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Abstract 

In this paper, we examine the hypothesis that bicycles can compete with cars in terms of travel 

time in dense urban areas. We conduct a detailed investigation of the differences in observed travel 

times by taxi and a bicycle-sharing system (BSS) in New York City in 2014. The taxi trips with 

origins and destinations in proximity to BSS stations are identified and compared to BSS trips 

from the same origin and destinations. The travel time comparison is conducted along following 

dimensions: (a) all trips, (b) temporal dimension including different time periods of the day, 

weekday versus weekend, and seasonal variation, and (c) distance categories.  It is found that 

during weekdays’ AM, Midday and PM time periods for more than half of OD pairs with distance 

less than 3km, BSS is either faster or competitive with taxi mode. To further shed light on the 

travel time comparison, we develop a multivariate analysis using a random utility framework in 

the form of a panel mixed multinomial logit model. Identifying and understanding the factors that 

influence the travel time differences can help planners to enhance the BSS service offerings. The 

provision of information to bicycling-inclined individuals on the “faster” alternative could be used 

as a marketing tool to attract higher usage for BSS within dense urban cores. The comparison of 

BSS and taxi can also shed light on the competition between bicycle and car modes in general in 

dense urban areas. 

Keywords: bicycle sharing systems, CitiBike New York, taxi, travel time, panel mixed 

multinomial logit model 
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1. INTRODUCTION 

In most urban regions, individuals who do not have access to, or prefer not to use, personal vehicles 

have the option of either using public transit or hailing a taxi. While public transit systems are 

constrained by predefined routes and fixed schedules, taxi services provide on-demand service 

from practically any location and at any time of day (particularly with increasing adoption of 

ridesharing apps such as Uber and Lyft). For a fare, taxi services provide individuals with 

convenient door-to-door car trips without the stress of having to find a parking spot. Taxi services 

in an urban region are particularly useful for visitors, elderly individuals, individuals with 

disabilities, and individuals travelling during off-peak hours or locations with low transit 

accessibility. The share of taxi trips is less than 1 percent of all trips in the United States. However, 

as expected, this share is higher in dense urban areas with high congestion, limited and expensive 

parking provisions. For example, the taxi share in New York City is about 7 times higher than the 

US national average (NHTS 2009). Despite its small share, taxi plays an important role in our 

transportation system.  

Recently, urban regions have added a new on-demand transportation service in the form of 

bicycle sharing systems (BSS). BSS offer a reliable, practical and sustainable transportation option 

for short to medium distance urban utilitarian and recreational trips. BSS has also enhanced the 

public perception of cycling as an everyday travel mode and thus have contributed to expanding 

the cycling demographic (Goodman et al., 2014). Evidence from earlier studies also showed that 

the existence of BSS in a city improves cyclists’ safety (Murphy and Usher, 2015; Fishman and 

Schepers, 2016). With the excellent coverage provided by most BSS in urban core regions, these 

systems offer spatial and temporal accessibility that rivals taxi services within urban cores. The 

two modes also have access time associated with them; for a bicycle, it is the walking time to a 

station while for a taxi it corresponds to the waiting time for a taxi to arrive. While the BSS service 

does not offer door-to-door service, the walking distances involved in dense urban areas is not 

prohibitively large to dissuade usage. BSS services are usually priced lower relative to taxi services 

while also providing physical activity benefits to the individual and environmental benefits to the 

society. To be sure, not all trips are equally competitive between taxi and BSS. Not all individuals, 

depending on their physical condition and trip purpose, are able/willing to bicycle in urban 

conditions with heavy automobile traffic. Further, individuals are unlikely to consider BSS during 

inclement weather and for long trips (>6km or so).  At the same time, with the growing prevalence 

of urban bicycling in most cities (McLeod, 2014), it is worthwhile investigating the differences 

between taxi services and BSS.  

A preliminary analysis of data from the Lyon BSS demonstrated that bicycles can compete 

with cars in terms of speed in core downtown areas, particularly during the morning peak hours 

(Jensen et al., 2010). Building on this work, in our study, we conduct a detailed investigation of 

the differences in travel times by taxi and BSS. The taxi trips with origins and destinations in 

proximity to BSS stations are identified and compared in our analysis. The analysis examines 

various dimensions, including: different time periods of the day, weekday versus weekend, 

seasonal variation, and distance. In addition to a detailed comparison, a multivariate analysis using 

a random utility framework is developed to identify factors that affect the competitiveness of the 

two modes. Towards this purpose, our study defines a spatio-temporal dependent variable - BSS 

station-station competitiveness by time period - with three levels: (1) auto is faster, (2) bicycle is 

faster and (3) both alternatives are competitive. The three alternatives are generated to allow for 

the recognition that depending on traffic conditions (for taxi) and individual level bicycling 
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characteristics travel time is likely to exhibit significant variability. The research exercise is 

undertaken for the New York City region using detailed trip level data from the CitiBike system 

and geocoded taxi data for 2014. 

