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ABSTRACT 

Safety performance functions (SPFs) by predicting the number of crashes on roadway facilities 

have been a vital tool in the highway safety area. The SPFs are typically applied for identifying 

hot spots in network screening and evaluating the effectiveness of road safety countermeasures. 

The Highway Safety Manual (HSM) provides a series of SPFs for several crash types by various 

roadway facilities. The SPFs provided in the HSM were developed using data from multiple states. 

In regions without local jurisdiction based SPFs it is common practice to adopt national SPFs for 

crash prediction. There has been little research to examine the viability of such national level 

models for local jurisdictions. Towards understanding the influence of SPF transferability, we 

examine the rural divided multilane highway models from Florida, Ohio, and California. Traffic, 

roadway geometry and crash data from the three states are employed to estimate single state SPFs, 

two state SPFs and three state SPFs. The SPFs are estimated using the negative binomial model 

formulation for severity and crash types. To evaluate transferability of models, we estimate a 

transfer index that allows us to understand which models transfer adequately to other regions. The 

results indicate that models from Florida and California seem to be more transferable compared to 

models from Ohio. More importantly, we observe that the transfer index increases when we used 

pooled data (from two or three states). Finally, to assist in model transferability, we propose a 

Modified Empirical Bayes (MEB) measure that provides segment specific calibration factors for 

transferring SPFs to local jurisdictions. The proposed measure is shown to outperform the HSM 

calibration factor for transferring SPFs. 

 

Keywords: Transferability of Safety Performance Functions, Rural Divided Multilane Highway 

Segments, Negative Binomial Models, Highway Safety Manual, Calibration Factor, Empirical 

Bayes Method 
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1 INTRODUCTION 
According to the Local and Rural Road Safety Program of the Federal Highway Administration, 

54% of traffic fatalities in the US occurred on rural roads in 2012. Hence, it is not surprising that 

safety on rural roads is identified as an area of critical importance in enhancing traffic safety. 

Safety Performance Functions (SPF) form a crucial part of improving traffic safety by allowing us 

to predict crash frequency and identify hot spots. SPFs are employed to predict the number crashes 

of any type (vehicular, pedestrian or bicyclist) or severity level (fatal (K), incapacitating injury 

(A), non-incapacitating injury (B), possible injury (C) and property damage only (O)). The SPFs 

are developed by regressing crash frequency data, with traffic volume and geometric 

characteristics of segments or intersections. Ordinary linear regression models are inappropriate 

since crash frequencies are non-negative (Miaou and Lum, 1993; Miaou, 1994; Kim et al., 2005; 

Garber and Wu, 2001). Generalized linear regression models have been used in recent studies 

(Sawalha and Sayed, 2006; Taylor et al., 2002; Harnen et al., 2004; Donnell and Mason, 2006). 

Furthermore, the mathematically appropriate frameworks for SPFs are count modeling approaches 

such as Poisson and Negative Binomial (NB) models. However, due to the assumption of equal 

mean and variance, Poisson models are quite restrictive for crash frequency modeling. That is, the 

variance of the observed crash frequency per site is usually greater than the mean (what is referred 

to as over-dispersion). The NB framework, by allowing for over-dispersion, is more flexible and 

has been used as the pillar for SPF development in the safety literature (Miaou and Lum, 1993; 

Miaou, 1994; Donnell and Mason, 2006; Lord et al., 2005). 

The Highway Safety Manual (HSM), of the American Association of State Highway and 

Transportation Officials (2010), includes several NB based SPFs for different types of roadway 

segments. The HSM’s default NB SPFs for divided rural multilane highway segments are 

developed based on pooled data from California and Texas (Lord et al., 2008). The rationale behind 

providing the HSM’s default SPFs is to employ these SPFs for a particular jurisdiction if the 

jurisdiction specific SPFs are not available. To elaborate, if a region does not have localized SPFs, 

the default SPFs from the HSM would be considered as the SPFs and used for crash frequency 

prediction. Some jurisdictions might not have the expertise or resources to process the data and 

estimate SPFs. Hence, if the transferred SPFs are shown to be efficient in predicting crashes, the 

jurisdiction could simply apply the SPFs instead of developing local ones thereby cutting costs 

and time. To customize the SPF for the study region, the SPF is calibrated by using an aggregate 

correction measure based on the ratio of total observed crashes and total predicted crashes. The 

correction factor can be viewed as correcting the intercept in the SPF to correspond to the study 

region. In past studies, the HSM’s default SPFs were applied to rural divided multilane highway 

segments in specific states in the US and abroad. The observed and predicted crash frequencies 

were compared to assess the HSM’s SPF prediction accuracy. Furthermore, jurisdiction specific 

SPF’s are compared with those of the HSM in terms of goodness of fit measures.  

The current study contributes to growing literature on SPF transferability by considering a detailed 

and rigorous assessment of SPF transferability across multiple regions. Specifically, we consider 

transferability of jurisdiction specific SPFs of Florida (FL), Ohio (OH) and California (CA) and 

compare their predictive performance across the three states. The study effort has two main 

objectives. First, we explore the influence of pooling data from multiple states for SPF 
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development and compare the transferability of the SPFs developed from the pooled data with 

those developed from single state data. We consider two states and three states for pooling the data 

for SPF development and comparison. The comparison is undertaken based on a Transfer Index 

measure. Second, we propose a more disaggregate calibration measure that customizes SPFs from 

elsewhere for the study region without local SPFs. The predictive performance of the calibrated 

SPF from the new calibration parameter is compared to the predictive performance of the 

calibrated SPF using the HSM calibration approach. Even though Florida, Ohio and California are 

distant states that represent different regions of the nation, they are chosen for this study because 

pooling data from states having different features enriches the data. That is, the pooled data will 

better represent regions surrounding the three chosen states and hence the SPFs developed from 

the pooled data may be applicable to the surrounding regions. It should be noted that transferability 

research is not limited to microscopic SPFs. For instance, Hadayeghi et al. (2006) assessed the 

temporal transferability of macroscopic SPFs in Toronto. The concept of transferability is also 

applicable to travel demand modeling. In one recent study by Sikder et al (2014), transferability 

of choice models, which are based on tours rather than trips, among San Francisco Bay Area’s 

counties is evaluated.  

