A N/A N/A N/A 

Weather & Time Variables       

Temperature   0.5297 7.794 0.5297 7.794 

Relative Humidity   -3.6787 -19.086 -3.6787 -19.086 

Rainy   -0.5267 -8.464 -0.5267 -8.464 

Weekend   -0.7867 -19.091 -0.7867 -19.091 

PM   1.6961 20.314 1.6961 20.314 

Night   -3.2944 -26.013 -3.2944 -26.013 

TAZ Variables       

Bicycle Facility Density 0.0714 2.097 0.0865 5.203 0.0865 5.203 

Highway Density -0.1058 -1.757 -0.1642 -5.865 -0.1642 -5.865 

Rail length -0.5133 -2.623     

Downtown 1.0132 1.722     

Distance to CBD -0.2931 -2.506 -0.2759 -4.737 -0.2759 -4.737 

Metro Station in TAZ   0.9273 4.525 0.9273 4.525 

Number of Restaurants in TAZ 3.1938 2.703 0.9764 2.278 0.9764 2.278 

University in TAZ * AM   0.6593 3.13 -0.8526 -4.221 

University in TAZ * PM   -0.5204 -2.448 0.6458 2.776 

TAZ Job Density 0.7556 2.054     

TAZ Job Density * AM   1.0594 9.955 -0.289 -3.698 

TAZ Population Density 14.6527 2.618     

TAZ Population Density * AM   -9.6899 -10.245 10.2661 9.933 

TAZ Population Density * PM     -6.662 -4.941 

BSSI (BSSI Low is base)       

BSSI Medium   0.5911 1.776 0.5911 1.776 

BSSI High   3.1816 9.861 3.1816 9.861 

Standard Deviation Estimates  

TAZ  

BSSI Low   1.3771 10.896 1.3771 10.896 

BSSI Medium   1.4776 11.938 1.4776 11.938 

BSSI High   2.1339 17.452 2.1339 17.452 

Night Time Period   1.1828 12.073 1.1828 12.073 

AM and PM Time Period   0.4267 5.941 0.4267 5.941 

TAZ-Day  Constant   0.2549 7.702 0.2549 7.702 

Bicycle Facility Density   0.0246 4.701 0.0246 4.701 

TAZ-

Day-Time 

Period 

Constant   0.1692 3.273 0.1692 3.273 

TAZ Job Density   4.295 8.277 4.295 8.277 

TAZ Population Density   0.3023 7.940 0.3023 7.940 

Standard Deviation of Endogeneity 

Component (𝜼𝒒) 
1.1585 10.294 1.1585 10.294 1.1585 10.294 
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Table 4: Elasticity Effects (and its standard deviation) for TAZ Arrival and Departure Rates 

  3OL 2PMMOL 3PMMOL 

  Overall AM PM Overall AM PM Overall AM PM 

A
rr

iv
a
ls

 

No. of Stations +3, same capacity 
3.86 

(0.04) 

3.97 

(0.04) 

3.72 

(0.03) 

3.88 

(0.32) 

4.21 

(0.34) 

3.76 

(0.34) 

2.33 

(0.33) 

2.62 

(0.39) 

2.17 

(0.32) 

Capacity +25, same No. of Stations 
4.4 

(0.04) 

4.42 

(0.05) 

4.46 

(0.04) 

4.25 

(0.45) 

4.39 

(0.43) 

4.44 

(0.53) 

2.07 

(0.45) 

2.3 

(0.44) 

2.09 

(0.47) 

No. of Stations +3, Capacity +15 
6.93 

(0.06) 

7.03 

(0.07) 

6.85 

(0.06) 

6.79 

(0.65) 

7.29 

(0.67) 

6.72 

(0.74) 

3.6 

(0.65) 

4.07 

(0.68) 

3.39 

(0.68) 

Population Density +25% 
-0.71 

(0.06) 

-3.99 

(0.37) 

0 

(0) 

-0.67 

(0.05) 

-3.75 

(0.38) 

0 

(0) 

-0.69 

(0.07) 

-3.82 

(0.48) 

0 

(0) 

Job Density +25% 
0.16 

(0.03) 

0.88 

(0.14) 

0 

(0) 

0.33 

(0.05) 

1.84 

(0.28) 

0 

(0) 

0.37 

(0.07) 

2.06 

(0.39) 

0 

(0) 

Bicycle Facility Density +10% 
1.19 

(0.02) 

1.3 

(0.02) 

1.00 

(0.02) 

1.69 

(0.36) 

1.81 

(0.4) 

1.45 

(0.29) 

1.46 

(0.26) 

1.49 

(0.28) 

1.36 

(0.23) 

Bicycle Facility Density +25% 
2.99 

(0.05) 

3.28 

(0.06) 

2.52 

(0.06) 

4.27 

(0.9) 

4.6 

(1.03) 

3.64 

(0.71) 

3.71 

(0.66) 

3.78 

(0.73) 

3.41 

(0.59) 

D
ep

a
rt

u
re

s 

No. of Stations +3, same capacity 
3.86 

(0.04) 

3.94 

(0.06) 

3.71 

(0.04) 

3.83 

(0.3) 

3.91 

(0.36) 

3.77 

(0.28) 

2.29 

(0.39) 

2.39 

(0.42) 

2.2 

(0.39) 

Capacity +25, same No. of Stations 
4.36 

(0.05) 

4.44 

(0.07) 

4.35 

(0.05) 

4.2 

(0.46) 

4.14 

(0.52) 

4.35 

(0.47) 

2.00 

(0.58) 

1.93 

(0.61) 

2.09 

(0.58) 

No. of Stations +3, Capacity +15 
6.9 

(0.08) 

7.11 

(0.1) 

6.72 

(0.08) 

6.73 

(0.64) 

6.85 

(0.73) 

6.65 

(0.66) 

3.52 

(0.8) 

3.65 

(0.84) 

3.39 

(0.8) 

Population Density +25% 
0.09 

(0.16) 

3.97 

(0.31) 

-2.49 

(0.46) 

0.2 

(0.19) 

4.75 

(0.56) 

-2.55 

(0.49) 

0.19 

(0.17) 

4.68 

(0.63) 

-2.51 

(0.49) 

Job Density +25% 
-0.18 

(0.01) 

-0.83 

(0.05) 

0 

(0) 

-0.11 

(0.02) 

-0.53 

(0.12) 

0 

(0) 

-0.08 

(0.02) 

-0.4 

(0.12) 

0 

(0) 

Bicycle Facility Density +10% 
1.19 

(0.02) 

1.25 

(0.03) 

1.03 

(0.02) 

1.78 

(0.41) 

1.89 

(0.46) 

1.55 

(0.33) 

1.48 

(0.32) 

1.52 

(0.34) 

1.37 

(0.27) 

Bicycle Facility Density +25% 
2.99 

(0.06) 

3.16 

(0.07) 

2.58 

(0.06) 

4.5 

(1.06) 

4.79 

(1.15) 

3.88 

(0.83) 

3.74 

(0.81) 

3.86 

(0.88) 

3.46 

(0.69) 

 


