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ABSTRACT 1 

The current study contributes to safety literature both methodologically and empirically by 2 

developing a macro-level multivariate copula-based crash frequency model for crash counts. The 3 

multivariate model accommodates for the impact of observed and unobserved effects on zonal 4 

level crash counts of different road user groups including car, light truck, van, other motorized 5 

vehicle (including truck, bus and other vehicles) and non-motorist (including pedestrian and 6 

bicyclist). The proposed model is estimated using Statewide Traffic Analysis Zone (STAZ) level 7 

road traffic crash data for the state of Florida. A host of variable groups including land-use 8 

characteristics, roadway attributes, traffic characteristics, socioeconomic characteristics and 9 

demographic characteristics are considered. The model estimation results illustrate the 10 

applicability of the proposed framework for multivariate crash counts. Model estimation results 11 

are further augmented by evaluation of predictive performance and policy analysis.   12 
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BACKGROUND  1 
 2 

Road traffic crashes affect the society as a whole both emotionally and economically and are 3 

rightfully recognized as a national health problem (1; 2). In reducing the undue burden of road 4 

crashes and their consequences, road safety literature is focused on devising both proactive and 5 

reactive safety management policies at the user, system and/or planning level through evidence-6 

based and data-driven strategies. Crash frequency analysis, specifically macro-level crash models, 7 

is a major component for devising and evaluating these road safety policies at a planning level. 8 

Macro-level studies have mostly evolved in safety research to incorporate safety considerations 9 

within the transportation planning process. The outcome of these models is also useful to devise 10 

safety-conscious decision support tools to facilitate a proactive approach in assessing medium and 11 

long-term policy based countermeasures. The current research effort contributes to the safety 12 

literature methodologically and empirically with specific focus on macro-level crash frequency 13 

analysis. 14 

Econometric approaches of developing crash prediction models in safety literature are 15 

dominated by traditional count regression frameworks (Poisson and negative binomial (NB) 16 

models) in univariate modeling systems (see (3-5)). These studies identify a single count variable 17 

for different crash attribute levels (road user group, crash severity, crash types, or vehicles types) 18 

for a spatial unit and study the impact of exogenous variables. However, as documented in 19 

literature, crash counts across different attribute levels are likely to be dependent for the same 20 

observation resulting in a multivariate crash event set (6). Ignoring such correlation, if present, 21 

may lead to biased and inefficient parameter estimates resulting in erroneous policy implications 22 

(7; 8). To that extent, road safety researchers and analysts have  estimated multivariate count 23 

models to produce more accurate predictions (see (9) for a detailed list of these studies). 24 

It is beyond the scope of this paper to provide a comprehensive literature review on 25 

multivariate crash count models. For a detailed review of multivariate frameworks employed in 26 

safety, the reader is referred to recent review studies (3; 10; 11). Within the multivariate scheme, 27 

studies have predominantly explored crash counts by severity outcome levels and by crash types. 28 

However, multivariate crash event set may also arise when examining crash occurrences by 29 

different road user groups involved in crashes. In fact, studies have recognized this and developed 30 

multivariate crash count models for different road user groups involved in crashes – for pedestrian 31 

and bicyclists  (12; 13), for vehicle types (14), for travel modes (15).  32 

In these studies, the general trend is to focus entirely either on motorized road user group 33 

or on non-motorized road users (except (15)). However, both of these road user groups share the 34 

same travel environment within a spatial planning unit over a specific given period of time. 35 

Therefore, it is possible that the same set of observed and unobserved factors influence crash 36 

occurrences of these two different road user groups. For instance, higher number of uncontrolled 37 

intersections (usually observed to analysts) at a zonal level are likely to result in higher number of 38 

vehicular conflicts as well as higher number of pedestrian/bicyclists involved crashes. At the same 39 

time, if a zone has higher proportion of blind spots at intersections (usually unobserved to analyst) 40 

it may contribute to higher crash events involving both motorists and non-motorists. Therefore, it 41 

is important to examine crash events as a joint process considering both of these road user groups 42 

simultaneously. Further, while analyzing motorized road user groups, recognizing the implicit 43 

differences between various motorized vehicle groups is very useful. It is plausible that different 44 

exogenous variables may have distinct impact on crash occurrence across various motorized road 45 

user groups. For instance, zones with higher truck volumes may have higher number of crashes 46 
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involving heavy vehicles. Moreover, it is also important to examine separate risk factors related to 1 

different types of passenger vehicles rather than considering all passenger vehicles as one category. 2 

As documented in literature, the diversity in passenger vehicle fleet has deteriorating effects on 3 

overall safety (16). In the United States, the sales of light truck has in fact increased 7% in 2016 4 

relative to 2015 (17). The shift from light to heavy passenger vehicles are likely to result in 4.3 5 

additional crashes (for each fatal crash that occupants of large passenger vehicles avoid) that may 6 

result in fatalities among occupants of light vehicles or non-motorists involved in crashes with 7 

these heavy passenger vehicles (18).  8 

Given the potential difference in safety impacts of different types of passenger vehicles, it 9 

is important to examine separate risk factors for different types of passenger vehicles, which would 10 

allow us to devise more tangible actions and policies. The first contribution of our study is to 11 

develop multivariate crash count model for crashes involving different road user groups involved 12 

in crashes with higher resolution classification of passenger vehicle fleet. Specifically, we examine 13 

zonal level car, light truck, van, other motorized vehicles (bus, truck and other vehicles) and non-14 

motorist (pedestrian and bicyclist) involved crash counts in a multivariate count model framework.  15 

