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ABSTRACT 1 

Given the burgeoning growth in transport networking companies (TNC) based ride hailing 2 

systems and their growing adoption for trip making, it is important to develop modeling 3 

frameworks to understand TNC ride hailing demand flows at the system level. We identify two 4 

choice dimensions: (1) a demand component that estimates origin level TNC demand at the 5 

taxi zone level and (2) a distribution component that analyzes how these trips from an origin 6 

are distributed across the region. The origin level demand is analyzed using linear mixed 7 

models while flows from origin to multiple destinations is analyzed using a multiple discrete 8 

continuous model system (MDCEV). The data for our analysis is drawn from New York City 9 

Taxi & Limousine Commission (NYTLC) for twelve months from January through December 10 

2018. For our analysis, we examine weekday morning peak hour demand and distribution 11 

patterns. The model components are developed using a comprehensive set of independent 12 

variables. The model estimation results offer very intuitive results for origin demand and 13 

distribution of flows across destinations. We validated the model by predicting trips to 14 

destination taxi zones and found that predicted model performs well in identifying high 15 

preference destination zones. In addition, elasticity effects are computed by evaluating the 16 

percentage change in baseline marginal utility in response to increasing the value of exogenous 17 

variables by 10%, 25% and 50% respectively.  18 

 19 

Keywords: Ride hailing, Taxi zone level demand, Flow distributions, Linear mixed model, 20 

Multiple discrete continuous extreme value   21 
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BACKGROUND AND MOTIVATION 1 

Ride hailing services have been available as a mode of transportation since the early 17th 2 

century in the form of horse-drawn hackney carriages in Europe. With the advent of the 3 

automobile, taxis for hire have been the most common ride hailing transportation alternative. 4 

However, ride hailing has undergone a rapid transformation in the recent few years in response 5 

to the transformative technological changes including smart mobile availability, ease of hailing 6 

a ride using mobile applications, integration of seamless payment systems and real-time driver 7 

and user reviews. In fact, the convenience offered by transport networking companies (TNC) 8 

such as Uber, Lyft, and Via has allowed for a tremendous growth in ride hailing demand. For 9 

example, in New York City, the average daily trips by taxi (yellow taxi) was varying between 10 

400 thousand and 500 thousand for the years 2010 and 2014 (1). However, since 2014, with 11 

the advent TNC services in the city, the total number of trips have increased. Specifically in 12 

2018, the daily trips have increased to more than a million trips with traditional taxi accounting 13 

for nearly 300 thousand trips, and TNC services accounting for 700 thousand trips. These 14 

trends are not specific to New York City. A recent report analyzing reimbursed travel in the 15 

US has found that the share of Uber and Lyft has increased from 8% to 72.5% within 2014-16 

2018 at the cost of taxi and rental car business share (2). The prevalence of TNC services is 17 

also not restricted to US. Uber operates in over 60 countries, while Didi Express in China, Ola 18 

in India currently capture a large share of the ride hailing market in these countries. The 19 

immense growth in market share and the spread of these services across the world illustrate 20 

how the ride hailing market has undergone a rapid transformation in a short time frame.   21 

The rapid transformation of the ride hailing market coupled with emerging shared 22 

mobility service expansions (such as Carshare, Bikeshare, and Scooter share) offers an 23 

unprecedented opportunity to address the existing mobility shortcomings in urban regions (as 24 

highlighted in a recent TCRP report (3). In fact, public transit and transportation planning 25 

agencies can enhance mobility and accessibility in a region by incorporating these shared 26 

transportation alternatives within their planning frameworks to provide holistic mobility 27 

options in denser urban regions. Specifically, dense urban regions with well-connected public 28 

transit systems can strategically target reducing the reliance on private automobile ownership 29 

(and use) by incorporating ride-hailing alternatives in trip planning tools. Further, by 30 

examining the spatio-temporal ride hailing data, transit agencies and shared mobility platforms 31 

can identify urban pockets with service needs to provide last mile connectivity. Towards 32 

understanding these patterns it would be beneficial to understand TNC demand and its spatial 33 

distribution in the region.  34 

The current research effort contributes to this goal by developing quantitative models 35 

of TNC demand and flow distribution patterns. Using data from the NYC Taxi and Limousine 36 

commission, we conduct a comprehensive analysis of morning peak hour ride hailing data from 37 

Uber, Lyft, Juno and Via from 2018. The study develops (1) a demand component that 38 

estimates origin level TNC demand at the taxi zone level and (2) a distribution component that 39 

analyzes how these trips from an origin are distributed across the region. The former 40 

component is analyzed using linear mixed models and the latter component is analyzed using 41 

a multiple discrete continuous model system. The model components are developed using a 42 

comprehensive set of independent variables including aggregate trip attributes, transportation 43 

infrastructure variables, land use and built environment variables, weather attributes, and 44 

temporal attributes. The model estimates are validated using a hold out sample. Further, a 45 

policy exercise is conducted to illustrate how the proposed model system can be utilized for 46 

evaluating the impact of changes to independent variables.  47 

 48 

 49 

 50 
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EARLIER RESEARCH AND CURRENT STUDY 1 

Ride hailing in its traditional form has received attention from various researchers (for example 2 

see (4) for detailed literature review of traditional taxi services). The research on TNC services 3 

is an emerging topic of interest in several fields including computer science, transportation, 4 

economics, and social sciences. In our analysis, we restrict ourselves to literature on TNC 5 

systems that are directly relevant from a transportation perspective.  6 

Earlier research efforts focused on TNC ride hailing can be grouped into two streams. 7 

The first stream of studies explored TNC evolution, factors that affected usage, licensing and 8 

policy formulation, system level interaction frameworks, pricing mechanisms, and comparison 9 

across ride hailing services (with taxis or between various smart phone based ride hailing 10 

companies). These studies typically rely on questionnaire interviews, and online surveys for 11 

data collection. TNC evolution studies focused on the definition of ride hailing systems, how 12 

ride hailing services have evolved over time (5-7), investigated the challenges and 13 

opportunities presented by real-time services and highlighted various opportunities for future 14 

