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ABSTRACT 

Speeding is one of the major significant causes of high crash risk and the associated injury 

severity outcomes. To combat such significant safety concerns, a speed limit enforcement 

system has been adopted widely around the world. This study aims to present an econometric 

approach that estimates the casual effect of speed enforcement on safety while addressing the 

endogeneity issue by employing an instrumental variable approach within a maximum 

simulated likelihood framework. In our study, safety enforcement is represented as the number 

of speeding tickets issued from the speed camera systems, while safety profile is presented as 

two dimensions of interest, including total crash risk and crashes by injury severity levels. The 

proposed econometric model takes the form of a correlated panel random parameters model 

with speed enforcement endogeneity. In estimating the joint panel model, speed enforcement 

and crash severity components are modeled by employing Random Parameters Ordered Logit 

Fractional Split technique, while crash risk component is modeled by employing Random 

Parameters Negative Binomial regression technique. In the current study context, the 

‘operational duration of speed camera’ serves as the instrumental variable for controlling the 

endogeneity between speed enforcement and safety. Further, the analysis is augmented by a 

detailed policy scenario analysis. The empirical analysis is demonstrated by employing 

roadway segment-level crash data and speeding tickets data from Queensland, Australia, for 

the years 2010 through 2013. From the policy analysis, it is found that a stricter speed 

enforcement for serious level of speeding offenses is likely to have greater safety benefits in 

reducing crash severity levels. Moreover, a targeted increase in operation duration along with 

stricter citations for major speeding is likely to have significant safety gain. The outcome of 

the study will allow the decision-makers to identify a robust resource allocation and speed 

camera deployment plan.  

 

Keywords: Speeding; Speed Camera; Crash risk; Crash severity; Endogeneity; Policy 

analysis; Scenario development  
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1 INTRODUCTION 

Speeding – often defined as driving a vehicle with speed over the posted speed limit – is one 

of the significant causes of high crash risk and the associated injury severity outcomes. 

Globally, speed contributes towards 30% of fatal crashes in high-income countries, while the 

contribution is more than 50% towards fatal crashes in low-and-middle-income countries 

(WHO, 2004). Despite these unfortunate events, there is evidence that drivers still perceive 

speeding to be socially acceptable, and, hence, are likely to engage in speeding behaviour 

occasionally (Fleiter et al., 2010). To combat such significant safety concerns, stricter speed 

limit enforcement systems at the roadway network level have been adopted widely around the 

world. Such systems include speed camera enforcement (fixed, mobile, covert, point-to-point), 

automated average speed enforcement, and seamless speed enforcement systems. There is a 

growing body of existing safety studies focusing on evaluating the effectiveness of such 

roadway segment level speed enforcement measures on safety performance (Soole et al. 2013; 

Thomas et al., 2008; Zhou et al., 2020).  

The speed enforcement systems are found to have an overall positive effect on reducing 

speeding behaviour, crash risk and the occurrence of severe crashes (Tay, 2009; Ahmed et al., 

2016; Wali et al., 2018; Pantangi et al., 2019; Matsuo et al., 2020; Pineda-Jaramillo et al., 

2022). Several studies reported a significant influence of traffic fines on speeding violations 

(Walter et al., 2011). The positive effects of speed cameras in improving safety are evident 

from several earlier studies (Jones et al., 2008; Carnis and Blais, 2013; Izadpanah et al., 2015). 

Other studies found the speed camera enforcement to be effective only within the vicinity of 

enforcement locations (De Pauw et al., 2014). Li et al. (2020) found that the safety effects of 

speed cameras are likely to experience a sharp decrease during the medium periods after 

implementation but recover the trend in safety gain slightly during the late period. Most 

recently, studies also highlighted the positive influence of the average speed enforcement 

system on safety (Soole et al., 2013)1.  

Evaluation of speed enforcement programs is of utmost importance for monitoring the 

program, understanding the effectiveness and future budget allocation decisions. We argue that 

the impact of speed enforcement in a roadway section would reflect on the safety profile over 

time, but the impacts are likely to be different across different roadway locations and are likely 

to vary across different time periods. Moreover, the speed selection behaviour of drivers is 

likely to be different by different roadway features. Earlier studies found that driving speeds 

are likely to vary across roadway sections with posted speed limits, horizontal curvature, heavy 

vehicle proportion, traffic volume and number of lanes (Afghari et al., 2020; Shankar and 

Maaring, 1998; Kong et al., 2020; Eluru et al., 2013; Bhowmik et al., 20192). Therefore, it is 

of utmost importance to quantify the relative magnitude of the impact of speed enforcement on 

safety while controlling for other exogenous variables (such as traffic exposure, roadway 

geometry, and situational attributes). However, studies examining the causal effect of speed 

enforcement on safety are far and few between.  