2 LITERATURE REVIEW 
In traffic safety literature, examining transferability of SPFs is a relatively new research topic. The 

analysis approach involves applying the default HSM’s SPFs to a specific jurisdiction with the 

HSM calibration factor (ratio of the sum of the observed number of crashes to that of crash 

frequencies predicted by the HSM’s SPF). In some cases, the jurisdiction specific SPFs are also 

developed using the local data and compared with the HSM’s SPFs multiplied by the calibration 

factor. The approach has been employed for studies of rural divided multilane highway segments, 

among other types of segments and intersections, in the states of Missouri, North Carolina, Oregon, 

and Alabama and internationally for Messina-Catania, Italy and Riyadh, Saudi Arabia (Sun et al., 

2014; Salifu, 2004; Srinivasan and Carter, 2011; Xie et al., 2011; Cafiso et al., 2012; Al Kaaf and 

Abdel-Aty, 2015; Mehta and Lou, 2013). The same approach was chosen for roadway facilities 

other than rural divided multilane highway segments in Louisiana, Ohio and Regina, 

Saskatchewan, Canada (Sun et al., 2006; El-Dabaja and McAvoy, 2015; Young and Park, 2012). 

Sun et al. (2014) employing KABCO crash data from 2009 to 2011, compiled from the 

Transportation Management System (TMS) of the Missouri Department of Transportation (DOT), 

employed the HSM’s SPF. The HSM’s negative binomial model that takes the following form is 

used to predict the number of crashes per segment. 

    LAADTBAN
SPF

lnlnexp                                                (1) 

In the model, L, represents the segment length, an offset variable, and AADT is the average annual 

daily traffic, both of which are exposure measures. The regression coefficients are represented by 

A and B. The model is applicable to segments conforming to the defined base conditions of the 

HSM only. Therefore, crash modification factors (CMFs) of the HSM are applied to account for 

deviations from the base conditions. The model, while simplistic with only exposure measures is 

quite useful for identifying the hot spots (Salifu, 2004). For the case of Missouri, the calibration 
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factor was calculated to be 0.98 indicating that the HSM’s SPF marginally over-predicts the 

frequency of total crashes in rural divided multilane highway segments in Missouri. Srinivasan 

and Carter (2011) undertook a similar exercise for rural divided multilane highway segments in 

North Carolina using data between 2004 and 2008 from the accident analysis system of the North 

Carolina DOT. The analysis is also conducted for total crashes. The HSM’s SPF marginally over-

predicted total crashes to yield a calibration factor of 0.97. Likewise, Xie et al. (2011) estimated 

KABCO crash frequency in Oregon using data from 2004 to 2006. The CMFs are also taken into 

consideration. The prediction analyses arrived at a calibration factor of 0.78 for rural divided 

multilane highways indicating that the national model over-predicts crashes in Oregon by 22%. 

In Alabama, Mehta and Lou (2013), expanded on earlier work by estimating the calibration factor 

as well as developing a local SPF. The authors employed records of KABCO crashes from the 

years 2006 to 2009. With the calibration factor, the HSM model was adapted to Alabama to yield 

a calibrated HSM version. Subsequently, the authors developed local SPFs with different 

functional forms. The predictions from the calibrated HSM were compared with predictions from 

the local SPF model using a validation dataset of 2000 segments. The comparison exercise 

included measures such as the mean absolute deviation (MAD), mean predicted bias (MPB), mean 

squared predicted error (MSPE), and Akaike’s information criterion (AIC).  The local SPF 

developed with additional parameters such as a dummy variable representing the year, the lane 

width, coefficient for segment length (restricted to 1 in the HSM SPF) and the posted speed limit 

outperformed the calibrated HSM SPF. 

The calibration of the HSM’s SPFs has been undertaken internationally as well. Cafiso et al. (2012) 

conducted a study in the Messina-Catania region in Italy using KAB crash data from 2005 to 2008. 

The authors computed calibration factors for every year independently while taking into account 

the CMFs. The calibration factors range from 1.14 to 1.43. The average calibration factor is 1.26 

indicating that the calibrated model under predicts crashes. The research team also developed a 

local SPF with the AADT, segment length, horizontal curvature and grades as variables. The 

predictions of the local model are compared by those of the calibrated HSM SPF in terms of the 

root mean square error. The model predictions are not to a large extent different as per the results. 

In another international study, using data from Riyadh, Saudi Arabia, Al Kaaf and Abdel-Aty 

(2014) calibrated HSM models of urban divided multilane roads for fatal and injury (FI) crash 

records using data from 2004 to 2009. The calibration factor was calculated to be 0.31 using the 

HSM’s SPFs and CMFs indicating substantial over-prediction of crashes. The authors also 

developed local SPFs with different variables. The local SPF with the log transformation of the 

AADT, segment length with a regression coefficient, driveway density and posted speed limit 

outperformed all other local models. 

Overall, there is a growing interest in exploring the issue of calibrating HSM SPFs for local 

conditions. However, the work undertaken so far is still preliminary. Most studies employ the 

default HSM SPFs with calibration. Not in all of the studies, discussed, the authors compared the 

calibrated HSM model to the local jurisdiction model. Moreover, there has been limited systematic 

analysis exploring the value of pooling data from multiple states to estimate SPFs. Only the HSM’s 

SPFs are developed from pooled data mainly to satisfy a sufficient sample size. Also, the studies 
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employ a simplistic calibration factor to customize the HSM’s SPFs to the study region. The 

current study addresses these limitations as follows. First, we examine the value of pooling data 

from multiple states (Florida, Ohio and California) in developing SPFs. Specifically, the 

specification of the SPF developed is augmented with state specific dummy variables in the count 

and over-dispersion components. Second, we develop a transfer index that evaluates the 

performance of the SPF developed for various jurisdictions. Finally, we propose and examine the 

advantage of a disaggregate level (segment) calibration factor on prediction. 