(8; 9). Djavadian and Chow (10) developed an agent based framework to identify social 15 

optimum considering a pricing criterion within a two-sided market system. Zha et al. (11) 16 

conducted an aggregate economic analysis of ride-sourcing markets where customers and 17 

drivers are matched using an exogenous function. The authors provide guidance to regulators 18 

on the mechanisms to improve social welfare. A TCRP report (3) examining shared modes of 19 

travel (such as bikesharing, carsharing, and TNC systems) by conducting surveys and 20 

interviews across seven urban regions (Austin, Boston, Chicago, Los Angeles, San Francisco, 21 

Seattle, and Washington, DC). The study concluded that individuals who adopt shared modes 22 

for their travel needs are more open to public transit alternatives. Further, these shared modes 23 

can serve as complementary modes to public transit. A set of studies explored the influence of 24 

various factors affecting TNC usage. For example, Cramer and Krueger (12) analyzed 25 

passenger service times for Uber and taxi across five major cities in the US. The authors 26 

concluded that availability of driver-passenger reviews, Uber’s flexible labor supply model 27 

coupled with inefficient taxi regulations for passenger safety contributed to higher Uber 28 

utilization rates. Nie (13) also examined the competition between taxi industry and TNC and 29 

interestingly found that taxi industry in Shenzhen, China survived the emergence of 30 

ridesourcing. Rayle et al. (14) conducted a trip intercept survey to understand the source of 31 

TNC demand and concluded that nearly 50% of the demand is transferred from public transit 32 

and driving. Multiple studies explored pricing strategies employed by various ride hailing 33 

companies (15-17). Studies examining Uber surge pricing strategies, concluded that surge 34 

pricing has a negative impact on demand. Smart et al. (18) compared the performance of Uber 35 

and taxi services in terms of waiting time and cost using survey of riders in low income 36 

neighborhoods in Los Angeles. The data analysis found that Uber offered lower waiting times 37 

and provided service at a lower cost (even under surge pricing).  38 

 A second stream of studies conducted quantitative analysis using TNC usage data 39 

exploring trip patterns (a) to identify factors influencing TNC demand, (b) to understand TNC 40 

demand and its relationship with existing transportation modes. Earlier research has found that 41 

Uber demand is affected by temporal and weather patterns (19; 20). Other factors that were 42 

found to affect ride hailing demand include land use attributes such as lower transit access time 43 

(TAT), higher length of roadways, lower vehicle ownership, higher income and more job 44 

opportunities (21-23). Studies comparing the emerging ride hailing services with existing 45 

services such as public transit and bicycle sharing offer interesting results. Gerte et al. (24) 46 

found evidence for shifting taxi demand to smart phone based ride hailing services in New 47 

York City. Further, the study also found evidence of substitution relationship between ride 48 

hailing and bicycle share systems. Dey et al. (25) also studied the impact of various factors on 49 

shifting NYC's TNC services demand from traditional (yellow and green) taxi services. 50 
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Komaduri et al. (26) analyzed data from RideAustin, to examine the trip length and temporal 1 

distribution of the trips. A comparison of the adoption of RideAustin relative to public transit 2 

alternatives illustrated that individuals were choosing RideAustin to minimize travel time 3 

(highlighting the higher value of time for these travelers). Lavieri et al. (27) employed the same 4 

data to develop a two stage framework for TNC demand analysis. The study employs averaged 5 

daily TNC origin and distribution flows within a two step procedure. The model components 6 

developed include a spatially lagged multivariate count model for TNC demand and fractional 7 

split model for trip distribution. Poulsen et al. (28) examined how the two systems that were 8 

introduced in the same time performed - Uber and Green taxis - in Manhattan area and found 9 

that the growth rate for Uber was substantially higher. Babar and Burtch (29) compared the 10 

utilization rate of transit service in the US after the introduction of TNC services and found 11 

that utilization rate of bus service dropped while long-haul transit services (such as subway and 12 

commuter rail) experienced increasing utilization. The spectrum of quantitative methodologies 13 

employed in earlier studies include descriptive analysis, linear regression, logistic regression, 14 

difference in difference model and panel based random effects multinomial logit model. 15 

 16 

Current Study in Context 17 

The review highlights the burgeoning literature on TNC services across the world. However, 18 

given that TNCs are a very recent development several dimensions remain uninvestigated. 19 

While TNC demand has been examined in earlier research, the temporal and spatial 20 

aggregation employed in the past have not allowed for easy integration of these approaches 21 

into existing planning frameworks. Further, earlier studies have rarely examined how the TNC 22 

demand is distributed across the study region. Of the earlier research efforts Lavieri et al. (27) 23 

developed a two stage framework for understanding TNC flow distribution. However, the 24 

authors focused on an average model where the two dependent variables were averaged over 25 

the study period to conduct the analysis. The averaging process, while simplifying the analysis 26 

avoiding repeated measures of data, does not process the rich distributional differences across 27 

the data and thus might not be suitable for prediction applications on a daily basis.  28 

The primary objective of our research is to develop TNC demand based planning 29 

models that can be integrated within existing frameworks or used to augment the outputs from 30 

existing demand frameworks. With this primary objective, the current study makes the 31 

following contributions. First, the current study develops a TNC demand model at the Taxi 32 

zone level for the morning peak hour (represented as pickups in the data). The demand variable 33 

is approximated as a continuous variable and a linear mixed model framework is employed to 34 

analyze the data. Second, conditional on the origin taxi zone demand, we develop a distribution 35 

model to determine TNC flows from the origin to all destinations in the study region. There 36 

are two major challenges associated with modeling the TNC flow distribution. First, the 37 

destinations for TNC flows from an origin are likely to involve multiple alternatives (as 38 

opposed to a single chosen alternative). Second, the potential universal alternative set includes 39 

all taxi zones in the system. The multiple discrete continuous approaches that follow Kuhn-40 

Tucker (KT) approaches developed in literature can be adapted to address this choice 41 

dimension. In a recent study, Dey et al. (30) developed a similar framework for studying bicycle 42 

sharing system flows. MDCEV framework employed in this study has several advantages over 43 

the alternative approaches (such as fractional split model or the traditional trip based model). 44 