The rest of the paper is organized as follows: Section 2 reviews earlier studies and positions 

the current effort. Data preparation steps are described in the third section. A detailed descriptive 

analysis is presented in Section 4. The fifth section discusses the multivariate analysis and presents 

potential policy implications. Finally, section 6 concludes the paper.  

 

2. EARLIER WORK AND RESEARCH CONTEXT 

The two modes of interest in our research effort – taxi and BSS – are substantially different in 

terms of their existence in North American cities. Taxi services have been prevalent for a long 

time while BSS is an emerging system. Several research efforts have examined these systems 

independently. A brief review of the literature for each mode is provided below.  

There is a vast body of literature on taxi services. Earlier studies examined taxi services 

from different perspectives, including regulation (Schaller, 2007; Çetin and Eryigit, 2011), demand 

and pricing (Chang and Chu, 2009; Milioti et al., 2015; Zhang and Ukkusuri, 2016), and impact 

of emerging technologies such as electric and autonomous vehicles (Jung et al., 2014; Burghout et 

al., 2015; Chrysostomou et al., 2016). Several studies analyzed different aspects of taxi operations 

including taxi passenger search schemes and routing of vacant taxis to improve the efficiency of 

taxi services (Yang and Wong, 1998; Kim et al., 2005; Wong et al., 2008; Wong et al., 2014; Wong 

et al., 2015; Zhan et al., 2015; Zhang et al., 2016). Crash injury severity and safety issues related 

to taxi services are also examined by several researchers (Dalziel, and Job, 1997; Peltzer, and 

Renner, 2003; Lam, 2004; Tseng, 2013; Tay and Choi, 2016).  Recently, several studies 

investigated the rise of app-based, on-demand ride services such as Uber and their impacts on taxi 

market and transportation systems (Sun and Edara, 2015; Cramer and Krueger 2016; Harding et 

al., 2016; Rayle et al., 2016). Further, several investigations used taxi data to estimate link-level 

travel time on the street network considering taxis as vehicle probes (Zhan et al., 2013; Deng et 

al., 2015; Zhan and Ukkusuri, 2015).  

Given the recent growth of BSS around the world, the research on BSS has increased in 

the past few years. BSS studies employed survey data and BSS operation data in order to better 

understand users’ travel behavior and choice process, as well as BSS usage and demand (for a 

review of recent literature on BSS, please see Fishman, 2016). Several studies investigated the 

relationship between BSS usage and demand with bicycling infrastructure, land use and built 

environment, public transportation infrastructure, temporal and meteorological attributes (Rixey, 

2013; Faghih-Imani et al., 2014; Gebhart and Noland, 2014; Faghih-Imani and Eluru, 2015; Wang 

et al., 2015; Faghih-Imani and Eluru, 2016a; Faghih-Imani and Eluru, 2016b). Further, another 

subset of studies concentrated on operational issues of BSS including identifying problematic 

stations, efficiency of operator rebalancing program, and proposing new methods for optimizing 

bicycle rebalancing operations and repositioning trucks’ routing schemes (Vogel and Mattfeld, 

2011; Nair et al., 2013; Raviv et al., 2013; Fricker and Gast, 2014; Pfrommer et al., 2014). 

 From our review, it is evident that there are many studies that separately examine different 

aspects of bike share and taxi systems. But there is a paucity of literature that examines these two 

systems in a single study. The study by Jensen et al (2010) was the only attempt that we came 
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across that provided insights by comparing BSS to the automobile mode. However, their 

comparison was limited to comparing the BSS average speed with the reported average car speed 

in the downtown of European cities rather than observed speed distributions. In the current study, 

we endeavour to bridge this gap in the literature. Specifically, we examine taxi and BSS travel 

times in an urban area employing trip data from CitiBike bicycle-sharing system and taxi service 

for New York City in 2014. We limit our attention to taxi trips made within the service area of 

CitiBike. We identify taxi trips with origin and destination within 250-meter of a CitiBike station. 