Traditionally, in existing safety literature, the multivariate count models are examined by 16 

considering unobserved error components that jointly affect the dependent variables. In particular, 17 

the traditional multivariate count modeling approaches partition the error components of the 18 

dependent variables to accommodate for a common term and an independent term across 19 

dependent variables (see (6) for a detailed discussion of various methodologies). Thus, any 20 

probability computation, in accommodating such unobserved effect, requires integrating the 21 

probability function over the error term distribution. The exact computation is dependent on the 22 

distributional assumption and does not have a closed form expression usually. Thus, the estimation 23 

procedure requires the adoption of maximum simulated likelihood (MSL) approach in the classical 24 

approach or Markov Chain Monte Carlo (MCMC) approach in the Bayesian realm. MSL and 25 

MCMC methods provide substantial flexibility in accommodating for unobserved heterogeneity. 26 

However, the probability evaluation with high dimensional integrals is affected by the challenges 27 

in generating high dimensionality of random numbers and longer computational run times. The 28 

process of applying simulation for such joint processes is likely to be error-prone and the stability 29 

of the variance-covariance matrix is often sensitive to model specification and number of 30 

simulation draws (see (19) for a discussion). Within this simulated framework, the model 31 

structures employed in developing multivariate crash count model include multivariate-Poisson, 32 

multivariate Poisson-lognormal, multivariate random-parameters zero-inflated negative binomial, 33 

multinomial-generalized Poisson, multivariate conditional autoregressive, multivariate tobit and 34 

multivariate Poisson gamma mixture count models. Another multivariate count modeling 35 

approach based on the development of multivariate function has most recently been employed by 36 

Narayanamoorthy et al. (20). The approach circumvents the challenges associated with simulation 37 

by adopting analytical approximation of the likelihood function.  38 

More recently, a closed form parametric formulation that obviates the need for an 39 

approximation or demanding simulation has been employed in existing econometric literature for 40 

examining joint count events. The approach, referred to as copula-based approach, allows for 41 

flexible correlation structures across joint dimensions thus enhancing the flexibility of the 42 

multivariate approach. The copula-based approach allows for analytical computation of log-43 

likelihood based on standard maximum likelihood procedure; it is generally tractable and offers 44 

stable inference. The copula formulation allows for additional flexibility in specifying the marginal 45 

distribution. While the application of copula has seen a surge of interest in examining multivariate 46 
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continuous and disaggregate discrete data, the studies employing copulas for examining aggregate 1 

level count events are relatively few (for application of copulas in continuous and disaggregate 2 

level discrete data see (21-24)). Copula based bivariate count model has been employed in 3 

econometrics and applied statistics (25; 26). To date, only one study in safety literature has 4 

employed bivariate copula count model in examining pedestrian and bicycle crash risks 5 

simultaneously (12).  6 

The current study generalizes the bivariate copula count model for examining multivariate 7 

count data. Specifically, we formulate and estimate a multivariate copula count model for 8 

examining zonal level crash counts by different road user groups involved in crashes. To be sure, 9 

the application of multivariate copula count model has been demonstrated by Nikoloulopoulos and 10 

Karlis (27) in examining the correlation among the number of purchases of four different products 11 

(food, non-food, hygiene and fresh). In current study context, we employ multivariate copula count 12 

model for examining five different crash count dimensions – car, light truck, van, other motorized 13 

vehicle and non-motorists involved crashes. The second contribution of our study is to develop a 14 

closed form multivariate copula count model to accommodate for the impact of observed and 15 

unobserved effects on zonal level crash counts of different road user groups. For examining the 16 

count components of the multivariate copula-based model, we employ negative binomial (NB) 17 

regression framework. The NB model that has a built-in dispersion parameter is widely employed 18 

in safety literature. It provides a natural enhancement over the Poisson model and is easy to 19 

estimate with a closed form structure to accommodate for over-dispersion (the variance of the 20 

crash count variable usually exceeds the mean of the crash count variable). In existing safety 21 

literature, researchers have also employed count modeling frameworks accommodating the 22 

preponderance of zero count events (such as zero-inflated and hurdle models). However, NB is the 23 

most frequently used statistical technique for examining crash count events (10). Therefore, in our 24 

current study, we examine crash count within the proposed multivariate copula-based approach by 25 

using NB regression framework. The proposed model is estimated using Statewide Traffic 26 

Analysis Zone (STAZ) level road crash data for the state of Florida. A host of variable groups 27 

including – land-use characteristics, roadway attributes, traffic characteristics, socioeconomic 28 

characteristics and demographic characteristics are considered.  29 

In summary, the current research effort contributes to safety literature on macro-level crash 30 

count analysis both methodologically and empirically. In terms of methodology, we formulate and 31 

estimate a multivariate copula-based count model framework to analyze the crash count events for 32 

different road user groups involved in crashes jointly, and we employ NB regression framework 33 

for examining the count components. The proposed multivariate copula count model can be 34 

employed in developing both macro and micro-level count events. In terms of empirical analysis, 35 

our study incorporates crash counts for both motorized and non-motorized road user groups while 36 

considering different types of passenger vehicles fleet categories. Specifically, we examine crash 37 