First, the MDCEV model allows us to capture for satiation effects – i.e. as more trips are 45 

destined to a zone, there is a drop in the value gained for subsequent trips. The accommodation 46 

for such zones can account for potential challenges with high demand to a zone such as 47 

unavailability of TNC services. Second, the fractional split model allocates a proportion to an 48 

alternative as a function of exogenous variables. Given the functional form, it is theoretically 49 

possible that some probability is allocated to each alternative (however small). However, in the 50 
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presence of a large number of alternatives – as is the case in our context – the proportion 1 

allocated to these potentially unchosen alternatives could amount to be a significant value. 2 

Thus, it might be necessary to adopt a two-step model where a binary model determines 3 

whether a zone is chosen or not and then for these chosen alternatives, a proportion is assigned. 4 

The reader would note that destination preferences can also be modeled employing a 5 

disaggregate trip level model (such as Faghih-Imani and Eluru (31) for bikeshare). However, 6 

in the absence of any individual specific characteristics an aggregate model reduces the data 7 

burden while offering similar insights.   8 

 The data for our analysis from January 2018 through December 2018 is drawn from 9 

NYC Taxi & Limousine Commission (NYTLC). The data provides taxi zonal level daily origin 10 

demand and the corresponding flow patterns from the origin to all destinations across the 11 

system. The two model components were developed using a host of independent variables 12 

including trip attribute, transportation infrastructure variables, land use and built environment 13 

variables, weather attributes, and temporal attributes. The model estimation results for the 14 

proposed model offers intuitive results. The proposed model was also validated using a hold-15 

out sample and prediction exercise is undertaken.  16 

 17 

DATA  18 

 19 

Data Source 20 

New York City with high residential density and large tourist population is an ideal market for 21 

ride hailing systems. The NYC Taxi and Limousine Commission (TLC) provides spatially 22 

aggregated trip data from all ride hailing companies (taxi, Uber, Lyft, Juno and Via) for public 23 

use (https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page). The trip itinerary dataset 24 

for 2018 for Uber, Lyft, Juno and Via was processed to obtain daily morning peak hour TNC 25 

usage patterns. The dataset provides information on start and end time of trips, origin and 26 

destination defined as taxi zone ID, trip distance and vehicle license number. The trip data was 27 

augmented with other sources including: (1) built environment attributes derived from New 28 

York City open data (https://nycopendata.socrata.com); (2) socio-demographic characteristics 29 

at the census tract/zip code level gathered from US 2010 census data; (3) the weather 30 

information corresponding to the Central Park station retrieved from the National Climatic 31 

Data Center (http://www.ncdc.noaa.gov/data-access). 32 

 33 

Sample Formation   34 

A series of data cleaning and compilation exercises were undertaken for generating the sample 35 

data for estimation purposes. First, trips with missing or inconsistent information were 36 

removed. Second, trips longer than 500 minutes in duration (around 0.5% of all trips) were 37 

deleted considering that these trips are not typical ride-sharing trips. These trips could also be 38 

a result of two possibilities; either destination of those trips could be outside NYC or due to 39 

technical issues the trip information was recorded incorrectly. Third, trips that had the origin 40 

and destination outside of NYC taxi zone were also eliminated. Therefore, we focus on trips 41 

that originated and were destined within NYC taxi zone region only.  42 

 For the given study period (January 2018 to December 2018), the total number of 43 

available taxi zones in NYC was 260. Initially, we aggregated morning peak (6.30 am-9.30am) 44 

trip data for each day for each week (total 52 weeks) from each origin taxi zone ID to every 45 

possible destination taxi zone ID (260). The average number of daily trips generated and 46 

attracted at each taxi zone is presented in Figure 1. In Figure 1, the number of trips generated 47 

(Figure 1a) and attracted (Figure 1b) to each taxi zone is categorized into multiple classes from 48 

very low to very high. The figures clearly highlight the high TNC usage in Manhattan and 49 

airport locations (LaGuardia, John F. Kennedy International Airport and Newark airport).  50 

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://nycopendata.socrata.com/
http://www.ncdc.noaa.gov/data-access
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 For our analysis, to ensure that holiday weekends that are likely to have a different user 1 

patterns do not influence our analysis, we selected morning peak period trip data for 43 weeks 2 

without any holidays. The processing of the large sample of trip data is substantially time-3 

consuming and significantly increases the model run times. To obtain a reasonable sample size 4 

for model estimation, we sampled following two steps; 1) 150 taxi zones were selected 5 

randomly from the total 260 taxi zones and 2) for each taxi zone one weekday was randomly 6 

selected for each week. 7 

 Thus, the data sampled had 150 taxi zone with 43 weekday morning peak trip data 8 

during 2018. While the data considered is a sample, the consideration of a reasonably large 9 

sample size (6450) allows for robust model estimations. We organized the dataset into two 10 

components for our analysis; 1) For zonal level origin demand (aggregating total daily morning 11 

peak trip at the origin level) and 2) Trip distribution from origin to destination (aggregating 12 

daily morning peak trip at the O-D pair level). 13 

 14 

Independent Variable Generation 15 

Several independent variables were generated in our study (see Table 1). These can be grouped 16 

into five categories: 1) Trip attribute, 2) Transportation infrastructure variables, 3) Land use 17 

and built environment variables, 4) Weather attributes, and 5) Temporal attribute. 18 

 Trip attribute includes the network distance between each origin-destination taxi zone 19 

pair estimated using the shortest path algorithm tool of ArcGIS software. While the actual trip 20 

might involve a different route, the shortest network distance would be an appropriate indicator 21 

of the distance traveled. The variable will serve as a surrogate for travel time. As all the data is 22 

for morning peak, the impact of congestion is likely to be affecting all records similarly.  23 

 Transportation infrastructure attributes created at the taxi zone level include bike route 24 

length density (capturing the effect of availability of bicycle facilities on system usage), 25 

number of bikeshare stations, length of streets (minor and major streets). Number of subway 26 

stations and bus stops in the taxi zone were generated to examine the influence of public transit 27 

on rider’s preference of destination station.  28 

 Several land use and built environment variables were considered including population 29 

density, job density and establishment density, the number of institutional facilities (schools, 30 

colleges, hospitals), the number of point of interests (museums, shopping malls), and the 31 

number of restaurants (including coffee shops and bars), total area of parks and commercial 32 

space (office, industry, retail) within each taxi zones. Distance of destination from Times 33 

Square and airport were estimated by using the shortest path algorithm tool of ArcGIS software. 34 