We assume that such taxi trips are possible candidates to be substituted by BSS trips since there 

are CitiBike stations nearby the trips’ origin and destination.  

The trip datasets of CitiBike and taxi provide the travel times of each trip between origins 

and destinations, allowing us to compare travel times of CitiBike and taxi trips with the same origin 

and destination for a given time period. Thus, we can empirically examine the hypothesis “Can 

bicycles compete with cars in terms of travel time in dense urban areas?” To be sure, it is not 

enough to compare average travel times alone. In our analysis, we focus on the average as well as 

the distribution of the travel times for the comparison exercise. The comparison is conducted along 

several dimensions: (a) all trips, (b) temporal dimension including different time periods of the 

day, weekday versus weekend, and seasonal variation, and (c) distance categories. Further, we 

examine the influence of built-environment attributes and trip characteristics on the travel time of 

CitiBike and taxi trips. Specifically, we investigate factors that can improve the speed of CitiBike 

trips compared to taxi trips. Identifying and understanding these factors would help planners to 

enhance the CitiBike service offerings. The provision of information to bicycling inclined 

individuals on the “faster” alternative could be used as a marketing tool to attract higher usage of 

BSS within the dense urban cores. It is important to reiterate that not all of the taxi trips are possible 

candidates for BSS or bicycling substitution. However, the comparison of BSS and taxi can shed 

light on the competition between bicycle and car modes in general in urban areas.    

 

3. DATA 

New York City is the most populous city in the US and host to millions of visitors every year. The 

city’s BSS and taxi services are the largest systems in the United States (Kaufman et al., 2015; 

NYC TLC, 2016). In 2014, on average, nearly 34,000 trips were taken using the CitiBike system, 

while more than 400,000 trips were made by taxi in a day in the city. About 55% of the taxi trips 

in New York City are less than 2 miles (NYC TLC, 2016). The data used in our research was 

obtained from several sources.  The BSS data downloaded from the official CitiBike website 

(https://www.citibikenyc.com/system-data) contained trip information about origin and 

destination stations, start time and end time of trips, and user types. Additionally, the stations’ 

capacity and coordinates as well as trip duration are provided in the dataset. The taxi data obtained 

from the NYC Taxi and Limousine Commission website 

(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml) contains information regarding 

pick-up and drop-off times and locations, trip distances, fares, and driver-reported passenger 

counts. The built environment attributes such as bicycle routes and subway stations were derived 

from the New York City open data  source (http://opendata.cityofnewyork.us/) while the socio-

demographic characteristics were gathered from the US 2010 census.  

Several data compilation steps were undertaken to ensure consistent conditions for 

comparing BSS and taxi data. For our analysis, we used the taxi and CitiBike trips data for 2014. 

https://www.citibikenyc.com/system-data
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://opendata.cityofnewyork.us/
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Then, from both datasets, records with missing or inconsistent information as well as trips with 

the same origin and destination were deleted. Next, night trips were deleted from both datasets and 

trips made between 7AM to 22PM were retained for analysis. We believe that for night trips, the 

travel time would not be a contributing factor in individuals’ decision-making process. Further, 

from the trip databases, it was not clear whether the trips were made directly from origin to 

destination or several stops were made in between. Thus, in order to reduce the error caused by 

such trips, we removed trips longer than the 99 percentile threshold based on the trip duration. 

Therefore, the final samples included taxi trips less than 45 minutes and CitiBike trips less than 60 

minutes. It is important to highlight that in the CitiBike system, the first 45 minutes (30 minutes) 

of each ride is included in the price of annual membership (daily passes) and there is an extra cost 

for each additional 15 minutes. Therefore, it is likely that users with multiple stops in a trip actually 

return the bicycle to a station at each stop and start a new trip after the stop. Thus, we expect that 

the duration of the trips recorded in CitiBike dataset is likely to be equal or close to the actual ride 

time (as opposed to retaining the bike and pursuing a series of stops). 

The CitiBike system had 332 stations in 2014, providing us with a set of 109,892 origin-

destination (OD) pairs. We created a 250-meter buffer around each station and then assigned the 

taxi trips to the nearest CitiBike stations, based on their pick-up and drop-off locations. Thus, taxi 

trips which did not have a pick-up and drop-off location within the 250-meter buffer were not 

assigned to any CitiBike station. Hence, we obtained a dataset of taxi trips that have the 

corresponding origin and destination stations in the CitiBike system. Therefore, based on the start 

time of trips, we were able to find a taxi trip and CitiBike trip with almost the same (within the 

maximum of 250 meters) origin and destination. The 250-meter threshold was employed based on 

the preferred walking distance as reported in earlier research, the average distance between the 

CitiBike stations and the dense urban form of New York City: a typical New York City block is 

about 60 meters (Forsyth and  Krizek, 2010; Kaufman et al., 2015). 