In establishing the causal relationship between speed enforcement and safety outcomes 

based on empirical analysis, it is important to realize that speed enforcement measures are 

generally implemented at specific locations of the roadway rather than the entire roadway 

network since these measures are associated with significant economic investments. Therefore, 

if the analysis of a causal relationship is based on the sample of roadway with the speed 

enforcement system only, the estimates are likely to be biased if the sampling technique suffers 

from a self-selection issue. Moreover, the location of speed enforcement on a roadway network 

 
1 Reviewing all existing studies focusing on the evaluation of different speed enforcement measures are beyond 

the scope of this study.  
2 See Bhowmik et al. (2019) for a detailed review of these studies. 
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is generally motivated by its association with higher speeding-related crash records resulting 

in reverse causality. Thus, it is evident that endogeneity is an inherent issue in establishing the 

causal relationship between speed enforcement and safety. The current research addresses these 

gaps and contributes toward existing safety literature by presenting an econometric approach 

that estimates the causal effect of speed enforcement on safety while also addressing the 

endogeneity issue of speed enforcement level in the safety components. Guevara (2015) 

presented a detailed discussion of five different methods to correct for endogeneity bias in 

discrete choice models. These approaches are – use of proxys; two steps control-function 

method; simultaneous estimation of the control-function method via maximum-likelihood; 

multiple indicator solution; and integration of latent-variables. Among these approaches, 

simultaneous estimation of the control function method via Maximum-Likelihood is likely to 

provide with an efficient estimator, and it allows for direct estimation of the standard errors. 

However, it requires an instrumental variable.  

In this study, to address speed enforcement endogeneity in the safety analysis3, we have 

adopted an instrumental variable approach of control function in conjunction with a maximum 

simulated likelihood approach. Specifically, we have developed a simultaneous equation 

system to model speed enforcement, crash risk and crash severity components at the roadway 

segement level, while considering ‘operational duration of speed camera’ as an instrumental 

variable in the endogenous speed enforcement component. In our study, safety enforcement is 

represented as the number of speeding tickets issued from the speed camera systems, while 

safety profile is presented as two dimensions of interest, including total crash risk and crashes 

by injury severity levels. Specifically, in examining the causal effect of speed enforcement on 

safety, the empirical analysis proposes in this study addresses three different econometric 

issues, including (1) correcting for speed enforcement endogeneity in crash risk and crash 

severity, (2) observation level unobserved heterogeneity (sourced from panel structure of 

dataset) and (3) other unobserved heterogeneity (sourced from unobserved information).  

The proposed econometric model takes the form of a joint modeling system of speed 

enforcement component, crash risk component and crash severity component. The joint model 

is estimated by employing a correlated panel random parameters model with speed 

enforcement endogeneity. In estimating the joint panel model, speed enforcement and crash 

severity components are modeled by employing Random Parameters Ordered Logit Fractional 

Split technique, while crash risk component is modeled by employing Random Parameters 

Negative Binomial regression technique. In correcting for endogeneity, the speed enforcement 

propensity from the speed enforcement component is considered as an exogenous variable in 

the crash risk and crash severity components while estimating these three dimensions 

simultaneously. In the current study context, the ‘operational duration of speed camera’ serves 

as the instrumental variable for controlling the endogeneity between speed enforcement and 

safety.  

The empirical analysis is demonstrated by employing crash data and speed enforcement 

data collected in the form of speeding tickets issued identified from speed cameras from 

Queensland, Australia, for the years 2010 through 2013. The data is drawn from several 

highways and major arterials in Queensland, Australia. The casual effect is studied by 

employing a comprehensive set of exogenous variables, including Traffic characteristics, 

Roadway design and operational characteristics, Temporal and situation characteristics and 

Speed camera deployment characteristics. Further, the analysis is augmented by a detailed 

policy analysis. The outcome of the study will allow decision-makers to identify a robust 

resource allocation and speed camera deployment plan.  

 
3 See Mannering and Bhat (2014) for a detailed discussion on safety studies addressing endogeneity in crash 

risk/crash severity analyais. 
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The rest of the paper is organized as follows. Section 2 presents the data and lays out 

the empirical design of the study. In Section 3, the econometric framework is presented. Section 

4 discusses the empirical results and findings from model illustrations in the forms of elasticity 

effects and policy scenario analysis. Section 5 concludes the study along with some insights on 

future research directions. 

 

2 DATA AND EMPIRICAL DESIGN 

For the proposed empirical study, the data is drawn from several highways and major arterials, 

commonly referred to as State Controlled Roads, in Queensland, Australia. Specifically, the 

extent of the transport network considered in this study covers 1,477 kilometres of State 

Controlled roadways comprising 521 road segments. For these segments, data were collected 

and compiled for four years, from 2010 through 2013. These locations and time periods were 

selected due to the simultaneous availability of speeding tickets, crash, and roadway design 

attributes4.  