counts for car, light truck, van, other motorized vehicle and non-motorist involved crashes by 38 

employing multivariate copula count framework. Model estimation results are further augmented 39 

by evaluation of predictive performance and policy analysis.  40 

 41 

ECONOMETRIC FRAMEWORK 42 
 43 

The focus of our study is to propose and estimate a copula-based multivariate NB modeling 44 

framework (see (22; 28) for a detailed background on copula-based models and see (27) for a 45 
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description of multivariate NB framework). The econometric framework for the joint model is 1 

presented in this section.  2 

Let us assume that 𝑖 be the index for STAZ (𝑖 = 1,2,3, … , 𝑁) and 𝑦𝑞𝑖 be the index for 3 

crashes occurring over a period of time in a STAZ 𝑖; 𝑞 (𝑞 = 1,2, … , 𝑀, 𝑀 = 5) be the index to 4 

represent road user group for the multivariate case examined.  In this empirical study, 𝑞 takes the 5 

value of ‘car’ (𝑞 = 1), ‘light truck’ (𝑞 = 2), ‘van’ (𝑞 = 3), ‘other motorized vehicle’ (𝑞 = 4) 6 

and ‘non-motorist’ (𝑞 = 5). The NB probability expression for random variable 𝑦𝑞𝑖 can be written 7 

as: 8 

𝑃𝑞𝑖(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞) =  
Γ(𝑦𝑞𝑖+𝛼𝑞

−1)

Γ(𝑦𝑞𝑖 + 1)Γ(𝛼𝑞
−1)

(
1

1 + 𝛼𝑞𝜇𝑞𝑖
)

1
𝛼𝑞

(1 −
1

1 + 𝛼𝑞𝜇𝑞𝑖
)

𝑦𝑞𝑖

 (1)  

where, Γ(∙) is the Gamma function, 𝛼𝑞 is the NB dispersion parameter specific to road user group 9 

𝑞 and 𝜇𝑞𝑖 is the expected number of crashes occurring in STAZ 𝑖 over a given period of time for 10 

road user group 𝑞. We can express 𝜇𝑞𝑖 as a function of explanatory variable (𝒙𝑞𝑖) by using a log-11 

link function as: 𝜇𝑞𝑖𝑠 = 𝐸(𝑦𝑞𝑖|𝒙𝑞𝑖) = 𝑒𝑥𝑝(𝜷𝑞𝒙𝑞𝑖), where 𝜷𝑞 is a vector of parameters to be 12 

estimated specific to road user group 𝑞.   13 

The correlation or joint behavior of random variables 𝑦1𝑖, 𝑦2𝑖,…𝑦𝑀𝑖 are explored in the 14 

current study by using a copula-based approach. A copula is a mathematical device that identifies 15 

dependency among random variables with pre-specified marginal distribution ((22) (29) provide a 16 

detailed description of the copula approach). In constructing the copula dependency, let us assume 17 

that 𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖) … 𝛬𝑀(𝑦𝑀𝑖) are the marginal distribution functions of the random variables 18 

𝑦1𝑖, 𝑦2𝑖,…𝑦𝑀𝑖, respectively; and 𝛬12…𝑀(𝑦1𝑖, 𝑦2𝑖, … 𝑦𝑀𝑖) is the M variate joint distribution with 19 

corresponding marginal distributions. Subsequently, the M variate distribution 20 

𝛬12…𝑀(𝑦1𝑖, 𝑦2𝑖 , … 𝑦𝑀𝑖) can be generated as a joint cumulative probability distribution of uniform 21 

[0, 1] marginal variables 𝑈1, 𝑈2 ... 𝑈𝑀 as below: 22 

𝛬12…𝑀(𝑦1𝑖, 𝑦2𝑖 , … 𝑦𝑀𝑖) = 𝑃𝑟( 𝑈1 ≤ 𝑦1𝑖,  𝑈2 ≤ 𝑦2𝑖 …  , 𝑈𝑀 ≤ 𝑦𝑀𝑖) 

= 𝑃𝑟[𝛬1
−1(𝑈1) ≤ 𝑦1𝑖,  𝛬2

−1(𝑈2) ≤ 𝑦2𝑖 …  , 𝛬𝑀
−1(𝑈𝑀) ≤ 𝑦𝑀𝑖 ]  

= 𝑃𝑟[𝑈1 < 𝛬1(𝑦1𝑖),  𝑈2 < 𝛬2(𝑦2𝑖) … ,  𝑈𝑀 < 𝛬𝑀(𝑦𝑀𝑖) ] 

(2)  

The joint distribution (of uniform marginal variable) in equation 2 can be generated by a 23 

function 𝐶𝜃𝑖(. , . ) (30), such that: 24 

𝛬12…𝑀(𝑦1𝑖, 𝑦2𝑖 , … 𝑦𝑀𝑖) = 𝐶𝜃𝑖(𝑈1 = 𝛬1(𝑦1𝑖), 𝑈2 = 𝛬2(𝑦2𝑖) … ,  𝑈𝑀 = 𝛬𝑀(𝑦𝑀𝑖) ) (3)  

where, 𝐶𝜃𝑖(. , . ) is a copula function and 𝜃𝑖 is the dependence parameter defining the link between 25 