As expected, the number of taxi trips between OD pairs are significantly higher than the 

number of corresponding CitiBike trips. In fact, for some OD pairs, in some time periods, trips 

from the CitiBike system are not observed (on very few occasions, the taxi trips were also not 

observed). Thus, for each time period, not all of the 109,892 OD pairs have trips observed for 

comparison. Figure 1, presents the location of CitiBike stations and the total number of CitiBike 

and taxi trips around New York City. The observed travel patterns for CitiBike and taxi trips are 

very similar; the highly used CitiBike stations are in the areas that also register higher taxi trips.  

 

4. DESCRIPTIVE ANALYSIS 

We computed mean travel times for all the trips between station origin and destination pairs for 

CitiBike trips and assigned taxi trips. In addition, to capture the temporal variations, we computed 

mean travel times for different time periods: AM (7:00-10:00), Midday (10:00-16:00), PM (16:00-

19:00), and Evening (19:00-22:00). We also examine the travel times on weekdays vs. weekends. 

Further, the travel times by the first month of each season are considered to observe seasonal 

effects. For these dimensions, we compute the travel time difference between CitiBike and taxi 

trips. Figure 2 displays the travel time difference between CitiBike and taxi trips (i.e. taxi travel 

time - CitiBike travel time) for station OD pairs by time period. The positive values are when 

CitiBike is faster than taxi for an OD pair while the negative values are when taxi is the faster 

mode. As expected, taxi is slightly faster than CitiBike for all time resolutions. The weekday travel 
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times are more in favor of CitiBike compared to weekend travel times. The seasonal differences 

are marginal with slower taxi trips in January a possible outcome of adverse weather condition 

affecting vehicular flow. On average, within the BSS range, taxi trips are about 6.5 minutes faster 

than CitiBike trips. However, when we look at weekday peak hours when the road network is more 

likely to be congested, the difference in travel times reduces. Taxi is 3.7, 4.3 and 4.4 minutes faster 

than CitiBike on weekday AM, Midday and PM time periods, respectively. It is interesting to note 

that there are certain OD pairs for which travel time by CitiBike is about 30-40 minutes less than 

the taxi travel time. This result highlights that although on average travel time by bicycle is more 

than car (which is expected since cars are motorized and faster than bicycles), we find several OD 

pairs around the city for which bicycles are the faster mode of travel due to car traffic congestion 

or street network characteristics such as one-way streets.  

Further, we identify OD pairs for which CitiBike travel time is less than taxi travel time. 

Overall, for about 6.3 percent of all the OD pairs available for comparison, CitiBike is the faster 

mode of travel. The share increases for weekday AM, Midday and PM time periods to 10.9%, 

12.6% and 9.9%, respectively. Another important factor in comparing car and bicycle travel time 

is the trip distance; for long trip distances, bicycle is not an attractive option. Moreover, it is 

expected that when the trip distance increases, the increase in travel time for CitiBike would be 

more than the increase in travel time for Taxi. Thus, we examine the OD pairs by the distance of 

travel. Figure 3 presents the share of OD pairs within each trip distance segment that CitiBike is 

faster than taxi overall, by time period. It must be noted that the number of observed OD pairs for 

comparison decreases when we focus on a specific distance and time period. Thus, in addition to 

the share of OD pairs, the number of observed OD pairs for comparison are presented in Figure 3. 

The results clearly indicate that bicycle can be a competitive mode to taxi in terms of travel time 

for shorter distance trips. In fact, overall about 17% of OD pairs with the distance less than 1 km 

and about 10% of OD pairs with the distance between 1 - 2 km experience average CitiBike travel 

time lower than average taxi travel times. Further, on weekdays, for about 20-36% of OD pairs 

with distance less than 2km (depending on distance and time of day), the CitiBike is the faster 

mode of travel compared to taxi.  

 The analysis so far has focussed on the sample means of the taxi and CitiBike travel times. 