Airport indicator variable for the taxi zone was generated to examine the additional impact of 35 

airport destination. Population, job density and median income information was collected from 36 

US Census for 2014-2017 and extrapolated for 2018 at the census tract level considering 37 

average yearly population change from 2014-2017. Household car ownership information for 38 

2018 was used to generate proportion of zero car ownership at taxi zone level to examine the 39 

impact of car ownership on riders’ destination preferences. Non-motorized vehicle score 40 

(average of walk score and bike score) and transit score associated with each taxi zone was 41 

considered at the census tract level. Further, crime density and accident density were also 42 

generated at taxi zone level. Total number of crimes of all types for previous year (2017) was 43 

aggregated at census tract level and crime density was estimated by dividing with the 44 

corresponding year’s population. In a similar manner, total number of accidents of all kind for 45 

each day of 2018 was considered to generate accident density. 46 

 Weather variables include average temperature, precipitation, and snow for that 47 

particular day. Several interaction variables were also created. Seasonality is the only temporal 48 

variable considered. We consider winter (December-February), Spring (March-May), Summer 49 

(June-August) and Fall (September-November) as dummy variables. 50 
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Descriptive Analysis 1 

The data at an aggregate system level in the form of average number of trips by taxi zone for 2 

each week is presented in Figure 2. The various weeks with lower demand correspond to the 3 

weeks with holidays supporting our hypothesis that these weeks have a different demand 4 

pattern. The dependent variable distribution is generated to understand origin level demand and 5 

distribution of these flows across the study region. On average, 384 trips depart from each 6 

origin taxi zone in the morning peak hour and are destined to about 67 alternative taxi zones. 7 

The sample characteristics of the independent variables generated are presented in Table 1. 8 

 9 

ECONOMETRIC FRAMEWORKS 10 

 11 

Linear Mixed Model for Station Level Weekly Origin Demand 12 

The taxi zonal level daily pick up demand variable is a continuous value and can be analyzed 13 

using linear regression models. However, the traditional linear regression model is not 14 

appropriate for data with multiple repeated observations. In our empirical analysis, we observe 15 

the daily peak hour demand at the same taxi zone for fourty-three weeks. Hence, we employ a 16 

linear mixed modeling approach that builds on the linear regression model while incorporating 17 

the influence of repeated observations for the same station. The linear mixed model collapses 18 

to a simple linear regression model in the absence of any station specific effects. 19 

Let 𝑤 =  1, 2, … , 𝑊 be an index to represent each taxi zone (𝑊 = 150), 𝑀 =20 

 1, 2, … , 43  be an index to represent the various day of weeks of data compiled for each pick 21 

up taxi zone. The dependent variable (daily peak hour demand) is modeled using a linear 22 

regression equation which, in its most general form, has the following structure: 23 

𝑦𝑚𝑤  =  𝛽𝑋𝑚𝑤  +  𝜀𝑚𝑤 (1) 

where 𝑦𝑚𝑤 is the natural logarithm of weekly demand, 𝑋 is an 𝐾 × 1 column vector of 24 

attributes and the model coefficients, 𝛽, is an 𝐾 × 1 column vector. The random error term, 25 

𝜀𝑚𝑤, is assumed to be normally distributed across the dataset. In our analysis, the repetitions 26 

over days can result in common unobserved factors affecting the dependent variable. While a 27 

full covariance matrix can be estimated for the unobserved correlations, as we are selecting 43 28 

random days from a sample of 43 weeks for each taxi zone, we decided to employ a simpler 29 

covariance structure. The exact functional form of the covariance structure assumed is shown 30 

below: 31 

𝛺 = (

𝛺2 + 𝛺1
2 𝛺1 … 𝛺1

𝛺1 𝛺2 + 𝛺1
2 … 𝛺1

⋮ ⋮ ⋱ ⋮
𝛺1 𝛺1 … 𝛺2 + 𝛺1

2

) (2) 

  The covariance structure restricts the covariance across all fourty-three records to be 32 

the same. The parameters estimated in this correlation structure are Ω and Ω1 . The parameter 33 

Ω represents the error variance of 𝜀, Ω1 represents the common correlation factor across daily 34 

records. The models are estimated in SPSS using the Restricted Maximum Likelihood 35 

Approach (REML). The REML approach estimates the parameters by computing the likelihood 36 

function on a transformed dataset. The approach is commonly used for linear mixed models 37 

(32). 38 

 39 

MDCEV Model for Destination Choice 40 

According to Bhat et al. (33), we consider the following functional form for utility in this paper, 41 

based on a generalized variant of the translated Constant Elasticity of Substitution (CES) utility 42 

function: 43 
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𝑈(𝑥) =  ∑
𝛾

𝛼

𝐼

𝑖=1

 λ𝑖 {(
𝑥𝑖

𝛾
+ 1)

𝛼

− 1 } (3) 

where 𝑈(𝑥) is a quasi-concave, increasing, and continuously differentiable function with 1 

respect to the consumption quantity (𝐼x1)-vector (𝑥𝑖 ≥ 0 for all 𝑖), and 𝜆𝑖 associated with drop 2 

off taxi zone 𝑖. 𝜆 represents the baseline marginal utility (𝜆𝑖> 0 for all 𝑖), 𝛾 is a translation 3 

parameter (𝛾 should be greater than zero) which enables corner solutions while simultaneously 4 

influencing satiation and 𝛼 influences satiation (𝛼 ≤ 1).  5 

The KT approach employs a direct stochastic specification by assuming the utility 6 

function 𝑈(𝑥) to be random over the population. A multiplicative random element is 7 

introduced to the baseline marginal utility for each good (in our case destination) as follows: 8 

λ (𝑦𝑖𝑤, 𝜌𝑖𝑤) = exp (𝛿𝑦𝑖𝑤 + 𝜌𝑖𝑤) (4) 

where 𝑦𝑖𝑤𝑞 is a set of attributes characterizing drop off taxi zone 𝑖 during day w, 𝛿 corresponds 9 

to a column vector of coefficients, and 𝜌𝑖𝑤 captures idiosyncratic (unobserved) characteristics 10 

that impact the baseline utility for destination stations. The overall random utility function of 11 