𝑦1𝑖, 𝑦2𝑖 , … 𝑦𝑀𝑖. In the case of continuous random variables, the joint density can be derived from 26 

partial derivatives. However, in our study, 𝑦𝑞𝑖 are nonnegative integer valued events. For such 27 

count data, following (26), the probability mass function (𝜁𝜃𝑖) is presented (instead of continuous 28 

derivatives) by using finite differences of the copula representation as follows: 29 
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𝜁𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖) … 𝛬𝑀(𝑦𝑀𝑖)) 

= ∑ ∑ … ∑ (−1)𝑎1+𝑎2+...  𝑎𝑀

2

𝑎𝑀=1

2

𝑎2=1

2

𝑎1=1
[𝐶𝜃𝑖(𝛬1(𝑦1𝑖 + 𝑎1 − 2), 𝛬2(𝑦2𝑖

+ 𝑎2 − 2) … 𝛬𝑀(𝑦𝑀𝑖 + 𝑎𝑀 − 2) ;  𝜃𝑖)] 

(4)  

The reader would note the probability in Equation 4 is written in terms of 2𝑀 copula 1 

evaluations (see (31; 32) for a similar derivation). The number of computations increases rapidly 2 

with the number of dependent variables (𝑀), but this is not much of a problem when the dependent 3 

variable number 𝑀 is 6 or less because of the closed-form structures of the copula function 4 

evaluation. Given the above setup, we specify 𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖) … 𝛬𝑀(𝑦𝑀𝑖) as the cumulative 5 

distribution function (cdf) of the NB distribution. The cdf of NB probability expression (as 6 

presented in Equation 1) for 𝑦𝑞𝑖 can be written as: 7 

𝛬𝑞(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞) = ∑ 𝑃𝑞𝑖(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞)

𝑦𝑞𝑖

𝑘=0

 (5)  

Thus, the log-likelihood function (𝐿𝐿) with the joint probability expression in Equation 5 8 

can be written as: 9 

𝐿𝐿 = ∑ ln (𝜁𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖) … 𝛬𝑀(𝑦𝑀𝑖)))

𝑁

𝑖=1

 (6)  

In the current empirical study, we employ Archimedean copulas that span the spectrum of 10 

different kinds of dependency structures including Clayton, Gumbel, Frank, and Joe copulas (see  11 

(22) for graphical descriptions of the implied dependency structures). Archimedean copulas, in 12 

their multivariate forms, allow only positive associations and equal dependencies among pairs of 13 

random variables. The parameters are estimated using maximum likelihood approach. The model 14 

estimation is achieved through the log-likelihood functions programmed in GAUSS.  15 

 16 

DATA DESCRIPTION 17 
 18 

Our study area includes the state of Florida with 8,518 STAZ. Similar to the rest of the North-19 

American transportation trends, the ethos of travel in Florida is also predominantly auto-oriented. 20 

The state has nearly 100,000 more crashes in 2015 than in 2011 with higher number of non-21 

motorist fatalities (33). These numbers clearly signify that it is important to identify critical factors 22 

contributing to road traffic crashes at a planning level for all road user groups to improve overall 23 

road safety situation. The traffic crash records are collected and compiled from Florida Department 24 

of Transportation (FDOT) Crash Analysis Reporting System (CARS) database for the year 2014. 25 

The geocoded crash data are aggregated at the level of STAZ for each road user group. Thus, the 26 
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dependent variable of the empirical study is zonal level number of crash counts involving car, light 1 

truck, van, other motorized vehicles and non-motorist.  2 

In addition to the crash database, the explanatory attributes considered in the empirical 3 

study are also aggregated at the STAZ level. The selected explanatory variables can be grouped 4 

into five broad categories: land-use characteristics, roadway attributes, traffic characteristics, 5 

socioeconomic characteristics and demographic characteristics. These variables are collected and 6 

compiled from different data sources including: 2010 US census data, 2009-2013 American 7 

Community Survey (ACS), Florida Geographic Data Library (FDGL) databases. Land-use 8 

characteristics included shopping centers, restaurants, park/recreational centers and proportion of 9 

urban area. Roadway attributes included proportion of local roads and proportion of major roads 10 

length. Traffic characteristics included annual average daily traffic (AADT) and truck AADT. 11 

Socioeconomic characteristics included proportion of industrial jobs, proportion of retail jobs, 12 

proportion of households with no vehicle and proportion of households with one vehicle. Finally, 13 

Demographic characteristics included proportion of Hispanic population and proportion of 14 

Caucasian population. 15 

Table 1 offers a summary of the sample characteristics of the exogenous factors in the 16 

estimation dataset along with the descriptive statistics of the dependent variables. The table 17 

represents the definition of variables considered for final model estimation along with the zonal 18 

minimum, maximum, average values and standard deviation. The final specification of the model 19 

development was based on removing the statistically insignificant variables in a systematic process 20 

based on statistical significance (95% significance level). The specification process was also 21 

guided by prior research and parsimony considerations. In estimating the models, several 22 

functional forms and variable specifications were explored. The functional form that provided the 23 

best result was used for the final model specifications and, in Table 1, the variable definitions are 24 