3 DATA PREPARATION 
Crash data are collected for divided rural multilane highway segments in Florida, Ohio and 

California. In Florida, the data are collected from the Florida DOT. Specifically, there are 1,320 

segments comprising 835.86 mi of which data are collected from the Roadway Characteristics 

Inventory. Data of crashes that occurred between 2009 and 2011 are collected from the Crash 

Analysis Reporting System. The data of Ohio is composed of crash records from 1,261 segments 

comprising 665.11 mi for the period 2009 to 2011. The California crash data are obtained from 

1,349 segments comprising 709.83 mi from 2009 to 2010. The Ohio and California data are 

collected from the national Highway Safety Information System (HSIS). In all three states, the 

minimum segment length from which crash data are collected is 0.1 mi in accordance with the 

HSM. The crash types and severities, classified for data processing, are KABCO, KABC, KAB, 

KA, single vehicle (SV) and multi-vehicle (MV) crashes. The descriptive statistics of the crash 

data of the three states are shown in Table 1. Also, each state’s crashes are normalized per hundred 

million vehicle miles travelled (VMT) per year to obtain the crash rates. 
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Table 1 States' Data Descriptive Statistics 

 
Number of Crashes Mean Standard Deviation 

Crash Rates (per Hundred 

Million VMT per Yr) 

Florida Ohio California Florida Ohio California Florida Ohio California Florida Ohio California 

Segment 

Length 

(mi) 

- - - 0.633 0.527 0.526 0.993 0.582 0.568 - - - 

AADT 

(vpd) 
- - - 25,710.482 9,896.954 19,018.744 12,001.344 5,600.405 14,370.401 - - - 

Lane 

Width (ft) 
- - - 11.845 11.733 10.088 0.489 0.484 4.426 - - - 

Shoulder 

Width (ft) 
- - - 4.225 6.452 7.681 2.277 2.504 2.377 - - - 

Median 

Width (ft) 
- - - 28.258 43.41 36.787 18.114 21.616 31.262 - - - 

KABCO 10,028 2,541 5,120 7.597 2.015 3.795 15.001 4.028 6.805 47.70 32.75 53.93 

KABC 4,815 799 1,997 3.648 0.634 1.48 6.486 1.507 2.734 22.91 10.3 21.03 

KAB 2,399 580 1,014 1.817 0.46 0.752 3.094 1.069 1.392 11.41 7.48 10.68 

KA 753 145 283 0.57 0.115 0.21 1.146 0.382 0.54 3.58 1.87 2.98 

SV 1,929 1,362 2,170 1.461 1.08 1.609 2.364 2.094 3.273 9.18 17.55 22.86 

MV 8,099 1,179 2,950 6.136 0.935 2.187 14.055 2.605 4.532 38.53 15.2 31.07 

Note: Number of segments in Florida, Ohio and California are 1,320, 1,261 and 1,349 respectively 
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As shown in Table 1, the standard deviations of the shoulders in all three states are similar. 

Therefore, the variability in shoulder widths in each state is comparable. The state of Florida has 

the narrowest average shoulder width, followed by Ohio’s followed by California’s. That is a 

factor which may inhibit SPF transferability among states. Also, the standard deviation of the 

median widths in each state is large, especially that of California, an indication that median widths 

vary considerably within states. The differences in median widths may also impede transferability 

of SPFs. When it comes to crash rates, Ohio experiences the least KABCO, KABC, KAB, KA and 

MV crashes per hundred million VMT per year. On the other hand, those of Florida and California 

are considerably higher. It should be noted that the crash rates of Florida and California are similar. 

That is specifically for KABCO, KABC, KAB and KA crashes. However, Florida experiences the 

least SV crashes per hundred million VMT per year followed by Ohio and California. 

The data prepared reflect the average conditions of the divided segments. That is, the segments do 

not necessarily satisfy any specified conditions. The HSM’s defined base conditions rural divided 

multilane highway segments are: 

 Lane width = 12 ft 

 Shoulder width = 8 ft 

 Median width = 30 ft 

 Paved shoulders 

 No street lighting 

 No automated speed enforcement 

The data are subset to reflect the base conditions such that the analysis is conducted for both 

average and base conditions. However, due to lack of samples, the base conditions are relaxed to 

include lanes 12 ft in width or wider, shoulders 8 ft in width or wider and medians of which widths 

are 30 ft or wider. These conditions are termed modified base conditions.   

4 RESEARCH METHODOLOGY 
The model development exercise includes developing SPFs for each state for KABCO, KABC, 

KAB, KA, SV and MV crashes. The model structure employed is the same as the model structure 

of the HSM’s SPFs. The model structure for crash frequencies per year is considered as follows: 

 

    yLAADTBAN
SPF

 lnlnexp                                                                                       (2) 

 

The over-dispersion parameter is parameterized as follows: 

  yLDC
k




lnexp

1
                                                                                                               (3) 

 

where AADT is the Average Annual Daily Traffic, L, is the length of the segment and y is the 

number of years used as an offset variable. The number of years’ variable reflects the fact that the 

SPF yields the predicted crash counts per year. Based on the model specification, a set of 4 

parameters (A, B, C, and D) are estimated. It should be noted that the parameter D is set to unity 

in the over-dispersion formula for the HSM’s SPFs of rural divided multilane highway segments. 
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Subsequently, data from each pair of two states are pooled to estimate state pairwise SPFs. The 

system for two states takes the following form: 

 

         yLAADTstateFstateEAADTBAN
SPF

 lnln22lnexp                             (4) 

    yLstateHDstateGC
k




ln22exp

1
                                                                   (5) 

 

The system estimates four additional parameters E, F, G and H which represent differences 

between the two states. It is critical to note that the number of years, y, plays a crucial role since it 

accounts for differences in crash years among states especially when data of multiple states are 

pooled. As previously mentioned, the Florida and Ohio available data are from the years 2009 to 

2011 while the availability of those of California are from 2009 to 2010. Three two-state model 

systems are estimated. Finally, a three-state pooled model is estimated. The model takes the 

following form. 

 

        

    















yLAADTstateJ

AADTstateFstateIstateEAADTBA
N

SPF

lnln3

ln232ln
exp                     (6) 

  

In the three-state model, a total of 12 parameters are estimated. Any state can be selected as the 

reference state and the other two state identifier variables can be employed in the equations 

described. The over-dispersion parameter for the three-state model takes the following form.  

 

    yLstateMstateHDstateKstateGC
k




ln3232exp

1
                    (7) 

 

 

In addition to the model parameters, MADs and MSPEs are calculated to assess the Goodness of 

Fit (GOF). The MAD and MSPE are dependent on the difference between the predicted and 

observed number of crashes, Nobs, per segment i. They are defined as follows. 

 

n

NN

MAD

n

i

obsSPF
ii







1                                                                                   (8) 

 

n

NN

MSPE

n

i

obsSPF
ii







1

2

                                                                       (9) 

 

The one-state, two-state and three state SPFs are developed for average conditions. For the 

modified base conditions, only one-state and two-state SPFs are developed. That is because 

Florida’s modified base conditions’ sample size is low relative to that of the other states. Therefore, 

Florida’s modified base conditions data cannot be pooled with those of the other two states since 

the results would be biased. 
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4.1 Transferability Assessment 

The transferability of the SPFs is assessed by applying the jurisdiction specific models, two-state 

models and three-state models to each state’s data for validation. Then a further step in the 

transferability assessment is the calculation of the transfer index, TI, which was used in previously 

discussed studies of Sikder et al. (2014) and Hadayeghi et al. (2006). The TI measure provides an 

indication of the performance of the transferred model for the jurisdiction of interest.  