It is necessary to recognize that actual travel time realized exhibits significant variability across 

different trips. For example, an experienced bicyclist with knowledge of the city traveling between 

two stations is likely to have a shorter travel time compared to the travel time realized for a novice 

bicyclist. Similarly, based on traffic congestion, the taxi travel time between the same origin and 

destination could vary substantially. Thus, based on bicyclist demographics, trip purpose, origin 

and destination bicycle facilities and connectivity, traffic conditions, and taxi driver behavior, there 

is bound to be substantial variability in travel time across the two modes. The variations across 

trips by mode results in a situation where no single mode is faster across all trips between the OD 

pair. Toward clearly highlighting the faster mode for the OD pair, we generate a 90% confidence 

band for travel time based on the mean and standard deviation of travel times between station pairs 

in the BSS system. Based on this computation, we can identify three states of comparison: (1) 

travel time for CitiBike is statistically lower than travel time for taxi (i.e. the higher end of the 90% 

band for CitiBike travel time is lower than the lower end of the 90% band for taxi travel time), (2) 

travel time for CitiBike is statistically not different from travel time for taxi and (3) travel time for 

CitiBike is statistically higher than travel time for taxi. The three levels obtained thus provide us 

with information on the OD pairs where a particular mode is faster while also providing us 
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information on OD pairs where both modes are competitive. Thus, policy makers can examine 

these OD pairs to understand how we can promote the sustainable alternatives.  

Based on the above characterization, the share of the three levels by trip distance and weekday 

time periods are presented in Figure 4. The results show that for more than 50% of OD pairs with 

distance less than 3km, CitiBike is either the faster or a competitive mode of travel. The results 

clearly indicate that for an OD pair within a reasonable distance in New York City, the bicycle 

mode compared to car mode is a very competitive mode of travel in terms of travel time and even 

in some cases faster especially during weekday peak hours. 

 

5. PANEL MIXED MULTINOMIAL LOGIT MODEL 

The descriptive analysis has clearly demonstrated that CitiBike offers a competitive mode of travel 

for a reasonable proportion of station OD pairs around the city across different time periods. The 

distance of the trip and time period of the day are the prominent factors influencing the 

competitiveness of the CitiBike system. To draw insights on possible other characteristics that 

could potentially affect the competiveness, the three-level variable defined above is employed as 

the dependent variable in a multivariate analysis based on a random utility framework. 

Specifically, for each station OD pair the dependent variable is generated for four time periods: 

AM, Midday, PM and Evening time periods. We limit our analysis to weekdays, trips between 

7AM and 10PM, and trips shorter than 5km. These assumptions yield a total of 87,112 OD pairs 

for comparison. As investigating such a large sample might be computationally time-consuming 

we randomly sample 20,000 station OD pairs1. The alternative shares for the final sample are: The 

CitiBike is the faster mode for 4.8% of the OD pairs, the taxi is the faster mode for 50.5% of the 

OD pairs and the CitiBike and taxi are competitive for the remaining 44.7% of OD pairs. A panel 

mixed multinomial logit model (MMNL) to account for repeated measures (for more details, 

please see Bhat and Sardesai, 2006; Anowar et al. 2015) for each OD pair is employed for model 

estimation.  

 

5.1. Exogenous Variables 

Exogenous variables considered in our analysis can be classified into three broad groups: a) 

temporal attributes, b) trip attributes, and c) CitiBike station attributes. A dummy variable for each 

time period in our panel data was created to capture the time of day effect. Trip attributes included 

the street network distance between the origin and destination of every trip. For taxi trips, the 

distance traveled are recorded in dataset. For each OD pair, we calculated the average trip distance 

reported by taxi drivers in our modeling effort. While the actual bicycle trip might involve a 

different route, we believe the computed distance would be an appropriate indicator of the distance 

between origin and destination. Moreover, a categorical variable indicating whether the trip needed 

to cross a bridge (i.e. origin or destination in two boroughs of Manhattan or Brooklyn) or not was 

also generated. 

                                                 

1 The reader would note that in CitiBike data there might not be any trips observed between some OD pairs for all 4 

time periods. Hence, the final panel data consists of 60,553 records with an average of 3.03 repetition for OD pairs. 
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Several variables were considered under the CitiBike station attribute group. The variables 

in CitiBike station attributes groups were considered for both origin and destination stations of a 

trip. Population density was calculated at the census block level and employment density at the zip 

code level. Other attributes were considered at a station buffer level. For the station buffer level 

variables, we employed a 250-meter buffer around each station. To recognize the impact of the 

transportation network, the length of street network and cycling facilities around each station were 

computed. Further, the presence of transit (subway and Path train) stations and the number of 

restaurants (including coffee shops and bars) were considered as points of interest attributes in our 

analysis. The station capacity was also considered in our model estimation process.  