presented based on these final functional forms. 25 

 26 

TABLE 1 Sample Statistics for the State of Florida 27 

Variable names Variable description 

Zonal 

Minimum Maximum Mean 
Standard 

deviation 

DEPENDENT VARIABLES 

 
Car crashes per 

STAZ 

Total number of car involved 

crashes per STAZ 
0.000 628.000 22.487 45.824 

 
Light truck 

crashes per STAZ 

Total number of light truck 

involved crashes per STAZ 
0.000 81.000 4.237 7.561 

 
Van crashes per 

STAZ 

Total number of van involved 

crashes per STAZ 
0.000 62.000 1.859 3.833 

 
Other motorized 

vehicle crashes 

per STAZ 

Total number of other motorized 

vehicle involved crashes per STAZ 
0.000 148.000 3.195 6.102 

 
Non-motorist 

crashes per STAZ 

Total number of non-motorist 

involved crashes per STAZ 
0.000 187.000 6.557 12.830 

INDEPENDENT VARIABLES 

Land-use characteristics 

 Shopping centers 
Count of shopping centers in 

STAZ/10 
0.000 18.900 0.583 1.049 

 Restaurants Count of restaurants in STAZ/10 0.000 11.000 0.410 0.679 
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Park and 

recreational 

centers 

Count of park and recreational 

centers in STAZ/10 
0.000 5.400 0.079 0.167 

 
Proportion of 

urban area 

Total urban Area in STAZ/Total 

area of STAZ 
0.000 1.000 0.731 0.425 

Roadway attributes 

 
Proportion of 

local roads 

Length of local roads in 

STAZ/Total length of roads in 

STAZ 

0.000 1.000 0.085 0.192 

 
Proportion of 

major roads 

Length of major road in 

STAZ/Total length of roads in 

STAZ 

0.000 1.000 0.544 0.371 

Traffic characteristics 

 AADT 
Total annual average daily traffic 

(AADT) of STAZ/100,000 
0.000 6.044 0.721 0.732 

 Truck AADT 
Total truck AADT of 

STAZ/100,000 
0.000 0.611 0.028 0.044 

Socioeconomic characteristics 

 
Proportion of 

industrial jobs 

Total number of industrial jobs in 

STAZ/Total number of jobs in 

STAZ 

0.000 1.000 0.506 0.484 

 
Proportion of 

retail jobs 

Total number of retail jobs in 

STAZ/Total number of jobs in 

STAZ 

0.000 1.000 0.276 0.277 

 
Proportion of 

households with 

zero vehicle 

Total number of households with 

no vehicles in STAZ/Total number 

of households in STAZ 

0.000 1.000 0.094 0.111 

 
Proportion of 

households with 

one vehicle 

Total number of households with 

one vehicle in STAZ/Total number 

of households in STAZ 

0.000 0.967 0.411 0.135 

Demographic characteristics 

 
Proportion of 

Hispanic 

population 

Total number of Hispanic 

population in STAZ/Total number 

of population in STAZ 

0.000 1.000 0.171 0.202 

 
Proportion of 

Caucasian 

population 

Total number of Caucasian 

population in STAZ/Total number 

of population in STAZ 

0.000 1.000 0.621 0.278 

 1 

EMPIRICAL ANALYSIS 2 
 3 

Model Selection 4 

 5 
The empirical analysis involves estimation of four different multivariate count models including: 6 

1) Clayton, 2) Gumbel, 3) Frank, and 4) Joe copulas. We also estimate an independent copula 7 

model (separate NB models for crash counts involving different road user groups) to establish a 8 

benchmark for comparison. A comparison exercise is undertaken to identify the most suitable 9 

copula model (including the independent copula model). The alternative copula models estimated 10 

are non-nested and hence cannot be tested using traditional log-likelihood ratio test. We employ 11 

the Bayesian Information Criterion (BIC) to determine the best model among all copula models 12 
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(12; 21; 29; 32). The model with the lower BIC is the preferred copula model. The BIC value for 1 

independent copula model is 192617.83. The BIC values for the estimated multivariate copula 2 

models are: Clayton - 166929.78, Gumbel - 165722.37, Frank - 167869.31, and Joe - 167572.03. 3 

From the BIC values, we can see that the estimated copula models provide improved data fit 4 

relative to independent model. However, copula model with Gumbel distribution outperforms all 5 

other copula models. The BIC comparisons confirm the importance of accommodating 6 

dependence among crash count events of different road user groups in the macro-level analysis. 7 

 8 

Estimation Results 9 
 10 

In presenting the effects of exogenous variables in the multivariate model specification, we will 11 

restrict ourselves to the discussion of the Gumbel Copula specification. The estimation results of 12 

the multivariate (Gumbel Copula) model are presented in Table 2.We include car, light truck, van, 13 

other motorized vehicle and non-motorist crash count components in second, third, fourth, fifth 14 

and sixth column panels, respectively. For brevity, results are discussed together for different road 15 

user groups in the following section by variable groups. 16 

 17 

TABLE 2 Multivariate Count Model Estimation Results – Gumbel Copula 18 

Variable names 

Car 
Light 

truck 
Van 

Other 

motorized 

vehicle 

Non-

motorist 

Estimate Estimate Estimate Estimate Estimate 

t-stat t-stat t-stat t-stat t-stat 

  Constant 1.311 0.680 -0.571 0.051 0.474 

    23.940 21.571 -14.563 2.042 16.514 

Land-use characteristics 

  Shopping centers 0.159 0.097 --* -- 0.140 

    8.402 6.575 -- -- 9.180 

  Restaurants -- -- 0.080 0.127 -- 

    -- -- 4.297 7.374 -- 

  Park and recreational centers 0.541 0.347 0.427 -- 0.599 

    6.941 5.092 5.584 -- 8.579 

  Proportion of urban area 0.570 0.074 0.562 -- 0.444 

    20.962 3.381 20.352 -- 17.996 

Roadway attributes  

  Proportion of local roads -- -- -0.298 -- -- 

    -- -- -4.928 -- -- 

  Proportion of major roads 0.312 0.293 -- 0.468 0.373 

    10.994 10.810 -- 17.745 13.489 

Traffic characteristics     

  AADT 0.851 0.660 0.643 0.553 0.809 

    29.823 26.507 27.542 24.236 31.662 

  Truck AADT -2.187 -2.225 -- 2.876 -2.645 

    -6.340 -7.676 -- 10.052 -8.325 
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Socioeconomic characteristics 