The measure is calculated as follows. 

 
   

   
jreferencejjj

jreferencejij

ij

LLLL

LLLL
TI









                                                          (10) 

The term LLj(βi) represents the log-likelihood of the SPF, developed from data, i, that is being 

applied to data of a specific state, j. The term LLj(βj) is the log-likelihood of state j’s SPF and the 

term LLj(βreference j) is log-likelihood of state j’s intercept only SPF. The TI measure compares the 

performance of the model of interest with respect to the performance of an intercept only model. 

The higher the TI value the better is the performance relative to the intercept model. The closer TI 

is to unity, the SPF, developed from data i, is more transferable to state j. A negative TI indicates 

that state j’s intercept only model performs better than the SPF of state i applied to state j.   

4.2 Empirical Bayes Measure  

A Modified Empirical Bayes (MEB) measure is proposed as an alternative to the current 

calibration factor method of the HSM. That is to adjust crash frequencies that are being predicted 

for a future year. The current HSM calibration factor method has one major limitation. The 

calibration factor is a single value that applies to the entire study region over-simplifying the 

calibration procedure. 

To develop a more disaggregate approach, we propose a modified version of the Empirical Bayes 

method, provided in the HSM, to calibrate the SPF for improving transferability. The original 

Empirical Bayes (EB) Method is used for estimating counts of crashes that would have happened 

at sites marked for treatment if the treatment is not implemented in before / after studies. Its 

advantage is that it takes into account the regression to the mean bias. However, in this study, the 

method is different. Our approach is similar to that applied by Elvik (2008). Yet, instead of 

adjusting crash frequencies predicted by the SPF for a future year in the same jurisdiction, the 

MEB method is applied to facilitate transferability of SPFs among different jurisdictions. The 

approach employs a weighted average of observed crashes in the region (Nobs) and predicted 

crashes from the SPF to arrive at the expected crash frequency, Nexp, as shown. 

 
iSPFiiobsi

NwNwN  1
i exp

                                                          (11) 

The subscripts i represent the segment number. Also the weight, wi, is defined as follows. 
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SPFi

i 

Nk
w




1

1
                                                                             (12) 

The over-dispersion parameter, k, is that of the SPF being applied to segment i of the application 

data. While the approach is elegant, a big question to answer is how we will obtain segment level 

observed crash data (Nobs). In fact, if such data were available, the analysts could estimate a 

localized SPF and use it for prediction. Hence in cases where Nobs is unavailable, we believe using 

past observed data for the study region will be very useful. That is, the proposed measure allows 

for the past observed crash counts to affect the predicted counts. At the same time, we don’t want 

the measure to be purely based on past history. Hence, we proposed a weighted measure of past 

observed counts for the region and predicted counts from a transferred model. The weight 

parameter is affected by the over-dispersion parameter. Thus, if the transferred SPF has a lower 

dispersion value, the weight for the transferred model is higher. Hence, as the confidence in the 

transferred model increases, the weight from past observed crashes is reduced. The MEB method 

proposed here would enhance the transferability of the model by allowing for segment specific 

calibration. 

5 EMPIRICAL ANALYSIS 

5.1 Model Estimation Results 

In this section, we present the results of the pooled models. Specifically, the average conditions 

results presented are: (1) Florida and Ohio joint SPFs, (2) Florida and California joint SPFs, (3) 

Ohio and California joint SPFs and (4) Florida, Ohio and California joint SPFs. The modified base 

conditions results of the Ohio and California joint SPFs are presented as well. The five sets of 

SPFs are developed for KABCO, KABC, KAB, KA, SV and MV cases. The model estimation 

process involved a total of 66 models including the single state models. The estimation process 

was guided by earlier research, intuitive parameter interpretation and statistical significance (at the 

95% level). While the discussion of the results of all 66 models in detail is beyond the scope of the 

paper, we focus on the most important findings.  

 

5.1.1 Average Conditions Florida and Ohio Joint Safety Performance Functions  

The results for the Florida and Ohio joint SPFs are presented in Table 2. The dummy indicator for 

Ohio region has a statistically significant and negative coefficient indicating that all else equal, 

Ohio region has a lower crash rate (as indicated in the descriptive analysis) for all crash 

classifications. The influence of Ohio specific AADT has a statistically significant impact only on 

SV crashes. That is, for all other crash types, AADT does not have any difference in the observable 

influences in Florida and Ohio. The over-dispersion parameters specific to Ohio are significant 

indicating differences in the two states. 
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Table 2 Average Conditions Florida and Ohio Joint Safety Performance Functions  

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Intercept 
-8.773 

(<.0001) 

-9.21 

(<.0001) 

-8.4354 

(<.0001) 

-6.931 

(<.0001) 

-3.323 

(<.0001) 

-12.4247 

(<.0001) 

Ln(AADT) 
1.0366 

(<.0001) 

0.9964 

(<.0001) 

0.8458 

(<.0001) 

0.5761 

(<.0001) 

0.3142 

(<.0001) 

1.3741 

(<.0001) 

OH 
-0.6091 

(<.0001) 

-0.9475 

(<.0001) 

-0.6256 

(<.0001) 

-1.000 

(<.0001) 

-3.9077 

(<.0001) 

-0.9284 

(<.0001) 

OH× 

Ln(AADT) 
- - - - 

0.4271 

(<.0001) 
- 

C 
0.6793 

(<.0001) 

0.7171 

(<.0001) 

0.9804 

(<.0001) 

0.8405 

(0.0151) 

0.4376 

(0.0002) 

0.3652 

(<.0001) 

G 
-0.381 

(0.0018) 

-0.5039 

(0.0434) 

-0.917 

(0.0043) 

-0.9145 

(0.3546) 

-0.1285 

(0.519) 

-0.7125 

(<.0001) 

D 
-0.1958 

(0.0004) 

-0.04821 

(0.4897) 

-0.03411 

(0.7566) 

0.2049 

(0.3483) 

0.4729 

(<.0001) 

-0.2278 

(<.0001) 

H 
0.7809 

(<.0001) 

0.3019 

(0.1324) 

0.392 

(0.1298) 

1.6752 

(0.0961) 