Equation (3) then takes the following form: 12 

𝑈(𝑥) =  ∑
𝛾

𝛼

𝐼

𝑖=1

 exp (𝛿𝑦𝑖𝑤 + 𝜌𝑖𝑤) {(
𝑥𝑖

𝛾
+ 1)

𝛼

− 1 } (5) 

Following (34; 35), consider a generalized extreme value distribution for 𝜌𝑖 and assume 13 

that 𝜌𝑖𝑤 is independent of 𝑦𝑖𝑤 (𝑖 = 1,2, … , 𝐼). The 𝜌𝑖𝑤’s are also assumed to be independently 14 

distributed across alternatives with a scale parameter normalized to 1. Due to the common role 15 

of 𝛾 and 𝛼, it is very challenging to identify both 𝛾 and 𝛼 in empirical application (see (35) for 16 

detailed discussion). Hence, either 𝛾 or 𝛼 parameter is estimated. When the 𝛼 - profile is used, 17 

the utility simplifies to: 18 

𝑈(𝑥) =  ∑
1

𝛼

𝐼

𝑖=1

 exp (𝛿𝑦𝑖 + 𝜌𝑖){(𝑥𝑖 + 1)𝛼 − 1 } (6) 

When the 𝛾 - profile is used, the utility simplifies to: 19 

𝑈(𝑥) =  ∑ 𝛾

𝐼

𝑖=1

exp(𝛿𝑦𝑖 + 𝜌𝑖) 𝑙𝑛 (
𝑥𝑖

𝛾
+ 1) (7) 

In this study, 𝛾 - profile is used. Finally, the probability that an pick up taxi zone has flows to 20 

the first 𝐷 drop-off taxi zones 𝐷 ≥ 1 is: 21 

𝑃(𝑒1
∗, 𝑒2

∗, 𝑒3
∗, … , 𝑒𝐷

∗ , 0,0, … ,0) = [∑ 𝑑𝑛

𝐷

𝑛=1

] [∑
1

𝑑𝑛

𝐷

𝑛=1

] [
∏ 𝑒𝑈𝑛𝐷

𝑛=1

(∏ 𝑒𝑈𝑖𝐾
𝑑=1 )𝐷

] (𝐷 − 1)! (8) 

where (∑ 𝑚𝑛
𝐷
𝑛=1 )(∑ 1

𝑚𝑛
⁄𝐷

𝑛=1 ) is defined as Jacobian form for the case of equal unit prices 22 

across goods (35) where, 𝑚𝑛 = (
1−𝛼

𝑒𝑛
∗ +𝛾

).  23 
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Unlike the traditional MDCEV model, in our context, the number of alternatives is 1 

substantially larger. Hence, we resort to estimating a generic parameter for each exogenous 2 

variable across alternatives (analogous to how multinomial logit based location choice models 3 

are estimated with a single utility equation).  4 

 5 

ESTIMATION RESULTS 6 

 7 

The model estimation results from the two models are discussed – TNC demand model 8 

followed by the trip distribution model results. The reader would note that variable selection 9 

was guided by earlier research on emerging modes of transportation such as bikeshare and 10 

TNC. From the universal set of variables we tested, variables that were significant at 95% 11 

confidence interval and offered intuitive results were included in the models.  12 

 13 

Trip Demand Model 14 

 15 

Model Fit Measures 16 

A linear regression model was estimated at first as benchmark for evaluating the linear mixed 17 

model. To compare these two models, a Log-likelihood ratio (LR) test was computed. The LR 18 

value was found to be 1915 which was higher than any corresponding chi-square value for 2 19 

degrees of freedom. Based on the LR test statistic, we can conclude that the linear mixed model 20 

outperforms the simple linear regression model and offers satisfactory fit for the station level 21 

demand.  22 

 23 

Linear Mixed Model Results 24 

The linear mixed model estimation results for morning peak hour TNC origin demand are 25 

presented in Table 2. The model estimation results offer intuitive findings. TNC demand, as 26 

expected is positively associated with population density. Increased median income of 27 

households within the taxi zones is found to increase demand for TNC trips (see (18; 22) for 28 

similar results). The presence of airport in the taxi zone also contributes to increased TNC 29 

demand. Higher number of trips are likely to be generated from taxi zones with higher 30 

population than lower populated zones.  The presence of different institutional facilities (such 31 

as schools, colleges, hospitals, and office) in the taxi zones increases the zonal demand. The 32 

presence of discretionary opportunities such as a higher presence of restaurants and sidewalk 33 

café also drives TNC demand. Taxi zones with higher proportion of residential area is 34 

positively associated with Peak hour morning TNC flows. The result illustrates the adoption of 35 

TNC service for morning commute activities from these zones. The results for precipitation 36 

variables highlight that in the presence of precipitation individuals are likely to make a trip via 37 

TNC services (see (19) for similar result). The results also indicate a positive influence of 38 

summer and fall season compared to winter and spring season. The finding is in line with earlier 39 

research (19). The result is also possibly reflecting the increased tourist activity during these 40 

seasons.  41 

 42 

Correlation Parameters 43 

In the linear mixed model, we estimate a parameter that recognizes the repeated measures of 44 

data for each taxi zone. The correlation parameter is statistically significant highlighting the 45 

role of common unobserved factors influencing the demand from taxi zones. 46 

 47 

 48 

 49 

 50 
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TNC Distribution Model 1 

 2 

Model Fit Measures 3 

The final log-likelihood values for the estimated MDCEV model and equal probability 4 

MDCEV model are -1531122.801 and -1712633.216 respectively. The log-likelihood ratio 5 

(LR) test-statistic of comparison between the final model and the equal probability model is 6 

363020.830. The LR test-statistic value is significantly higher than the corresponding chi-7 

square value for 22 additional degrees of freedom highlighting that the MDCEV distribution 8 

model offers a reasonable fit.  9 

 10 

MDCEV Model Results 11 

The model results of TNC morning peak hour distribution model are presented in Table 3. The 12 

presentation of results is organized by the various variable categories. The reader would note 13 

that a single utility equation is estimated for all the destination zones (analogous to location 14 

choice model estimation for large number of alternatives). A positive (negative) coefficient 15 

indicates an increase (decrease) in the variable results in increasing the utility of the alternative 16 

destination. 17 

 18 

Land Use and Built Environment Attributes  19 

Zones located in census tracts with higher population density are more likely to be chosen as 20 

destination locations. Similarly, job density also impacts destination preference positively. The 21 

results together point towards the adoption of TNC services for daily commute trips (see 22 