  Proportion of industrial jobs -0.066 0.148 -- -- -- 

    -3.335 7.527 -- -- -- 

  Proportion of retail jobs 0.395 0.600 0.543 0.388 0.478 

    9.146 14.451 11.727 9.891 11.001 

  Proportion of households with zero 

vehicle 

  

-- -- -- -- 0.395 

  -- -- -- -- 4.703 

  Proportion of households with one 

vehicle 

  

0.752 -- 0.715 0.888 -- 

  9.442 -- 9.130 15.494 -- 

Demographic characteristics 

  Proportion of Hispanic population 0.645 0.124 -- -- 0.578 

    9.434 2.971 -- -- 11.405 

  Proportion of Caucasian population -0.143 -- -- -- -- 

    -3.473 -- -- -- -- 

Overdispersion parameter 1.864 1.877 2.028 1.887 1.840 

    76.517 63.394 48.290 58.978 64.363 

Correlation parameter 3.395 

    122.559 
*variable insignificant at 90% significance level 1 
 2 

Land-use characteristics: Among different points of interest considered, the copula model 3 

results reveal a higher probability of car, light truck and non-motorists crashes in the STAZs with 4 

higher number of shopping centers. The results indicate that the presence of more restaurants in a 5 

STAZ is positively associated with van and other motorized vehicle crashes. The results associated 6 

with parks/recreational centers show positive association with road traffic related crash risk. 7 

However, the variable effect is not significant in NB model component for other motorized vehicle 8 

crashes. Further, proportion of urban area is found to be significant in the count model component 9 

for car, light truck, van and non-motorist. In zones with larger proportion of urban areas, higher 10 

traffic related crashes are likely to occur, plausibly indicating higher density of transport activities 11 

and in turn higher traffic conflicts within an urbanized environment (see (34; 35) for similar 12 

results). 13 

 14 

Roadway attributes: In the crash count component for van, we find that in the presence of 15 

more local roads in a STAZ, the possibility of crash risk for van decreases. At the same time, the 16 

results associated with roadway class show that car, non-motorist, light truck and other motorized 17 

vehicles’ crash risks are positively correlated with higher proportion of major road.  18 

 19 

Traffic characteristics: With respect to traffic characteristics, both AADT and truck AADT 20 

are found to have significant influence on crash occurrences for different road user groups. The 21 

model estimation results indicate that traffic related crashes are positively associated with higher 22 

AADT at the zonal level for both motorists and non-motorists road user groups. The result is in 23 

line with previous studies and can be attributable to higher exposure and/or adaptation of road 24 

users to different levels of traffic volume (see (14; 36; 37) for similar results). Further, the effect 25 

of zonal level truck AADT has significant influence on all NB model components other than van. 26 
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The model results reveal that the higher truck AADT at the zonal level are likely to reduce crash 1 

propensities for car, light truck and non-motorists (see (38) for similar result). The result may be 2 

explained by the overall cautious travel behavior of different road user groups in the presence of 3 

high heavy vehicle volume. On the other hand, the model estimation shows a positive correlation 4 

between truck AADT and crashes involving other motorized vehicles; perhaps indicating higher 5 

exposure of heavy vehicle and bus in these zones. 6 

 7 

Socioeconomic characteristics: In terms of proportion of jobs by industry, the result 8 

associated with industrial jobs indicates that zones with higher proportion of industrial jobs 9 

increases the likelihood of light trucks’ crash risk. It is likely that zones with higher proportion of 10 

industrial jobs experience higher usage of light truck for industrial job related activities. On the 11 

other hand, an increase in proportion of industrial jobs in a zone decreases the likelihood of crash 12 

risk for auto group of road users. Zones with higher number of retail jobs are likely to result in 13 

higher traffic crashes involving both motorized and non-motorized road user groups. Levine et al. 14 

(39) found similar impact of retail jobs on total crash count events. Further, non-motorists’ crash 15 

risks are found to be higher for STAZs with higher proportion of households without access to 16 

private vehicles. The variable is a surrogate indicator for non-motorists exposure. Household 17 

members with no private vehicles are likely to walk/bike for daily activities resulting in higher 18 

exposure and in turn higher potential of crash risk. As expected, car, van and other motorized 19 

vehicle crash risks are found to be higher for STAZs with higher proportions of households with 20 

one available private vehicle. 21 

 22 

Demographic characteristics: From Table 2, we can see that proportion of zonal level 23 

population by ethnicity are found to be significant determinants of zonal level crash risk in count 24 

model components for car, light truck and non-motorist crashes. Road traffic crashes for car, light 25 

truck and non-motorist increase with increasing proportion of Hispanic population, a result also 26 

observed in Lee et al. (40). On the other hand, the estimation results indicate that STAZs with 27 

greater proportion of Caucasian population are likely to experience less auto crashes. 28 