0.2936 

(0.1487) 

0.7553 

(<.0001) 

Goodness of Fit Measures 

-2LL 11,345.0 7,946.5 6,162.3 3,127.5 6,949.4 9,562.7 

MAD 3.894 1.692 0.952 0.383 1.004 3.386 

MSPE 102.963 15.316 3.224 0.460 2.455 96.157 

 -  : statistically insignificant variables at alpha = 0.05 removed from the SPF 

 

5.1.2 Average Conditions Florida and California Joint Safety Performance Functions 

The results of the Florida and California joint SPFs are presented in Table 3. The California state 

indicator is significant and negative in all models except that of KABCO. The AADT interaction 

variable is significant only for the SV crashes (as was the case in the Florida-Ohio model). The 

state indicators in the over-dispersion are significant in all crash classifications.  
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Table 3 Average Conditions Florida and California Joint Safety Performance Functions 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Intercept 
-9.0931 

(<.0001) 

-9.3789 

(<.0001) 

-8.392 

(<.0001) 

-7.1268 

(<.0001) 

-3.323 

(<.0001) 

-11.8394 

(<.0001) 

Ln(AADT) 
1.0658 

(<.0001) 

1.013 

(<.0001) 

0.8415 

(<.0001) 

0.5955 

(<.0001) 

0.3142 

(<.0001) 

1.3166 

(<.0001) 

CA - 
-0.1951 

(<.0001) 

-0.1673 

(0.0019) 

-0.257 

(0.0017) 

-4.9467 

(<.0001) 

-0.3041 

(<.0001) 

CA×Ln(AADT) - - - - 
0.5758 

(<.0001) 
- 

C 
0.6783 

(<.0001) 

0.7183 

(<.0001) 

0.9801 

(<.0001) 

0.8451 

(0.0149) 

0.4376 

(0.0002) 

0.3641 

(<.0001) 

G 
-0.4231 

(<.0001) 

-0.5048 

(<.0001) 

-0.6706 

(0.0012) 

-0.5999 

(0.2326) 

-0.04098 

(0.7776) 

-0.7927 

(<.0001) 

D 
-0.1727 

(0.0011) 

-0.04601 

(0.5091) 

-0.03469 

(0.7526) 

0.2015 

(0.3564) 

0.4729 

(<.0001) 

-0.2372 

(<.0001) 

H 
0.6434 

(<.0001) 

0.751 

(<.0001) 

0.9613 

(<.0001) 

0.2812 

(0.6184) 

-0.04686 

(0.7586) 

0.7256 

(<.0001) 

Goodness of Fit Measures 

-2LL 13,118.0 9,502.0 6,959.3 3,681.6 7,838.0 11,455.0 

MAD 4.472 1.951 1.03 0.439 1.178 3.94 

MSPE 109.273 16.678 3.385 0.517 4.756 98.706 

 
-  : statistically insignificant variables at alpha = 0.05 removed from the 

SPF 

 

5.1.3 Average Conditions Ohio and California Joint Safety Performance Functions 

The results of the Ohio and California joint SPFs are presented in Table 4. In this model, the 

dummy variable for Ohio is significant in all crash types. At the same time, the AADT interaction 

with the Ohio variable is statistically insignificant across all crash severities and types. In these 

models, also, the interaction variables in the over-dispersion component are significant and 

account for unobserved differences across the two states. 
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Table 4 Average Conditions Ohio and California Joint Safety Performance Functions 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Intercept 
-9.2195 

(<.0001) 

-9.3468 

(<.0001) 

-8.5024 

(<.0001) 

-8.091 

(<.0001) 

-7.8223 

(<.0001) 

-12.3026 

(<.0001) 

Ln(AADT) 
1.0751 

(<.0001) 

0.9898 

(<.0001) 

0.8357 

(<.0001) 

0.6675 

(<.0001) 

0.8444 

(<.0001) 

1.3329 

(<.0001) 

OH 
-0.5197 

(<.0001) 

-0.7498 

(<.0001) 

-0.465 

(<.0001) 

-0.6908 

(<.0001) 

-0.3637 

(<.0001) 

-0.6663 

(<.0001) 

OH×Ln(AADT) - - - - - - 

C 
0.2666 

(<.0001) 

0.2133 

(0.0168) 

0.31 

(0.0331) 

0.2422 

(0.5054) 

0.3913 

(<.0001) 

-0.4281 

(<.0001) 

G 
0.03701 

(0.7682) 

-0.00157 

(0.9951) 

-0.2491 

(0.4354) 

-0.2813 

(0.7821) 

-0.08927 

(0.6277) 

0.072 

(0.6279) 

D 
0.502 

(<.0001) 

0.7086 

(<.0001) 

0.9285 

(<.0001) 

0.4713 

(0.3582) 

0.437 

(<.0001) 

0.4904 

(<.0001) 

H 
0.07615 

(0.5854) 

-0.4535 

(0.0363) 

-0.5685 

(0.0513) 

1.4232 

(0.206) 

0.3158 

(0.1136) 

0.04359 

(0.7909) 

Goodness of Fit Measures 

-2LL 9,672.5 6,122.9 4,677.3 2,154.6 6,893.2 7,276.9 

MAD 2.128 0.958 0.625 0.24 1.062 1.549 

MSPE 17.978 3.155 1.011 0.188 4.346 11.228 

 
-  : statistically insignificant variables at alpha = 0.05 removed from the           

SPF 

 

5.1.4 Average Conditions Florida, Ohio and California Joint Safety Performance Functions 

The results of the Florida, Ohio and California joint SPFs are presented in Table 5. The number of 

parameters estimated in the three state model increases because of two state indicator variables 

being interacted with the intercept, the transformed AADT variable in crash propensity and over-

dispersion components. The model results indicate that a majority of the intercept indicator state 

dummies are significant (as seen in the two state models). In terms of the AADT and state 

interaction, only SV crash types have significant differences (as observed in two state models). 