Speed enforcement data was collected in the form of speeding tickets issued per year 

per segment identified from speed cameras maintained by the Queensland Police Service. The 

total deployment duration of speed cameras along these 521 segments were 38,656 hrs in 2010, 

36,898 hrs in 2011, 37,235 hrs in 2012 and 52,085 hrs in 2013. However, the operational 

duration was not uniform across all segments for different cameras. Therefore, the speeding 

ticket data collected per camera per year were normalized as the rate of 1,000 vehicles 

monitored on these segments per year. Thus, the total number of speeding tickets issued per 

1,000 vehicles monitored across segments are 4083, 4386, 3684 and 2879 in 2010, 2011, 2012 

and 2013, respectively. The distribution of speeding ticket issues and operational duration for 

speed cameras across different years are presented in Figure1.  

 
Figure 1: Speeding Ticket Issued vs. Operation Duration for Speed Camera across 

Different Years 

 

 
4 The proposed framework of the current study is generic and is applicable for analysing most recent data if 

available. 
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Crash data for the empirical study is compiled from the Queensland Department of 

Transport and Main Roads official crash database. The crash data reported in Queensland does 

not record ‘no injury’ crashes since 2010. Therefore, the data has injury severity levels 

information for the crashes resulting in casualty only. The crashes are recorded in the three 

injury severity categories as (1) minor injury, (2) major/hospitalized injury and (3) fatal injury. 

The total number of crashes recorded for the selected State Controlled network are 1578, 1503, 

1476 and 1575 for the years 2010, 2011, 2012 and 2013, respectively. Finally, roadway design 

and situational attributes are collected from the Department of Transport and Main Roads, 

Australian Bureau of Meteorology and Queensland Spatial Catalogue databases. All the 

databases were integrated together based on spatial coordinates by using the ArcGIS platform.  

 

2.1 Dependent Variables 

In estimating the proposed joint panel model, the empirical analysis involves three components 

of analysis: (1) Speed enforcement component, (2) Crash risk component and (3) Crash 

severity component. The formation of dependent variables for these three components are 

presented in this section. 

Speed enforcement component: The number of speeding tickets issued was recorded in 

fixed increment of speeding citation levels above the posted speed limit (PSL) as (1) <13km/h 

above PSL, (2) 13-20km/h above PSL, (3) 20-30km/h above PSL, (4) 30-40km/h above PSL 

and (5) >40km/h above the PSL. Analysis of the total number of tickets by speeding level 

would require having all speeding ticket records for the study locations. However, the records 

represent only the speeding ticket profile of vehicles for the operational period of speed 

cameras in these locations. In our empirical study, we assume that the speeding ticket profile 

remains the same at a segment level in a year irrespective of speed camera operational and non-

operational periods. Therefore, as opposed to modeling the absolute number of records by 

speeding ticket levels, we represent the speed enforcement profile as the contributing number 

of tickets by speeding levels relative to the total number of speeding tickets issued. Thus, the 

dependent variable of the speed enforcement component is considered as a fraction, represented 

as:  

(
Number of speeding tickets issued by speeding level per segment per year

Total number of speeding tickets issued per segment per year
) 

The dependent variable of the speed enforcement component is considered as an ordered 

variable with tickets issued for three speeding levels including: (1) proportion of minor 

speeding tickets (<13km/h over PSL), (2) proportion of moderate speeding tickets (13-20 km/h 

over PSL) and (3) proportion of major speeding tickets (>20km/h over PSL)5. 

 

Crash risk component: The dependent variable of the crash risk component is the total 

casualty crash count6 reported in each segment per year.  

 

Crash severity component: As opposed to modeling the number of crashes by different 

severity levels, in this study, we consider the proportion of crashes by different severity levels 

 
5 20-30km/h above PSL, 30-40km/h above PSL and >40km/h above the PSL speeding citation categories are 

merged as one category due to small sample shares. 
6 In the following sections, total casualty crash is referred to as total crash for simplicity. As mentioned before, 

Queensland does not record ‘no injury’ crashes and hence represents only casualty crashes.    
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as dependent variables. Thus, the dependent variable of crash severity component is considered 

as a fraction, represented as: 

(
Number of crashes by injury severity levels per segment per year

Total number of crashes per segment per year
) 

The dependent variable of crash severity component is considered as an ordinal variable with 

three levels, including (1) proportion of minor injury crashes, (2) proportion of major injury 

and (3) proportion of fatal injury crashes7. 

The dependent variables for the abovementioned three components are presented in 

Table 1. From Table 1, we can observe that minor speeding ticket has the lowest fraction. The 

major injury category has the highest fraction relative to the other two severity categories.  