 

5.2. Model Estimation Results  

In our estimation effort, we choose the CitiBike Faster alternative as the base and estimate the 

coefficients for the other two alternatives. The final log-likelihood at convergence for the panel 

MMNL model is -44422.5 while the log-likelihood value at constants is -51487.7. Clearly, this 

indicates that the estimated coefficients provide statistically significant improvements at any level 

of significance. It must be noted that several specifications were tested before reaching the final 

results. The coefficients for the two alternatives were combined when their effects were similar. 

The model estimation results are presented in Table 1. All of the estimated parameters are 

significant at the 95% level of confidence or better. 

The constant estimates are consistent with the overall share of alternatives. For temporal 

attributes, we selected the Evening period as the base and estimated the coefficients for AM, 

Midday and PM periods. The results indicate that during the time periods when traffic congestion 

is expected, CitiBike tends to be faster. Lower negative coefficients for Competitive alternative 

suggest that during peak hours even if bicycle is not the faster mode, it is more likely to be a 

competing mode.     

One of the most important variables in the trip attributes category is trip distance. As 

expected, trip distance has positive coefficients for both Taxi Faster and Competitive alternatives. 

The results highlight that for longer trips, the taxi (car) mode is preferable while for shorter trips, 

the CitiBike (bicycle) mode can be a good competitor. The estimate for crossing a bridge between 

Manhattan and Brooklyn provides interesting results. Typically, bridges act as bottlenecks on a 

road network and thus increase the traffic congestion and vehicular travel time. However, bridges 

in our study have specific bicycle paths, creating an opportunity for cyclists to pass the congested 

car lanes. The significant negative coefficient clearly indicates that for crossing a bridge between 

an OD pair, CitiBike (bicycle) mode can be the faster alternative. 

We estimated separate parameters for station attributes at both origins and destinations of 

trips. The estimates for station capacity variables for both origin and destination are negative 

indicating that when origin and destination have higher station capacity, it is more likely that 

CitiBike is the faster mode of travel. It is plausible since higher station capacity enables BSS users 

to easily find a dock to return the bicycle. Moreover, stations with higher capacity are more likely 

to be in dense areas with higher traffic congestion and thus it takes longer to travel by taxis (cars) 

in those areas. The length of bicycle facilities variable has opposite impacts for origins and 

destinations. The CitiBike is more likely to be the faster mode when the length of bicycle facilities 

is higher at the destination station. This is an interesting result, particularly for planners who want 

to justify the installation of bicycle facilities around the city. The results show that if we increase 
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bicycle facilities in a city, the travel time for bicycles decreases and thus we can expect a modal 

shift towards cycling (for a review of factors influencing bicycle mode see Hunt and Abraham, 

2007; Heinen et al. 2010). On the other hand, when the length of the street network around origin 

and destination increases, the travel time for taxi reduces as indicated by positive coefficients of 

the length of street network variable for both origin and destination. The areas with more street 

network are less likely to experience traffic congestion and offer alternative routes to avoid 

congestion. The number of restaurants and presence of transit stations serve as measures for point 

of interests around origins and destinations. The estimated results also demonstrate that when the 

origin or destinations are located in busy areas with increased number of points of interests, 

CitiBike is likely to be the faster mode. This result is also confirmed by the population and job 

density estimates. CitiBike (bicycle) might be a more reliable mode for trips in higher job density 

neighbourhoods while in areas with more residents, taxi is the faster mode since the streets would 

have less traffic congestion. 

The influence of unobserved factors affecting station Origin-Destination was illustrated by 

the presence of significant standard deviation parameters. The parameters that exhibited the 

presence of a distributional effect include constant for the taxi mode is faster, station capacity at 

origin and destination, the length of streets at origin and destination. These unobserved effects 

improve the model fit and provide enhanced parameter accuracy.  

 

5.3. Policy Analysis 

To investigate the influence of new bicycling infrastructure, we conducted a policy analysis based 

on the estimated model. Specifically, we examine the trade-off in the competitiveness of CitiBike 

(bicycle) and taxi (car), by considering changes in exogenous variables. In our policy analysis, we 

consider the two variables that policy makers can influence to improve the non-motorized mode: 

the length of bicycle facilities and CitiBike stations’ capacity. We focus on the following 

infrastructure improvements: 1) 50% increase in the length of bicycle facilities in the origin and 

destination buffer; 2) 1 km increase in the length of bicycle facilities in the buffer; 3) 20% increase 

in the station capacity; 4) increasing the station capacity by 20 bicycles (the reader should note 

that the average station capacity of CitiBike system is about 34 bicycles); 5) 1 km increase in the 

distance between origin and destination stations. Based on these variable changes, the model from 

section 5.2 was employed to predict the new shares across the three alternatives. The differences 

between the policy scenarios and the base scenarios are computed. The differences in alternative 

shares are computed as absolute changes and presented in Table 2.  