 29 

Dependence effect: As indicated earlier, the estimated Gumbel copula-based multivariate 30 

NB model provides the best fit in incorporating the correlation among different road user groups’ 31 

crash count events. An examination of the copula parameter presented in the last row panel of 32 

Table 2 highlights the presence of common unobserved factors affecting zonal level crash counts 33 

of different road user groups considered in current study context. For the Gumbel copula, the 34 

dependency is entirely positive and the coefficient sign and magnitude reflects whether a variable 35 

increases or reduces the dependency and by how much. The proposed framework by allowing for 36 

such correlation allows us to improve data fit.  37 

 38 

Predictive Performance Evaluation and Policy Analysis 39 
 40 

In an effort to assess the predictive performance of the estimated models (Gumbel copula and 41 

independent models), we also perform computation of several in-sample goodness-of-fit measures. 42 

To evaluate the predictive performance of these models, we employ two different fit measures: 43 

mean prediction bias (MPB) and mean absolute deviation (MAD) both at the aggregate and 44 

disaggregate level (see (10) for a discussion on computing these measures). At the 45 

aggregate/disaggregate level, the computed values of MPB (MAD) for copula and independent 46 
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models are 4.890 (9.071)/24.448 (45.356) and 9.529 (15.019)/47.645 (75.096), respectively. The 1 

resulting fit measures for comparing the predictive performance clearly indicate that multivariate 2 

copula count model offers superior predictions compared to independent count model both at the 3 

aggregate and disaggregate levels in the current study context. 4 

The parameter effects of exogenous variables in Table 2 do not directly provide the 5 

magnitude of the effects on zonal level crash counts across different road user groups involved in 6 

crashes. For this purpose, we compute aggregate level “elasticity effects” for all the exogenous 7 

variables by using the Gumbel copula model estimates. We investigate the effect as the percentage 8 

change in the expected total zonal crash counts across different road user groups due to the change 9 

in exogenous variable. Road user group specific elasticities would allow us to identify policy 10 

measures targeting each group separately. However, it might also be useful in identifying 11 

contributions of exogenous variables on total crashes considering contributions from all count 12 

components. Total and group specific elasticity effects would allow us to prioritize the safety 13 

improvement programs based on the level (all groups need attention in a specific area) and type (a 14 

specific group needs attention in a specific area) of safety issues. Therefore, we also present the 15 

overall total crash elasticities in our current study. Total crash elasticities are computed by 16 

considering the change in exogenous variables across all count components simultaneously.  17 

The computed elasticities are presented in the first row panel of Table 3 (see (41) for a 18 

discussion on the methodology for computing elasticities). In calculating the expected percentage 19 

change of crash counts, we increase the value of variables by 10% for each STAZ. The numbers 20 

in Table 3 may be interpreted as the percentage change in the expected total zonal crash counts 21 

due to the change in exogenous variable. For instance, the elasticity effects for shopping centers 22 

in car model for in-sample data indicates that, the expected mean car crashes will increase by 23 

3.074% with an increase in 10% of shopping centers. To emphasize policy repercussions based on 24 

most critical contributory factors, we also rank each variables based on their contribution in 25 

increasing the elasticity effects – with 1 as the highest contributor and 14 as the lowest contributor 26 

across different variables considered. The results of this ranking is presented in second row panel 27 

of Table 3.  28 

The following observations can be made based on the results presented in Table 3. First, 29 

the most significant variable in terms of increase in the expected number of crashes across all road 30 

user groups is AADT, which is also the most important contributor for overall road traffic crashes. 31 

Second, the ranking of variables are different across the different road user groups, which 32 

illustrating that the relative contributions of different exogenous variables are substantially 33 

different across different road user groups. This has important implications in identifying critical 34 

factors for crash occurrences at a zonal level. For instance, targeted policy measures should be 35 

implemented to reduce overall crashes for zones with higher AADT. However, to improve car, 36 

van and other motorized vehicle safety, zones with higher proportions of households with one 37 

vehicle should be the major focus. On the other hand, to improve non-motorists safety, zones with 38 

higher shopping centers should be targeted. While for improved safety of light truck traffic, zones 39 

with higher proportion of retail jobs should be the focus. Moreover, the results indicate that there 40 

are considerable differences in the elasticity effects across different road user groups, thus 41 

illustrating the value of examining separate risk factors for different road user groups. Third, the 42 

impacts, in magnitude, are substantially different in crash count events among different passenger 43 

vehicles (car, light truck and van) for many variables. The effects are different in magnitude and 44 

sign for proportion of industrial jobs. These differences clearly highlight that each road user group 45 

has distinct critical risk factors underscoring the importance of examining the effect of various 46 
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exogenous variables on zonal level crash count events by different road user groups. Finally, the 1 

elasticity analysis assists in providing a clear picture of attribute impacts on zonal level crash 2 

counts for different road user groups. The elasticity analysis conducted provides an illustration on 3 

how the proposed model can be applied to determine the critical factors contributing to increase in 4 