 

Table 1: Summary Statistics of Dependent Variables 

Dependent 

Variables 
Definitions Mean 

Standard 

Deviation 
Minimum Maximum 

Speed Enforcement Component 

Fraction of 

tickets for 

minor 

speeding  

Fraction of tickets for minor speeding = 

(Number of speeding ticket issued per 1000 

vehicle for the magnitude of speeding less 

than 13km/h above posted speed limit per 

year per segment/Total number of speeding 

ticket issued per 1,000 vehicles per year per 

segment) 

0.560 0.145 0.000 1.000 

Fraction of 

tickets for 

moderate 

speeding  

Fraction of tickets for moderate speeding = 

(Number of speeding ticket issued per 1000 

vehicle for the magnitude of speeding 

between 13-20km/h above posted speed 

limit per year per segment/Total number of 

speeding ticket issued per 1,000 vehicles 

per year per segment) 

0.362 0.124 0.000 1.000 

Fraction of 

tickets for 

major 

speeding  

Fraction of tickets for major speeding = 

(Number of speeding ticket issued per 1000 

vehicle for the magnitude of speeding 

above 20km/h above posted speed limit per 

year per segment/Total number of speeding 

ticket issued per 1,000 vehicles per year per 

segment) 

0.068 0.065 0.000 0.500 

Crash Risk Component 

Total 

number of 

crashes 

Total number of crashes recorded per year 

per segment 
2.942 4.573 0.000 51.000 

Crash Severity Component 

Fraction of 

minor injury 

crashes 

Fraction of minor injury crashes = (Number 

of minor injury crashes per year per 

segment/Total number of crashes per year 

per segment) 

0.108 0.225 0.000 1.000 

Fraction of 

major injury 

crashes 

Fraction of major injury = (Number of 

major injury crashes per year per 

segment/Total number of crashes per year 

per segment) 

0.561 0.444 0.000 1.000 

 
7 Several studies in existing safety lietarute have demonstrated the application of Fractional Split approach in 

modeling crash counts by crash severity levels (Yasmin et al., 2014; Bhowmik et al., 2019 and 2021; Yasmin and 

Eluru, 2018).  
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Fraction of 

fatal injury 

crashes 

Fraction of fatal injury = (Number of fatal 

injury crashes per year per segment/Total 

number of crashes per year per segment) 

0.012 0.082 0.000 1.000 

 

2.2 Independent Variables 

In generating the segment level variables, the explanatory variables considered in the current 

study are aggregated at each segment level across different years. The explanatory variables 

considered can be categorized in five broad categories representing: (1) Traffic characteristics 

including annual average daily traffic (AADT) and proportion of heavy vehicles; (2) Roadway 

design and operational characteristics including segment length, number of lanes, lane width, 

shoulder width, median width, radius of horizontal alignment, degree of horizontal curve, 

roughness, rutting, functional classification of road, presence of shoulder, shoulder type, posted 

speed limit, terrain type and pavement seal condition; (3) Temporal and situation 

characteristics including rainfall, rainy days and wind speed; and (4) Speed camera deployment 

characteristics including covert speed cameras, total number of deployed speed camera and 

operational durational for speed camera. In terms of temporal characteristics, a “time elapsed” 

variable has been computed as the difference between the most recent years (2011, 2012 and 

2013) from the base year (2010) available in the study context. Such lapsed effect of the 

temporal variable will allow us to forecast for future year scenarios. In the model specification, 

both linear and square effects of time elapsed variable are considered.  

Table 2 offers a summary of the sample characteristics of the exogenous factors in the 

estimation dataset. The table represents the definition of variables considered for the final 

model specification along with the minimum, maximum, standard deviation, and mean values. 

The final specification of the model development was based on removing the statistically 

insignificant variables in a systematic process based on statistical significance (90% confidence 

level). The specification process was also guided by prior research and parsimony 

considerations. In estimating the models, several functional forms and variable specifications 

were explored. The functional form that provided the best result was used for the final model 

specifications and, in Table 2, the variable definitions are presented based on these final 

functional forms. 

 

Table 2: Summary Statistics of Independent Variables 

CONTINUOUS/ORDINAL VARIABLES 

Variables Variable Descriptions Mean 
Standard 

Deviation 
Minimum Maximum 

Traffic Characteristics 

AADT 
ln(Average Annual Daily Traffic 

(vehicles/day)) 
9.53 1.17 3.53 13.28 

Proportion of heavy 

vehicle 

Number of heavy vehicle 

traffic/Total number of traffic 
0.10 0.09 0.00 0.96 

Roadway Design and Operational Characteristics 

Length Segment length (km) 2.83 3.19 0.08 20.90 

Number of lanes Number of lanes 1.00 8.00 1.00 8.00 

Lane width Lane width (m) 3.07 0.42 2.00 5.00 

Shoulder width Shoulder width (m) 0.91 1.47 0.00 15.00 

Median width Median width (m) 4.00 4.95 0.00 38.00 

Radius of horizontal 

alignment 
Radius of horizontal alignment (km) 0.13 41.22 12.10 5.88 

Degree of horizontal 

curve 
Degree of horizontal curve (degree) 0.82 1.05 0.05 10.52 
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Roughness Roughness (mm/km) 50.49 33.96 0.00 150.00 