(Correa et al. (22) for similar result). Taxi zones with high income are preferred destination 23 

zones for TNC services. The model parameter for taxi zone level zero car household proportion 24 

highlights the increased adoption of TNC services among these zones (Correa et al. (22) found 25 

similar association with lower vehicle ownership households).  26 

As expected, increased transit accessibility within a taxi zone increases the likelihood 27 

of the zone being chosen as a destination. On the other hand, the results indicate that zones 28 

with higher non-motorized score are less preferred destinations. While the result seems 29 

counterintuitive, it might be alluding to potential competition between TNC ride hailing and 30 

bicycle sharing systems in these zones. The presence of activity opportunities in the forms of 31 

restaurants and cafes, institutional facilities, and recreational centers and point of interests 32 

(POI) are positively associated with the destination zone preference. Taxi zone with higher 33 

commercial area serves as an attraction for TNC demand. The increase in land use mix value 34 

(range between 0 and 1) has a positive impact on destination zone preference.  35 

The presence of airport in the destination taxi zone, as expected, increases the 36 

preference for the zone. The model also considers the influence of another major landmark in 37 

the region - Times Square. The parameter indicates that as the taxi zone is further from Times 38 

Square the preference of the zone as a destination reduces. The result illustrates how Times 39 

Square and its proximal zones serve as attraction centers for regular and tourist travel.  40 

 41 

Trip Attributes  42 

In the current research context, a negative coefficient was obtained for network distance of O-43 

D pair. With the increasing distance to the destination, TNC demand distribution propensity 44 

reduces.  45 

 46 

Transportation Infrastructure and Attributes  47 

Several transportation infrastructure variables were considered in the demand distribution 48 

models. Of these variables, bike lane density, bikeshare stations, street length, bus stops and 49 

subway stations presented significant impacts on destination preferences. Taxi zones with 50 
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higher bike length density (defined as ratio of bike length to overall roadway length) reduce 1 

the preference for the destination zone. The negative association with number of bikeshare 2 

stations within a taxi zone highlights that TNC demand is likely to be lower for a destination 3 

zone with more bikeshare stations. It is possible that the result alludes to potential competition 4 

between these modes for the last mile connectivity. It would be interesting to explore these 5 

differences further in future studies. An increase in the street length within the destination zones 6 

results in an increased likelihood of the zone being chosen as destination (similar to findings 7 

of Correa et al. (22)). As the number of bus stops and subway stations in the taxi zone increases, 8 

we observe increased preference for that destination. The coefficient actually indicates a 9 

potential complementarity between TNC flows and transit flows. TNC users might use public 10 

transit for large portions of their trip and then use TNC for their final travel to the destination.  11 

 12 

Temporal and Weather Attributes 13 

The reader would note that temporal and weather attributes cannot be considered directly in 14 

destination distribution model. Hence, we interacted these variables with destination specific 15 

variables such as network distance and distance to Times Square. The results offer interesting 16 

results. In Winter, the negative influence of network distance increases further indicating that 17 

shorter trips are preferred (relative to other moths). The temperature variable interacted with 18 

network distance indicates that the influence of network distance is moderated by higher 19 

temperature i.e. as temperature increases the negative impact of network distance reduces. The 20 

precipitation variable interacted with network distance and distance to Times Square highlights 21 

the increase in sensitivity to travel time under precipitation conditions. The weather variables 22 

as a whole highlight how TNC distance impact is lower in good weather relative to poor 23 

weather.   24 

 25 

Satiation Parameter  26 

We used distance to Times Square from taxi zones as a satiation parameter. In MDCEV model, 27 

the satiation parameter captures the extent of decrease in marginal utility across different 28 

destination zones. The satiation parameter is statistically significant at 95% confidence level, 29 

thereby implying that there are clear satiation effects in destination choice as distance of 30 

destination from Times Square increases. To elaborate, as the zone is further away from Times 31 

Square, the satiation impacts are higher indicating fewer trips will be made to the zone. 32 

 33 

VALIDATION ANALYSIS RESULTS 34 

For validation purpose, a hold-out sample was prepared following the same procedure used to 35 

extract the estimation sample. After extracting 150 taxi zones for our base dataset, the 36 

remaining 110 taxi pick up zones were set aside for validation. Then we randomly chose 43 37 

days from 43 corresponding weeks throughout the year for these 110 zones. The same approach 38 

of data preparation employed for estimation sample is exercised for validation sample (110 39 

origins x 43 days x 260 destinations). Using the validation data, the model results from the 40 

estimation sample were used to generate a prediction measure in the form of predictive log-41 

likelihood. The difference in the log-likelihood for the predicted and equal probability model 42 

is 3626720.830 units clearly highlighting the enhanced fit of the proposed model.  43 

 To further highlight the applicability of estimated model for predicting destination 44 

choice conditional on the origin, we estimated destined trips from each origin for each day at 45 

disaggregate level. Note that, zero trips to any destination for a week was also considered. To 46 

identify the preferred destination zones, top 10 percentile of preferred destination zones was 47 

captured for each pickup zone and validated with the top 10 percentile predicted destination 48 

zones. For the performance evaluation, we compute the correctly classified predicted trips for 49 

top 10 percentile destined zones for each taxi zone considering the total trips throughout the 50 
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year. The reader would note that about 71% of the top destination zones were correctly 1 

classified. To provide a visual representation, we selected 5 random taxi zones from 5 NYC 2 

boroughs and predicted the top 10 percentile destination zones for them considering average 3 

daily morning peak hour trips throughout the year and compared them with observed top 4 

destination zones for that particular zone (See Figure 3). Across the five boroughs, based on 5 

the observed and predicted measures from the Figure, taxi zones situated in Brooklyn offered 6 

the best prediction performance while taxi zone from Staten Island has inferior prediction 7 

performance. Overall, the two validation exercises, highlight the applicability of the proposed 8 

approach for TNC demand and distribution prediction. 9 

 10 

POLICY ILLUSTRATION 11 

The model results from Table 3 provide an indication of how the exogenous variables affect 12 

the network flows considering destination choice. However, they cannot provide the exact 13 

magnitude of the effect of these exogenous variables. Hence, elasticity effects computation 14 

considering changes of baseline marginal utility was used to evaluate the impact of exogenous 15 

variables on destination choice. The elasticity effects are computed by evaluating the 16 

percentage change in marginal utility of an alternative in response to increasing the value of 17 

exogenous variables from best fit model by 10%, 25% and 50% respectively. We selected five 18 

independent variables for presentation including job density, median income, network distance, 19 

institutional facilities and bus stops and subway stations. The computed elasticities are 20 

presented in Figure 4. Based on elasticity effects results in Figure 4, following observations 21 

can be made. First, the elasticity estimate for job density variable indicates that about 6.5, 17 22 

and 37% increase in utility happens due to 10, 25 and 50% change in the independent variable. 23 