The interaction variables in the over-dispersion component are all statistically significant 

highlighting the variation in unobserved factors across the three states. 
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Table 5 Average Conditions Florida, Ohio and California Joint Safety Performance 

Functions 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Intercept 
-9.0923 

(<.0001) 

-9.2633 

(<.0001) 

-8.3885 

(<.0001) 

-7.2242 

(<.0001) 

-3.323 

(<.0001) 

-12.0694 

(<.0001) 

Ln(AADT) 
1.0657 

(<.0001) 

1.0016 

(<.0001) 

0.8412 

(<.0001) 
0.6052 

(<.0001) 

0.3142 

(<.0001) 

1.3392 

(<.0001) 

OH 
-0.5599 

(<.0001) 

-0.943 

(<.0001) 

-0.6295 

(<.0001) 

-0.9777 

(<.0001) 

-3.9077 

(<.0001) 

-0.9586 

(<.0001) 

CA - 
-0.1991 

(<.0001) 

-0.1674 

(0.0018) 

-0.2546 

(0.0018) 

-4.9467 

(<.0001) 

-0.2954 

(<.0001) 

OH×Ln(AADT) - - - - 
0.4271 

(<.0001) 
- 

CA×Ln(AADT) - - - - 
0.5758 

(<.0001) 
- 

C 
0.6783 

(<.0001) 

0.7175 

(<.0001) 

0.9801 

(<.0001) 

0.8474 

(0.0148) 

0.4376 

(0.0002) 

-0.3547 

(0.0072) 

G 
-0.3758 

(0.0021) 

-0.5032 

(0.0438) 

-0.9179 

(0.0042) 

-0.9091 

(0.3615) 

-0.1285 

(0.519) 

0.7194 

(<.0001) 

K 
-0.4231 

(<.0001) 

-0.504 

(<.0001) 

-0.6706 

(0.0012) 

-0.6019 

(0.2315) 

-0.04098 

(0.7776) 

-0.07328 

(0.6216) 

D 
-0.1727 

(0.0011) 

-0.04751 

(0.4953) 

-0.03473 

(0.7522) 

0.1996 

(0.361) 

0.4729 

(<.0001) 

0.533 

(0.0002) 

H 
0.7527 

(<.0001) 

0.3001 

(0.1342) 

0.3936 

(0.1279) 

1.6858 

(0.0962) 

0.2936 

(0.1487) 

-0.7666 

(<.0001) 

M 
0.6434 

(<.0001) 

0.7543 

(<.0001) 

0.9614 

(<.0001) 

0.2822 

(0.6168) 

-0.04686 

(0.7585) 

-0.04186 

(0.7988) 

Goodness of Fit Measures 

-2LL 17,069.0 11,786.0 8,899.4 4,482.3 10,839.0 14,148.0 

MAD 3.492 1.536 0.87 0.355 1.082 2.966 

MSPE 76.401 11.735 2.544 3.846 3.969 57.264 

 

 
-  : statistically insignificant variables at alpha = 0.05 removed from the SPF 

 

5.1.5 Modified Base Conditions Ohio and California Joint Safety Performance Functions 

The Ohio and California joint SPF results are shown in Table 6. The interaction term between the 

state dummy indicator and the transformed AADT variable is statistically insignificant in the SPFs 

of all crash classifications. Therefore, the impact of the AADT on crash frequencies is the same in 

both states’ rural divided segments, a result consistent with the Ohio and California average 

conditions SPFs. Also, the state dummy variable representing California is significant and positive 
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for all crash types and severity levels. That is, California experiences more crashes than Ohio for 

the same AADT. That is also a consistent result with the average conditions SPFs estimated from 

the pooled Ohio and California data.  

 

Table 6: Modified Base Conditions Ohio and California Joint Safety Performance 

Functions 

Crash Type or 

Severity 
KABCO KABC KAB KA SV MV 

Parameters Parameter Estimates and P-Values 

Constant 
-10.4375 

(<.0001) 

-11.0919 

(<.0001) 

-10.6220 

(<.0001) 

-9.8039 

(<.0001) 

-8.3530 

(<.0001) 

-14.5149 

(<.0001) 

Ln(AADT) 
1.1371 

(<.0001) 

1.0723 

(<.0001) 

0.9904 

(<.0001) 

0.7557 

(<.0001) 

0.8613 

(<.0001) 

1.4704 

(<.0001) 

CA 
0.3096 

(<.0001) 

0.6451 

(<.0001) 

0.3416 

(0.0046) 

0.6377 

(0.0011) 

0.1922 

(0.0151) 

0.4072 

(0.0002) 

CA×Ln(AADT) - - - - - - 

C 
0.5442 

(0.0073) 

0.1215 

(0.7788) 

0.05130 

(0.9225) 

9.7495 

(0.9715) 

0.2823 

(0.2693) 

-0.1336 

(0.5964) 

G 
-0.05102 

(0.8236) 

0.2822 

(0.5422) 

0.4394 

(0.4653) 

-9.7658 

(0.9715) 

0.8175 

(0.0135) 

-0.2578 

(0.3501) 

D 
0.6473 

(0.0027) 

0.5680 

(0.1079) 

0.4024 

(0.3237) 

1.0930 

(0.9937) 

0.8964 

(0.0008) 

0.7255 

(0.0094) 

H 
-0.06195 

(0.8018) 

0.09297 

(0.8177) 

0.6697 

(0.1977) 

0.5744 

(0.9967) 

-0.4491 

(0.2051) 

-0.07034 

(0.8177) 

Goodness of Fit Measures 

-2LL 3672.7 2248.8 1732.3 815.7 2743.1 2619.9 

MAD 1.901 0.868 0.588 0.235 1.031 1.347 

MSPE 13.149 2.161 0.816 0.177 2.581 9.794 

 
-  : statistically insignificant variables at alpha = 0.05 removed from 

the SPF 

 

5.1.6 Remarks on the Joint Safety Performance Functions 

The estimation of the joint SPFs (two states and three states) clearly highlights the differences in 

observed and unobserved factors across the three states. It appears that once we account for 

differences in the over-dispersion component, the differences in crash frequencies across states 

can be accommodated through simple state indicator variables across all crashes except for SV 

crashes which also require an AADT and state interaction term. The results highlight how critical 

it is to consider the interaction variables in the over-dispersion, a commonly ignored aspect in SPF 

development. The over-dispersion parameters account for state specific characteristics such as 

shoulder width, lane width, driving behavior and other missing variables that are likely to affect 

the crash frequency in the state. 
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5.2 Transferability Evaluation 

We can employ the developed SPFs to evaluate their transferabilities to different states. The 

approach employed to compute the transfer index in our study is as follows. We choose a state to 

which we want to transfer the models. For this state, we employ several SPFs from all the models 

(single state, two state and three state) estimated and compute the transfer indices. The process is 

repeated for all three states and for all crash classifications. 