Rutting  2.81 2.01 0.00 9.60 

Temporal and Situational Characteristics 

Rainfall Average rainfall per year (mm/100) 0.00 1.07 0.34 0.17 

Rainy days 
Average number of rainy days per 

year 
36.13 11.23 0.00 75.00 

Wind speed 
Average wind speed per year 

(km/h) 
10.91 5.65 0.00 26.00 

Speed Camera Deployment Characteristics 

Covert speed cameras 
Proportion of deployed covert speed 

cameras per year 
0.18 0.23 0.00 1.00 

Total number of 

deployed speed 

cameras 

Total number of deployed speed 

camera per year 
22.18 28.73 1.00 328.00 

Operational duration 

for speed camera 

enforcement 

Total operational duration for speed 

camera per year (hour/100) 
0.80 1.02 0.01 8.60 

CATEGORICAL VARIABLES 

Variables Sample Share (%) 

Functional classification of road 

Rural road 33 

Urban road 67 

Presence of shoulder 

Yes 61 

No 39 

Shoulder type 

Paved 96 

Unpaved 4 

Posted speed limit 

High speed limit (≥100 km/h) 20 

Medium speed limit (>50 and <100 km/h) 56 

Low speed limit (≤50 km/h) 24 

Terrain type 

Rolling/Mountainous 11 

Flat 89 

Pavement seal condition 

Sealed 76 

Unsealed 24 

 

3 ECONOMETRIC FRAMEWORK 

Let us assume that 𝑖 (𝑖 = 1,2, … , 𝐼; 𝐼 = 521) be the index to represent roadway segment, 

𝑡 (𝑡 = 1,2, … , 𝑇; 𝑇 = 4) represents different time periods. In this empirical study, 𝑡 takes the 

value of ‘2010 (𝑡 = 1)’, ‘2011 (𝑡 = 2)’, ‘2012 (𝑡 = 3)’ and ‘2013 (𝑡 = 4)’. 𝑗 (𝑗 = 1,2, … , 𝐽) 

be the index to represent injury severity categories representing ‘minor injury (𝑗 = 1)’, ‘major 

injury (𝑗 = 2)’ and ‘fatal injury (𝑗 = 3)’. Let 𝑘 be the index for tickets issued by the level of 

speeding categories. In this study, 𝑘 is defined as tickets issued for ‘minor speeding (𝑘 = 1)’, 

‘moderate speeding (𝑘 = 2)’ and ‘major speeding (𝑘 = 3)’. By using these notational indices, 

the econometric framework employed in this study is presented in this section.  
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3.1 Speed Enforcement Component 

In the joint panel model framework, the speed enforcement component is represented by 

speeding tickets (speeding citations) issued by speeding levels per segment per year. The 

dependent variable of the speed enforcement component is considered as the proportion of 

speeding tickets issued by different speeding levels, including (1) proportion of minor speeding 

tickets, (2) proportion of moderate speeding tickets and (3) proportion of major speeding 

tickets. The speeding levels considered are ordinal in nature ranging from the least to the 

highest level of speeding citations. Therefore, modeling of speed enforcement component 

represented by speeding tickets issued is undertaken by employing Random Parameters 

Ordered Logit Fractional Split model in accommodating for the ordinal nature of the speeding 

citation levels and unobserved heterogeneity in parameter estimates. In the ordered outcome 

framework, the actual speeding ticket proportions (𝑠𝑖𝑘𝑡) are assumed to be associated with an 

underlying continuous latent variable (𝑠𝑖𝑡
∗ ). Thus, the latent propensity equation for speed 

enforcement component can be written as: 

𝑠𝑖𝑡
∗ = {(𝜷 + 𝜶𝑖𝑡

′ + 𝜸𝑖
′)𝒙𝑖𝑡 + (𝑙𝑒𝑛𝑔𝑡ℎ𝑖) +  𝜀𝑖𝑡 + 𝜂𝑖𝑡},  

𝑠𝑖𝑘𝑡 = 𝑘𝑡 𝑖𝑓 𝜏(𝑘−1),𝑡 < 𝑠𝑖𝑡
∗ < 𝜏𝑘𝑡 

(1)  

The latent propensity 𝑠𝑖𝑡
∗  is mapped to the actual speeding levels 𝑠𝑖𝑘𝑡 by 𝜏𝑡 thresholds 