All the other results can be interpreted similarly. Second, rank order of the top three significant 24 

variable in terms of changes for the utility without considering positive or negative impact 25 

include network distance, job density and median income. Third, network distance between O-26 

D can be considered as a proxy for travel time. The increasing value of this variable provides 27 

a snapshot of the impact of additional travel time due to traffic congestion or other safety 28 

incidents. Overall, the elasticity analysis results provide an illustration on how the proposed 29 

model can be applied to determine the critical factors contributing to increase in utility to 30 

choose a taxi zone as destination. 31 

 32 

CONCLUSIONS 33 

Given the burgeoning growth in ride hailing systems and their growing adoption for trip 34 

making, it is important to develop modeling frameworks to understand ride hailing demand 35 

flows at the zonal level. The current research effort contributes to this goal by developing 36 

quantitative models of TNC demand and flow distribution patterns. We identify two choice 37 

dimensions: (1) a demand component that estimates origin level TNC demand at the taxi zone 38 

level and (2) a distribution component that analyzes how these trips from an origin are 39 

distributed across the region. The origin level demand is analyzed using linear mixed models 40 

while flows from origin to multiple destinations is analyzed using a multiple discrete 41 

continuous model system (MDCEV).  42 

The data for our analysis is drawn from New York City Taxi & Limousine Commission 43 

(NYTLC) for twelve months from January through December 2018. For our analysis, we 44 

examine weekday morning peak hour demand and distribution patterns. The model 45 

components are developed using comprehensive set of independent variables including 46 

aggregate trip attributes, transportation infrastructure variables, land use and built environment 47 

variables, weather attributes, and temporal attributes. The model estimation results provide 48 

intuitive findings for both zonal level demand and flow distribution behavior. The model 49 

estimates are validated using a holdout sample set aside. The data fit relative to the equal 50 
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probability MDCEV model highlighted the significant improvement in data fit for the 1 

estimated model. Several prediction exercises were also conducted to illustrate the value of the 2 

proposed model framework including identifying the top 10 percentile destinations and 3 

elasticity effect of changes to independent variables. The policy analysis results offer intuitive 4 

results and provide a mechanism for transportation planners to evaluate the impact of various 5 

changes on TNC demand and distribution.  6 

The framework developed can be employed by planning agencies to evaluate how TNC 7 

originate in the region and their distribution. The model framework can be employed to 8 

evaluate how TNC flows in the future evolve as a function of various attributes. The future 9 

TNC flow prediction can be used to explore TNC flow inequity and potential mobility impacts 10 

of transportation infrastructure. The reader would note that while estimating the distribution 11 

component model (MDCEV) might be involved for practitioners, its application for prediction 12 

is not as involved and is relatively easier with tools available in open source platforms such as 13 

R.  14 

This paper is not without limitations. Given the large number of alternatives, the model 15 

run times were substantially long affecting number of specifications we can test. In this context, 16 

another potential avenue for future research is the consideration of sampling for MDCEV 17 

models (similar to sampling in MNL models). It might also be interesting to evaluate the 18 

proposed approach with the approach proposed in Lavieri et al. (27), and/or the traditional trip 19 

distribution approaches. Empirically, several improvements can be considered in future 20 

research. It would be useful to examine the bikeshare flows between various zones and their 21 

impact on TNC flows. The model developed might also benefit from the consideration of transit 22 

connectivity between taxi zones in the region.  23 
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Figure 1(a) Trip generation at taxi zones 1 

Figure 1(b) Trip attracted at destined taxi zones 2 

Figure 1 Ride hailing trips in NYC’s taxi zone level. 3 

 4 

Figure 2 Trip Rates of TNC demand by week. 5 

 6 

Figure 3(a) Manhattan 7 

Figure 3(b) Brooklyn 8 

Figure 3(c) Bronx 9 

Figure 3(d) Queens 10 

Figure 3(e) Staten Island 11 

Figure 3 Top 10 percentile destined zones for randomly selected pickup zones from 5 12 

NYC borough. 13 

 14 

Figure 4 Elasticity effects considering change in marginal utilities.15 
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Table 1 Descriptive Summary of Sample Characteristics 1 

Variable Names Definition 
Descriptive 

Minimum Maximum Mean 

Dependent Variables 

Trip Demand 

 
Total Trip (Daily 

per Origin) 

Total number of daily morning peak hour 

trips made in an origin taxi zone 
1.0 1983.0 384.0 

Destination Choice 

 
Alternative 

Destination Chosen 

Total number of alternative taxi zone chosen 

as destination 
1.0 171.0 66.0 

 
Total Trip (Daily O-

D Pair) 

Total number of daily morning peak hour 

trips destined to a taxi zone 
0.0 542.0 1.5 

Independent Variables 

Trip Attributes 

 Network Distance 

(m x 10-6) 
Shortest distance between taxi zones 0.0 55.5 2.43 

Land Use and Built Environment Attributes 

 Population Density 
Population in the taxi zone /Total area of the 

taxi zone in square meters 
0.0 0.6 0.1 

 Employment 

Density 

Total number of jobs in taxi zone /Total 

number of populations in taxi zone 
0.0 1.0 0.6 

 
Median Income (10-

6) 
Median person income in taxi zone 0.0 1.6 0.7 

 
Proportion of Zero 

Car HH 

Zero Car Ownership HH in the taxi zone /All 

HH in the taxi zone 
0.0 0.9 0.5 

 Facilities 
Total number of institutional facilities in taxi 

zone 
0.0 660.0 210.9 

 Point of Interests Number of point of interests in the taxi zone 0.0 487.0 120.3 

 
Park and 

Recreational Centers 

Total number of park and recreational centers 

in the taxi zone 
0.0 8.0 0.9 

 Restaurants Total number of restaurants in the taxi zone 0.0 1287.0 146.3 

 Sidewalk Cafe 
Total number of sidewalk café in the taxi 

zone 
0.0 491.0 113.4 

 Theaters Total number of theaters in the taxi zone 0.0 23.0 0.1 

 
Commercial Area 

(m2 x 10-6) 