crash counts. 5 

 6 

TABLE 3 Elasticity Effects for Multivariate Copula Count Model for Florida 7 

ELASTICITY EFFECTS 

Variables Car 
Light 

truck 
Van 

Other 

motorized 

vehicle 

Non-

motorist 
Total 

AADT 17.371 9.483 9.986 8.467 15.055 60.362 

Proportion of households with one vehicle 3.354 -- 3.169 3.927 -- 10.450 

Shopping centers 3.074 1.193 -- -- 2.400 6.668 

Proportion of major roads 1.253 1.083 -- 1.788 1.480 5.605 

Proportion of retail jobs 0.946 1.260 1.156 0.826 1.108 5.296 

Proportion of Hispanic population 1.541 0.240 -- -- 1.313 3.095 

Park and recreational centers 0.928 0.422 0.590 -- 1.015 2.954 

Restaurants -- -- 0.640 0.979 -- 1.618 

Proportion of urban area 0.207 0.030 0.225 -- 0.171 0.634 

Proportion of households with zero 

vehicle 
-- -- -- -- 0.382 0.382 

Proportion of industrial jobs -0.022 0.229 -- -- -- 0.207 

Proportion of local roads -- -- -0.174 -- -- -0.174 

Proportion of Caucasian population -0.698 -- -- -- -- -0.698 

Truck AADT -1.324 -0.994 -- 1.900 -1.451 -1.869 

RANKING OF VARIABLES BASED ON CONTRIBUTION IN ELASTICITY EFFECTS 

Variables Car 
Light 

truck 
Van 

Other 

motorized 

vehicle 

Non-

motorist 
Total 

AADT 1 1 1 1 1 1 

Proportion of households with one vehicle 2 9 2 2 9 2 

Shopping centers 3 3 7 9 2 3 

Proportion of major roads 5 4 8 4 3 4 

Proportion of retail jobs 6 2 3 6 5 5 

Proportion of Hispanic population 4 6 9 10 4 6 

Park and recreational centers 7 5 5 7 6 7 

Restaurants 9 10 4 5 10 8 

Proportion of urban area 8 8 6 8 8 9 

Proportion of households with zero 

vehicle 
11 12 11 12 7 10 

Proportion of industrial jobs 12 7 10 11 11 11 

Proportion of local roads 10 11 14 14 13 12 

Proportion of Caucasian population 13 13 12 13 12 13 
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Truck AADT 14 14 13 3 14 14 

 1 

CONCLUSIONS 2 
 3 

The current study contributes to safety literature both methodologically and empirically. In terms 4 

of methodology, the study generalized the bivariate copula count model for examining multivariate 5 

crash count data by formulating and estimating a multivariate copula count model. For examining 6 

the count components of the multivariate copula model, we employed negative binomial (NB) 7 

regression framework. The empirical contribution of our study was to incorporate crash counts for 8 

both motorized and non-motorized road user groups while considering different types of passenger 9 

vehicles fleet categories. Specifically, we examined crash counts for car, light truck, van, other 10 

motorized vehicle (including truck, bus and other vehicles) and non-motorist (pedestrian and 11 

bicyclist) involved crashes by employing multivariate copula count framework.  12 

The proposed model was estimated using zonal level (Statewide Traffic Analysis Zone 13 

(STAZ) level) road traffic crash data for the state of Florida. A host of variable groups including 14 

– land-use characteristics, roadway attributes, traffic characteristics, socioeconomic characteristics 15 

and demographic characteristics were considered. The empirical analysis involved estimation of 16 

four different multivariate copula count models including: 1) Clayton, 2) Gumbel, 3) Frank, and 17 

4) Joe copulas. The Gumbel copula model offered the most superior fit to our data. Further, the 18 

comparison between copula and the independent models confirmed the importance of 19 

accommodating dependence among crash count events of different road user groups in the macro-20 

level analysis. Further, an in-sample validation exercise was conducted to compare the 21 

performance of the independent and copula model based on different fit measures. The resulting 22 

fit measures for comparing the predictive performance clearly indicate that multivariate copula 23 

count model offered superior predictions compared to independent count model both at the 24 

aggregate and disaggregate levels in the current study context. 25 

In our research, to further understand the impact of various exogenous factors, aggregate 26 

level elasticity effects were computed for all the exogenous variables by using the estimates from 27 

multivariate copula-based count model. To emphasize policy repercussions based on most critical 28 

contributory factors, we also generated a rank for each variable based on their contribution in 29 

influencing crash frequency. The elasticity effects clearly indicated that there are considerable 30 

differences across different road user groups for the same variable, thus illustrating the value of 31 

examining separate risk factors for different road user groups. Further, the impacts were 32 

substantially different in crash count events among different passenger vehicles (car, light truck 33 

and van). The elasticity analysis conducted provides an illustration of how the proposed model can 34 

be applied to determine the critical factors contributing to increase in crash counts. 35 

The study is not without limitations. In modeling zonal level crash risks, we did not have 36 

access to exposure data for different road user groups considered. It would be useful to compile 37 

zonal level exposure data for different motorized and non-motorized road user groups to enhance 38 

the model frameworks developed in our work. Further, it would be interesting to examine the count 39 

components within the copula-based multivariate approach by using Zero-inflated or Hurdle 40 

models in accommodating the preponderance of zero counts (if present) while also considering 41 

more flexible copula structures. A comparison of the proposed copula-based model with other 42 

multivariate modeling approaches will be a useful future research direction.    43 

 44 
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