(𝜏0,t = −∞ and 𝜏𝐾,𝑡 = +∞) as presented in equation 1. 𝑘𝑡 is speeding citation levels specific 

to year 𝑡. 𝒙𝑖𝑡 is a vector of attributes (not including a constant) that influences the propensity 

associated with the tickets issued by speeding levels. 𝜷 is the corresponding vector of mean 

effects. 𝜶𝑖𝑡
′  is a vector of unobserved factors on the propensity of speeding ticket proportions 

for segment 𝑖 and its associated characteristics and is assumed to be independent realizations 

from normal distribution: 𝜶′~𝑁(0, 𝜶2). 𝜸𝑖
′ is a vector of unobserved effects specific to the 

repetition level 𝑖, thus capturing the potential correlation at a segment level across different 

time points in the speed enforcement component. 𝜸𝑖
′ is assumed to be independent realizations 

from normal population distribution: 𝜸′~𝑁(0, 𝜸2). (𝑙𝑒𝑛𝑔𝑡ℎ𝑖) is the length for segment 𝑖 which 

is specified as an offset variable in the fractional split model of the speed enforcement 

component8. 𝜀𝑖𝑡 is an idiosyncratic error term assumed to be identically and independently 

standard logistic distributed across segment 𝑖 for different time points 𝑡. 𝜂𝑖𝑡 term generates the 

correlation among three components (speed enforcement, crash risk and crash severity 

components) in the joint panel system. To estimate the model presented in equation 1, we 

assume that:    

𝔼(𝑠𝑖𝑘𝑡|𝒙𝑖𝑡) = ℍ𝑖𝑘𝑡(𝜷, 𝜶, 𝜸, 𝜂𝑖𝑡), 0 ≤ ℍ𝑖𝑘𝑡 ≤ 1, ∑ ℍ𝑖𝑘𝑡 = 1
𝐾𝑡
𝑘𝑡=1  (2)  

ℍ𝑖𝑘𝑡 in our model takes the ordered logistic probability (𝒫) form for the speeding 

citation level 𝑘. Given these relationships across different parameters, the resulting probability 

(𝒫) for the fractional split model takes the following form:  

 
8 In the current study, the segment length varies from 0.008km to 20.903km with a mean of 2.834km. Given such 

wide range of variations in segment lengths, we specify the segment length as an offset variable in order to account 

for different lengths of segment. The coefficient of the offset variable is restricted to be one in estimating the 

model to normalize for the recorded events by segment length. 
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𝒫(𝑠𝑖𝑘𝑡 = 𝑘𝑡) = φ[𝜏𝑘𝑡 − {(𝜷 + 𝜶𝑖𝑡 + 𝜸𝑖)𝒙𝑖𝑡 + 𝜀𝑖𝑡 + 𝜂𝑖𝑡}]

− φ[𝜏(𝑘−1),𝑡 − {(𝜷 + 𝜶𝑖𝑡 + 𝜸𝑖)𝒙𝑖𝑡 +  𝜀𝑖𝑡 + 𝜂𝑖𝑡}] 
(3)  

where, φ(∙) is the standard logistic cumulative distribution function.  

 

3.2 Crash Risk Component 

In the joint panel model framework, the dependent variable of the crash risk component is the 

total crash count reported in each segment 𝑖 across different time points 𝑡. Total crash counts 

aggregated at a segment level at any given time interval are non-negative integer value and 

hence is modeled by employing Random Parameters Negative Binomial regression model, 

which accounts for unobserved heterogeneity in parameter estimates as well. For the joint 

approach, the equation system for the total crash count in the usual negative binomial 

formulation can be written as:   

𝒬(𝑐𝑡𝑖) =  
Γ (𝑐𝑖𝑡 +

1
𝜆

)

Γ(𝑐𝑖𝑡 + 1)Γ (
1
𝜆

)
(

1

1 + 𝜆𝜇𝑖𝑡
)

1
𝜆

(1 −
1

1 + 𝜆𝜇𝑖𝑡
)

𝑐𝑖𝑡

 (4)  

where, 𝑐𝑖𝑡 be the index for crashes occurring over a period 𝑡 in segment 𝑖. 𝒬(𝑐𝑖𝑡) is the 

probability that segment 𝑖 has 𝑐𝑖𝑡 number of crashes over time 𝑡. Γ(∙) is the gamma function, 𝜆 

is NB overdispersion parameter and 𝜇𝑖𝑡 is the expected number of crashes occurring in segment 

𝑖 over a given time period 𝑡. In equation 4, we can express 𝜇𝑖𝑡 by using a log-link function: 

𝜇𝑖𝑡 = 𝔼(𝑐𝑖𝑡|𝒛𝑖𝑡) 

       = 𝑒𝑥𝑝{(𝜹 + 𝝆𝑖𝑡
′ + 𝜽𝑖

′)𝒛𝑖𝑡 + (𝑙𝑒𝑛𝑔𝑡ℎ𝑖) + (𝝎 ∗ ℏ𝑖𝑡 + 𝜎𝑖𝑡
′ + Ω𝑖

′)𝑠𝑖𝑡
∗ + 𝜉𝑖𝑡

± 𝜂𝑖𝑡} 

(5)  

where, 𝒛𝑖𝑡 is a vector of explanatory variables associated with segment 𝑖 for the time period 𝑡. 