Total commercial area of the taxi zone in 

square meters 
0.0 73.8 11.7 

 
Residential Area (m2 

x 10-6) 

Total residential area of the taxi zone in 

square meters 
0.0 56.1 18.9 

 Office Area (m2 x10-6) 
Total office area of the taxi zone in square 

meters 
0.0 62.3 42.9 

 Park Area (m2 x 10-6) 
Total park area of the taxi zone in square 

meters 
0.0 57.2 5.9 

 Land use mix 

Land use mix = [
− ∑ (𝒑𝒌(𝒍𝒏𝒑𝒌))𝒌

𝒍𝒏𝑵
], where 𝒌 is the 

category of land-use, 𝒑 is the proportion of 

the developed land area devoted to a specific 

land-use, 𝑵  is the number of land-use 

categories in a Taxi zone 

0.0 0.9 0.3 

 Crime Density 
Total number of per capita crimes that 

occurred in the previous year in the taxi zone 
0.0 113.5 89.6 

 Accidents Density 
Total number of per-capita accidents in the 

taxi zone 
0.0 0.1 0.0 
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Street Length (m x 

10-6) 
Street length of all type in meter per taxi zone 0.0 0.8 0.1 

 Bike Lane Density Ratio of bike length to street length 0.0 0.5 0.1 

 Walk Score Walk Score in the taxi zone 0.0 100.0 90.1 

 Bike Score Bike Score in the taxi zone 0.0 95.0 72.1 

 Transit Score Transit Score in the taxi zone 0.0 100.0 88.1 

 
Non-motorized 

Vehicle Score 

Non-motorized (Walk and Bike) Score in the 

taxi zone 
0.0 97.5 81.6 

 
Distance to Times 

Square (m x 10-3) 
Shortest Distance to Times Square in miles 0.0 43.6 2.7 

 
Distance to Airport 

(m x 106) 

Distance to the nearest airport from each taxi 

zone 
0.0 11.2 2.2 

Transportation Infrastructure Attributes 

 Bike Share Station 
Total number of bikeshare stations in the taxi 

zone 
0.0 27.0 2.2 

 Bus Stops Total number of bus stops in the taxi zone 0.0 55.0 20.0 

 Subway Stations 
Total number of subway stations in the taxi 

zone 
0.0 14.0 2.9 

Weather Attributes 

 Temperature (°F) Average temperature in a day 24.0 86.0 60.1 

 Precipitation  Average precipitation in a day 0.0 3.0 0.2 

 Snow (inch) Average snow depth in a day 0.0 8.0 0.2 

Categorical Variable Definition Frequency (%) 

Temporal Attributes 

 

Season 

Spring (March-May) 30.2 

 Summer (June-August) 27.9 

 Fall (September-November) 23.3 

 Winter (December-February) 18.6 

Built Environment and Land Use Attributes 

 Historic District Presence of origin on historic district or not 29.7 

 Airport Indicator Airport within the Taxi Zone 1.2 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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Table 2 Linear Mixed Model Results for TNC Origin Demand 1 

Parameter Estimates t-stats 

Intercept -1.679 -3.903 

Land Use and Built Environment Attributes 

Population Density 1.261 8.869 

Median Income (x10-6) 8.035 4.079 

Airport as an Indicator 0.804 4.079 

Number of Institutional Facilities in a Taxi Zone (x10-3) 0.195 1.655 

Number of Restaurants and Side cafe in a Taxi Zone (x10-3) 0.316 2.803 

Residential Area (m2 x10-6) 0.316 2.803 

Temporal Attributes 

Precipitation (cm) 3.740 26.106 

Season: Summer and Fall (Base: Winter and Spring) 1.548 8.574 

Correlation Parameters 

Ω 5.253 56.116 

Ω1  3.776 8.429 

Restricted Log-Likelihood  37161.892 

Sample Size 6450 
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Table 3 MDCEV Model Results 1 

Parameter Estimates t-stats 

Land Use and Built Environment Attributes 

Population Density  0.462 22.824 

Job Density 1.122 45.023 

Median Income (x10-6) 5.445 67.210 

Proportion of Zero Car HH  1.376 78.465 

Transit Score (x10-2) 0.958 30.103 

Non-motorized vehicle score (x10-2) -1.807 -51.698 

Number of Restaurants and sidewalk café in Taxi Zone (x10-3) 0.438 42.622 

Number of Institutional Facilities in Taxi Zone (x10-3) 0.194 8.528 

Number of Point of Interests and Recreational Points in Taxi Zone (x10-3) 1.401 41.801 

Commercial Area (m2 x10-6) 1.641 87.265 

LU Mix 0.723 35.999 

Airport Indicator 3.702 335.179 

Times Square Distance (m x 10-3) -0.378 -66.091 

Trip Attributes 

Network Distance (m x 10-3) -2.547 -174.790 

Transportation Infrastructure and Attributes 

Bike Lane Density in Taxi Zone -0.730 -22.787 

Number of Bikeshare Stations in Taxi Zone (x10-2) -0.108 -26.258 

Street Length in Taxi Zone (m x 10-3) 0.106 3.348 

Number of Bus Stops and subway stations in Taxi Zone (x10-3) 1.174 62.354 

Temporal and Weather Attributes 

Network Distance (m x 10-3) x Winter -0.577 -5.659 

Network Distance (m x 10-3) x Temperature (°F x 10-2) 2.460 10.983 

Times Square Distance (m x 10-3) x Precipitation (cm) -0.031 -7.267 

Network Distance (m x 10-3) x Precipitation (cm) -0.721 -13.517 

Satiation Parameters 

Times Square Distance (m x 10-3) 0.087 42.497 

Log-Likelihood at Convergence -1531122.801 

Sample Size 6450 
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