 Several observations can be made from the policy analysis results. First, improvements in 

the bicycle infrastructure by increasing the length of bicycle facilities or increasing the size of 

CitiBike stations increases the probability that CitiBike is the faster alternative. The finding 

provides evidence to policy makers that investment in bicycling can lead to increased 

competitiveness of the bicycle mode particularly in dense urban cores. Second, the results indicate 

that with the simultaneous increase in bicycle length by 1km and CitiBike station capacity by 20, 

about 4% increase in the share of the CitiBike Mode Faster alternative would be obtained. Third, 

as expected, lengthening the trip distance between origin and destination is in favour of taxi mode. 

However, we observe that the additional station capacity or bicycle facilities can compensate for 

the negative impact of the distance and can further expand the competitiveness of bicycle 
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compared to car for longer distance trips. Based on our policy analysis, a 1 km increase in trip 

distance can be offset by an increase of about 19 bicycles in station capacity. 

 

6. CONCLUSION 

Taxi services have been a common element of transportation systems for a long time. However, 

given the recent growth of bicycle-sharing systems (BSS) around the world and with the excellent 

coverage and spatial and temporal accessibility provided by most BSS in urban core regions, BSS 

rivals taxi services within urban cores. We conducted a detailed analysis of the differences in travel 

times by taxi and BSS employing trip level data from New York City CitiBike system and taxi 

system in 2014. The taxi trips with origins and destinations in proximity to BSS stations were 

identified and compared in our analysis. Our results confirmed that bicycles can compete with cars 

in terms of travel time in dense urban areas. The results showed that on average, within the BSS 

range, taxi trips were slightly faster than CitiBike trips. However, when we investigated the time 

periods when the road network was more likely to be congested or within the shorter distance trip 

range, the difference in travel times reduced. The results demonstrated that during weekdays’ AM, 

Midday and PM time periods for more than 50% of OD pairs with distance less than 3km, CitiBike 

is either the faster or a competitive mode of travel. 

Furthermore, a panel mixed multinomial logit model was developed to identify factors that 

affect the competitiveness of the two modes. The estimated results showed that when the origin or 

destinations were located in busy areas with increased number of points of interests or higher job 

density, CitiBike was likely to be the faster mode. The results demonstrated that increasing bicycle 

facilities in a city would decrease the bicycle travel time. Specifically, installation of bicycle 

facilities on segments of the road network with higher traffic congestion such as bridges and 

bottlenecks would create an opportunity for cyclists to pass vehicular traffic. The results of our 

multivariate analysis can help planners to enhance the BSS service offerings. The provision of 

information to bicycling-inclined individuals on the “faster” alternative could be useful as a 

marketing tool to attract higher usage of BSS within the dense urban cores. Furthermore, based on 

the policy analysis conducted, the results indicate a potential improvement in competitiveness of 

the CitiBike mode with investments in bicycling infrastructure such as lengthening the bicycle 

facilities and adding additional CitiBike capacity.  

It is important to note that not all of the taxi trips are possible candidates for BSS or 

bicycling substitution. However, the comparison of BSS and taxi provide interesting insights on 

the competition between bicycle and car modes in general in urban areas. The multivariate model 

analysis offers insights that can be extended to other similar cities with bicycle infrastructure such 

as London. While the actual topography and station locations are different across cities, we expect 

similar findings for time of day effects and bicycle infrastructure variables in determining the 

competiveness between BSS and taxi. A research exercise explicitly comparing the model 

transferability is an opportunity for future work. In addition, the availability of bicycle route 

traveled for each trip would allow for consideration of route specific attributes in the comparison 

exercise. However, the level of analysis for such comparison would have to be at the trip level as 

opposed to the OD pair level analysis in our paper.   
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Figure 1 CitiBike Station Locations and Total Number of Trips for CitiBike and Taxi  
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Figure 2 (Taxi Travel Time - CitiBike Travel Time) by each Time Period 
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Red: Taxi is Faster 



18 

 

  