𝜹 is a vector of coefficients to be estimated. 𝝆𝑖𝑡
′  is a vector of unobserved factors on crash count 

propensity for segment 𝑖 for the time period 𝑡 and is assumed to be independent realizations 

from normal population distribution: 𝝆′~𝑁(0, 𝝆2). 𝜽𝑖
′ is a vector of unobserved effects specific 

to repetition level 𝑖, thus capturing the potential correlation at a segment level across different 

time points in the crash risk component. 𝜽𝑖
′ is assumed to be independent realizations from 

normal population distribution: 𝜽′~𝑁(0, 𝜽2). (𝑙𝑒𝑛𝑔𝑡ℎ𝑖) is the length for segment 𝑖 which is 

specified as an offset variable in the NB specification. 

ℏ𝑖𝑡 is a vector of exogenous variables that moderate the effect of speed enforcement 

propensity on crash risk and 𝝎 is the corresponding vector of coefficient (including a scalar 

constant). Further, 𝜎𝑖𝑡
′  (specific to segment 𝑖 and time point 𝑡) and Ω𝑖

′ (specific to segment 𝑖) 
are the unobserved components influencing the impact of speed enforcement propensity 𝑠𝑖𝑡

∗  on 

crash risk. 𝜎𝑖𝑡
′  and Ω𝑖

′ are assumed to be independent realizations from normal population 

distribution: 𝜎′~𝑁(0, 𝜎2) and Ω′~𝑁(0, Ω2), respectively. 𝜉𝑖𝑡 is a gamma distributed error term 

with mean 1 and variance 𝜆. 𝜂𝑖𝑡 captures unobserved factors that simultaneously impact three 

components in the joint panel system. The ± sign in front of 𝜂𝑖𝑡 in equation 5 indicates that the 

correlation in unobserved individual factors among different components may be positive or 
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negative. To determine the appropriate sign, one can empirically test the models with both ′ + ′ 
and ′ − ′ signs independently. The model structure that offers the superior data fit is considered 

as the final model. 

 

3.3 Crash Severity Component 

In the joint model framework, crash severity component is represented as crashes by injury 

severity levels per segment per year. The dependent variable of the crash severity component 

is considered as proportion of crashes by different crash severity levels, including (1) 

proportion of minor injury crashes, (2) proportion of major injury crashes and (3) proportion 

of fatal injury crashes. The modeling of crash severity component is undertaken by employing 

Random Parameter Ordered Logit Fractional Split model in accommodating the ordinal nature 

of injury severity outcomes while accommodating for unobserved heterogeneity in parameter 

estimates. In the ordered outcome framework, the actual injury severity proportions (𝑦𝑖𝑗𝑡) are 

assumed to be associated with an underlying continuous latent variable (𝑦𝑖𝑡
∗ ). The latent 

propensity equation is typically specified as the following linear function: 

𝑦𝑖𝑡
∗ = {(𝝑 +  𝝅𝑖𝑡

′ + 𝝔𝑖
′)𝓛𝑖𝑡 + (𝑙𝑒𝑛𝑔𝑡ℎ𝑖) + (𝓵 ∗ 𝓰𝑖𝑡 + 𝜄𝑖𝑡

′ + Λ𝑖
′ )𝑠𝑖𝑡

∗ + 𝜁𝑖 ± 𝜂𝑖𝑡}, 
𝑦𝑖𝑗𝑡 = 𝑗𝑡 𝑖𝑓 𝜓(𝑗−1),𝑡 < 𝑦𝑖𝑡

∗ < 𝜓𝑗𝑡 
(6)  

The latent propensity 𝑦𝑖𝑡
∗  is mapped to the actual severity proportion categories 𝑦𝑖𝑗𝑡 by 