 

5.2.1 Average Conditions Transfer Index Comparisons 

The transfer indices computed for all states and crash types/severities for average conditions are 

presented in Table 7. The reader would note that transferring the Florida model to Florida region 

will yield the best TI value of 1. The same holds for any state. From the single state model 

transferability, we observe that in general the transferability is poor (except for Florida to 

California). The transfer indices improve substantially when at least two states are considered. In 

our empirical case, when two state models are considered only the Florida and California SPF for 

Ohio has a negative value. The result has significant implications. From our transfer index 

calculations, we can see that Florida and Ohio regions are substantially different and have very 

poor model transferability. However, when we augment Ohio data with California’s, the joint SPFs 

have an improved transferability. Hence, in cases where local jurisdiction data are unavailable, we 

recommend using data from at least two jurisdictions for model analysis to avoid considering 

completely unrepresentative SPFs for model prediction.  

When a three-state SPF is considered, the transferability, as can be expected, is very close to 1. 

With increase in the number of states, the variability available in the data increases and hence, the 

models are likely to be more transferable. Across crash type and severity types, we observe similar 

trends. That is, as the number of states increase, transferability improves. Of course, it would have 

been beneficial to conduct an extensive assessment of the performance of the three-state model 

when applied to data of a fourth unused state. An in-depth assessment is not performed for brevity. 

However, the joint Florida, Ohio and California total crash SPF for average conditions is applied 

to crash data from Washington State. The resulting transfer index for the application is 0.344 

indicating that the joint SPF is to a certain degree transferable to Washington. This emphasizes the 

improvement in transferability of SPFs when pooling data from more than one or even two states. 

In addition, log-likelihood ratio tests are conducted to check the validity of the transfer indices. 

The test statistic is computed as twice the difference between the transferred SPF’s prediction log-

likelihood and that of the jurisdiction specific constants only SPF. The level of significance is that 

of the 95th percentile while the degrees of freedom are the number of additional parameters in the 

transferred SPF. In all average conditions SPFs, the transfer indices are statistically significant 

indicating that they are valid.  
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Table 7 Average Conditions Transfer Indices  

Crash Type or 

Severity 
SPF 

Application Data 

Florida Ohio California 

KABCO 

Florida 1 -0.273 0.716 

Ohio -0.367 1 0.429 

California 0.453 0.172 1 

Florida and Ohio 1 0.999 0.72 

Florida and California 0.996 -0.033 0.998 

Ohio and California 0.454 1 1 

Florida, Ohio and California 0.995 1 0.998 

KABC 

Florida 1 -3.2 0.738 

Ohio -2.718 1 -0.47 

California 0.518 -1.85 1 

Florida and Ohio 0.999 0.996 0.732 

Florida and California 1 -3.24 1 

Ohio and California 0.508 0.997 1 

Florida, Ohio and California 1 0.995 1 

KAB 

Florida 1 -1.573 0.728 

Ohio -0.982 1 0.328 

California 0.453 -0.642 1 

Florida and Ohio 1 1 0.728 

Florida and California 1 -1.62 1 

Ohio and California 0.453 1 1 

Florida, Ohio and California 1 1 1 

KA 

Florida 1 -9.671 0.581 

Ohio -7.464 1 -1 

California 0.352 -3.418 1 

Florida and Ohio 0.998 0.978 0.603 

Florida and California 0.994 -8.913 0.99 

Ohio and California 0.356 1.001 1 

Florida, Ohio and California 0.991 0.989 0.993 

SV 

Florida 1 0.634 -0.864 

Ohio -6.371 1 0.512 

California -20.822 0.187 1 

Florida and Ohio 1 1 -0.865 

Florida and California 1 0.634 1 

Ohio and California -19.985 0.981 0.997 

Florida, Ohio and California 1 1 1 

MV 

Florida 1 -0.83 0.208 

Ohio -0.818 1 0.361 

California 0.25 0.186 1 

Florida and Ohio 0.999 0.998 0.212 

Florida and California 0.999 -0.937 0.999 

Ohio and California 0.265 0.995 0.998 

Florida, Ohio and California 1 0.996 0.998 
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5.2.2 Modified Base Conditions Transfer Index Comparisons 

The transfer indices are also calculated for modified base conditions. The log-likelihood ratio tests 

are conducted as well. Their results are presented in Table 8. From what may be interpreted from 

the table, the transfer indices of Florida and California’s KABC SPFs are mutually transferable. 

The transfer indices are greater than their counterparts in the average conditions case. That is 

because the segments in both states satisfy the modified base conditions. However, according to 

the results of the log-likelihood ratio test, the index resulting from California’s KAB SPF applied 

to Florida, 0.587, has a chi-squared value of 2.345, 1 degree of freedom and a p-value of 0.125. 

Therefore, California’s KAB SPF is not superior to the constants only KAB SPF of Florida with 

95% confidence. Also, Florida and Ohio’s SPFs are not mutually transferable as is the case of the 

average conditions. In addition, it should be noted that for single-vehicle crashes, the intercept SPF 

of Florida did not converge thereby deterring transfer indices of the single vehicle crashes’ SPFs 

of the other states to be calculated. Furthermore, the Ohio and California joint SPFs may not apply 

to the state of Florida. These results contradict those of the average conditions perhaps due to the 

smaller sample of Florida’s modified base conditions segments.  
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Table 8: Modified Base Conditions Transfer Indices 

Crash Type or 

Severity 
SPF 

Application Data 

Florida Ohio California 

KABCO 

Florida 1 -1.478 -0.076 

Ohio -0.948 1 0.838 

California -1.229 0.505 1 

Ohio and California -0.485 0.990 0.999 

KABC 

Florida 1 -5.705 0.726 

Ohio -1.009 1 0.339 

California 0.649 -1.418 1 

Ohio and California -2.405 0.968 0.999 

KAB 

Florida 1 -3.803 0.654 

Ohio -0.359 1 0.683 

California 0.587 -0.112 1 

Ohio and California -1.825 0.928 0.996 

KA 

Florida 1 -20.978 -1.803 

Ohio -38.673 1 -0.676 

California -11.185 -2.426 1 

Ohio and California -59.267 0.914 0.994 

SV 

Florida NA -1.290 -1.544 

Ohio NA 1 0.710 

California NA 0.451 1 

Ohio and California NA 0.978 0.998 

MV 

Florida 1 -2.481 -0.094 

Ohio -0.441 1 0.779 

California -0.843 0.508 1 

Ohio and California -0.436 0.990 0.999 

 
NA : constants only model of jurisdiction specific data failed to 

converge 

 

5.2.3 Sample Results of the Modified Empirical Bayes Measure 

The second measure proposed in our study is the modified Empirical Bayes correction to improve 

the model transferability. The MEB correction allows for segment specific calibration factors and 

is based on segment specific attributes. The applicability of the proposed approach is considered 

in comparison to the HSM calibration method. The comparison is illustrated by transferring 

average conditions single state models of total crashes to other states. So, every single-state model 

is transferred to the other two states providing 6 model prediction comparisons. The results of 

MAD and MSPE computed for three models are computed: (1) transferred model (no correction), 

(2) transferred model with HSM calibration factor and (3) transferred model with modified EB 

correction. It should be noted that in the majority of the cases where the modified EB correction 

is made, the expected crash counts are not overly dependent on the observed crash frequencies but 

rather on both the predicted and observed crash frequencies. The results are presented in Table 9. 