0-
1km

1-
2km

2-
3km

3-
4km

4-
5km

5-
6km

6km
+

Bike Faster 9.2 6.1 1.6 1.2 1.5 1.3 2.9

Competitive 51.9 47.0 48.6 44.5 37.7 35.2 38.5

Taxi Faster 38.9 46.9 49.8 54.3 60.8 63.5 58.6

25%

50%

75%

100%

PM

0-
1km

1-
2km

2-
3km

3-
4km

4-
5km

5-
6km

6km
+

Bike Faster 2.4 .6 .2 .6 .9 1.2 2.9

Competitive 47.3 32.7 26.6 23.3 18.8 15.2 15.2

Taxi Faster 50.2 66.7 73.2 76.1 80.3 83.6 81.9

25%

50%

75%

100%

Evening

0-
1km

1-
2km

2-
3km

3-
4km

4-
5km

5-
6km

6km
+

Bike Faster 12.5 9.7 3.3 2.0 1.9 2.7 8.1

Competitive 47.8 49.6 52.9 47.3 33.7 24.4 25.3

Taxi Faster 39.6 40.6 43.8 50.7 64.5 72.9 66.7

25%

50%

75%

100%

Midday

0-
1km

1-
2km

2-
3km

3-
4km

4-
5km

5-
6km

6km
+

Bike Faster 13.8 8.8 2.7 2.0 2.2 2.5 4.8

Competitive 58.2 53.9 49.8 40.2 30.4 21.7 19.9

Taxi Faster 28.0 37.3 47.5 57.7 67.4 75.7 75.2

25%

50%

75%

100%

AM

Figure 4 Comparison of Travel Time by Group Distance based on 90% Level of Confidence 



19 

 

 

Table 1 Panel Mixed Multinomial Logit Model Estimation Results 

 
Taxi Mode is Faster* Taxi and CitiBike modes 

are competitive* 

 Coefficient t-stat. Coefficient t-stat. 

Constant 3.3248 11.391 2.8866 9.981 

Temporal Attributes 
(Evening as Base) 

    

AM -3.5682 -32.355 -2.0955 -19.393 

Midday -3.6438 -33.529 -2.3085 -21.572 

PM -2.8125 -25.643 -1.6795 -15.525 

     

Trip Attributes     

Distance 1.1440 29.130 0.7566 20.332 

Crossing a Bridge -1.6914 -9.642 -1.6914 -9.642 

     

Origin Attributes     

Station Capacity -0.0102 -2.687 -0.0102 -2.687 

Length of Bicycle Facilities 0.1650 3.140 0.1650 3.140 

Length of Streets 0.2013 5.280 0.2013 5.280 

Number of Restaurants -0.8819 -3.443 -0.8819 -3.443 

Job Density -0.4357 -13.136 -0.3407 -11.420 

     

Destination Attributes     

Station Capacity -0.0203 -6.844 -0.0203 -6.844 

Length of Bicycle Facilities -0.2921 -5.181 -0.2021 -3.919 

Length of Streets 0.5123 9.150 0.5123 9.150 

Presence of Transit Station -0.3658 -5.535 -0.3658 -5.535 

Number of Restaurants -1.6342 -6.047 -1.6342 -6.047 

Population Density 0.3179 10.910 0.3179 10.910 

Job Density -0.7230 -21.482 -0.4563 -15.238 

     

Standard Deviations 

Estimates 
    

Constant 1.5932 68.773 - - 

Origin     

Station Capacity 0.0241 10.154 0.0241 10.154 

Length of Streets 0.0853 2.280 0.0853 2.280 

Destination     

Station Capacity 0.0074 2.830 0.0074 2.830 

Length of Streets 0.2614 8.712 0.2614 8.712 
* The CitiBike Mode is Faster alternative is the base. 
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Table 2 Policy Analysis Results 

Scenarios 

Absolute Change in the Alternative Probability 

CitiBike Mode 

is Faster 

Taxi and CitiBike 

modes are competitive 

Taxi Mode 

is Faster 

Length of Bicycle Facilities +50% 0.133% 0.630% -0.763% 

Length of Bicycle Facilities +1km 0.211% 1.269% -1.479% 

Station Capacity + 20% 1.250% -0.823% -0.428% 

Station Capacity + 20 Bicycles 3.594% -2.329% -1.264% 

Length of Bicycle Facilities +1km 

& Station Capacity + 20 Bicycles 
3.918% -1.173% -2.744% 

Trip Distance + 1km -2.170% -4.651% 6.821% 

 