The following observations can be made based on the results. First, the HSM calibration factor 
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does not always improve model prediction (for example see Ohio to Florida). Second, the modified 

EB correction measure improves the transferred model’s prediction substantially. Hence, the 

proposed measure is a useful contribution to consider when adopting SPFs from other jurisdictions 

for locations with no SPFs. 

 

Table 9 Average Conditions Comparison of Predicted, Calibrated and Expected KABCO 

Crash Frequencies 

Goodness of 

Fit Measures 

Based on 

Predicted Crash 

Frequency 

Based on Predicted Crash 

Frequency Multiplied by the 

HSM’s Calibration Factor 

Based on Predicted 

Crash Frequency with 

EB Correction 

 Application of Florida’s KABCO SPF to Ohio 

MAD 2.329 1.423 0.676 

MSPE 15.194 6.883 0.663 

 Application of Florida’s KABCO SPF to California 

MAD 2.906 2.679 0.890 

MSPE 29.550 26.949 2.187 

 Application of Ohio’s KABCO SPF to Florida 

MAD 4.609 5.149 1.075 

MSPE 161.521 163.573 4.184 

 Application of Ohio’s KABCO SPF to California 

MAD 2.471 2.676 0.848 

MSPE 28.418 27.076 2.233 

 Application of California’s KABCO SPF to Florida 

MAD 5.977 5.142 0.820 

MSPE 186.324 163.869 1.669 

 Application of California’s KABCO SPF to Ohio 

MAD 2.088 1.423 0.629 

MSPE 12.386 6.816 0.649 

 

6 CONCLUSIONS 
Safety Performance Functions (SPF) form a crucial part of improving traffic safety by allowing us 

to predict crash frequencies and identify hot spots when used in conjunction with the HSM’s 

Empirical Bayes Method. SPFs are employed to predict the number of crashes of any type 

(vehicular, pedestrian or bicyclist) or severity level (fatal (K), incapacitating injury (A), non-

incapacitating injury (B), possible injury (C) and property damage only (O)). The Highway Safety 

Manual employs several NB based SPFs for different types of roadway segments. These default 

SPFs are employed for local jurisdictions in the absence of local SPFs. To customize the SPF for 

the study region, the SPF is calibrated by using an aggregate correction measure based on the ratio 

of total observed crashes to total predicted crashes. The approach has been employed recently in 

traffic safety literature. However, there has been little research exploring the validity of such model 

transferability approach. 
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The current study contributes to growing literature on SPF transferability by considering a detailed 

and rigorous assessment of SPF transferability across multiple regions. Specifically, we consider 

transferability of jurisdiction specific SPFs of Florida (FL), Ohio (OH) and California (CA) and 

compare their predictive performances across the three states. Towards this end, we estimate HSM 

based NB models (for KABCO, KABC, KAB, KA, SV and MV crashes) separately for three states, 

by pooling data from all pairs of states and by pooling the data of all three states. The study effort 

has two main objectives. First, we explore the influence of pooling data from multiple states for 

SPF development on the transferability of the pooled SPFs relative to single state data based SPFs. 

The comparison exercise is undertaken using the Transfer Index measure that has been employed 

before in transportation. The comparison clearly highlighted the improvement in Transfer Indices 

for two-state and three-state models. Among the states, Florida and California’s SPFs are mutually 

more transferable relative to the Ohio SPFs. It is also critical to note that the transferability of SPFs 

did not improve for every state under the modified base conditions, relative to the average 

conditions, possibly due to lack of samples especially in Florida. Further, we propose a more 

disaggregate calibration measure that customizes SPFs from elsewhere for the study region 

without local SPFs. The proposed measure is a modified version of the Empirical Bayes method 

and is tested in comparison with the HSM suggested calibration factor. The results clearly illustrate 

the applicability of the proposed measure and also confirm that the disaggregate measure performs 

better than the aggregate HSM calibration factor method.  

As interpreted by the transferability assessment results, Ohio’s crash patterns are different from 

both Florida’s and California’s. Even though Florida represents the southeast while California 

represents the west with different weather trends and topography, crash patterns might be similar. 

That is possibly because of similarities in demographics, e.g., tourism is common in both states. 

Also, California’s roads located in mountainous (usually two lane roads) areas are not included in 

the data. Thus, Florida and California’s data do not include information on segments that 

experience snow. On the other hand, Ohio experiences snow during Winter. Also, tourism is not 

as active in Ohio as in Florida and California. In addition, in Summer and Fall, the rainfall intensity 

in Florida surges. Furthermore, it should be noted that the crash reporting thresholds, measured by 

property damage cost, vary among the three states. The thresholds mainly affect the count of 

property damage only crashes reported. Florida, Ohio and California’s reporting thresholds are 

$500 according to the traffic regulations section of the Florida Statutes, $400 according to the Ohio 

Bureau of Motor Vehicles and $750 (Xie et al., 2011), respectively. However, Ohio the reporting 

threshold of Ohio changed to $1,000 of property damage in 2011 according to the HSIS description 

of the Ohio crash records.   

The study is not without limitations. The NB model based SPFs employed in our research are quite 

simplistic and do not consider variables such as lane width, shoulder width, grades, presence of 

horizontal curves and speed limits. Although, it was difficult in our study to add such factors as 

they were not consistently available for all the states used in this study, adding such information 

will enhance the SPFs developed and more critically possibly enhance transferability. There is also 

growing evidence that recommends considering socio-demographic information in SPF 

development (Lee et al., 2014). In addition, it might be useful to examine the variability in the 

transfer index with different samples. Of course, this would necessitate an increased number of 



23 

 

data samples for each state. Furthermore, it would be useful to extend the work undertaken for 

rural divided multilane highways to other types of roadways.  
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