𝜓 thresholds (𝜓0,t = −∞ 𝑎𝑛𝑑 𝜓𝐽,𝑡 = +∞) as presented in equation 6. 𝑗𝑡 is the severity level 

specific to year 𝑡. 𝓛𝑖𝑡 is a vector of attributes (not including a constant) that influences the 

propensity associated with severity proportion categories. 𝝑 is the corresponding vector of 

mean effects. 𝝅𝑖𝑡
′  is a vector of unobserved factors on the propensity of severity proportion for 

segment 𝑖 and its associated characteristics and is assumed to be independent realizations from 

normal population distribution: 𝝅′~𝑁(0, 𝝅2). 𝝔𝑖
′ is a vector of unobserved effects specific to 

repetition level 𝑖, thus capturing the potential correlation at a segment level across different 

time points in the crash severity component. 𝝔𝑖
′ is assumed to be independent realizations from 

normal population distribution: 𝝔′~𝑁(0, 𝝔2). (𝑙𝑒𝑛𝑔𝑡ℎ𝑖) is the length for segment 𝑖 which is 

specified as an offset variable in the ordered fractional split specification for crash severity 

component. 

𝓰𝑖𝑡 is a vector of exogenous variables that moderate the effect of speed enforcement 

propensity on severity proportion and 𝓵 is the corresponding vector of coefficient (including a 

scalar constant). Further, while 𝜄𝑖𝑡
′  (specific to segment 𝑖 and time point 𝑡) and Λ𝑖

′  (specific to 

segment 𝑖) are the unobserved components influencing the impact of speed enforcement 

propensity 𝑠𝑖𝑡
∗  on crash severity. 𝜄𝑖𝑡

′  and Λ𝑖
′  are assumed to be independent realizations from 

normal population distribution: 𝜄′~𝑁(0, 𝜄2) and Λ′~𝑁(0, Λ2), respectively. 𝜁𝑖 is an 

idiosyncratic error term assumed to be identically and independently standard logistic 

distributed across segment 𝑖 for the time period 𝑡. 𝜂𝑖𝑡 term generates the correlation among 

three components of interest. Similar to Equation 5, the ± sign in front of 𝜂𝑖 in Equation 6 

indicates that the correlation in unobserved individual factors among different components may 

be positive or negative. To determine the appropriate sign, one can empirically test the models 

with both ′ + ′ and ′ − ′ signs independently. The model structure that offers the superior data 

fit is considered as the final model. 

To estimate the model presented in Equation 6, we assume that:  
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𝔼(𝑦𝑖𝑗𝑡|𝓛𝑖𝑡) = 𝔾𝑖𝑗𝑡(𝝑, 𝝅, 𝝔, 𝓵, 𝜄, Λ, 𝜂𝑖𝑡), 0 ≤ 𝔾𝑖𝑗𝑡 ≤ 1, ∑ 𝔾𝑖𝑗𝑡 = 1
𝐽𝑡
𝑗𝑡=1  (7)  

𝔾𝑖𝑗𝑡 in our model takes the ordered logistic probability (ℱ) form for the severity category 𝑗 for 

the time period 𝑡. Given these relationships across different parameters, the resulting 

probability (ℱ) for the fractional split model in the crash severity component takes the 

following form:  

ℱ(𝑦𝑖𝑗𝑡 = 𝑗𝑡) = 

𝜙[𝜓𝑗𝑡 − {(𝝑 +  𝝅𝑖𝑡
′ + 𝝔𝑖

′)𝓛𝑖𝑡 +  (𝓵 ∗ 𝓰𝑖𝑡 + 𝜄𝑖𝑡
′ + Λ𝑖

′ )𝑠𝑖𝑡
∗ + 𝜁𝑖 ± 𝜂𝑖𝑡}, ] − 

𝜙[𝜓(𝑗−1),𝑡 − {(𝝑 +  𝝅𝑖𝑡
′ + 𝝔𝑖

′)𝓛𝑖𝑡 + (𝓵 ∗ 𝓰𝑖𝑡 + 𝜄𝑖𝑡
′ + Λ𝑖

′ )𝑠𝑖𝑡
∗ + 𝜁𝑖 ± 𝜂𝑖𝑡}, ] 

(8)  

where, 𝜙(∙) is the standard logistic cumulative distribution function.  

 

3.4 Correlation Structure 

In estimating the joint panel model, it is important to note here that the unobserved 

heterogeneity (captured by common unobserved terms 𝜂𝑖𝑡) among the three components can 

vary across observations. Therefore, in the current study, the corresponding correlation 

parameter (𝜂𝑖𝑡) is specified as a function of observed attributes as follows: 

𝜂𝑖𝑡 = (𝓻𝑖
′ +  𝝒𝑖𝑡

′ )𝓗𝑖𝑡 (9)  

where 𝓗𝑖𝑡 is a vector of exogenous variables, while 𝓻𝑖
′ (specific to segment 𝑖) and 𝝒𝑖𝑡

′  (specific 

to segment 𝑖 and time point 𝑡) is a vector of unknown parameters to be estimated. 𝓻𝑖
′ includes 

a scalar contant  representing the variations at the segment level across all time points under 

consideration. 𝝒𝑖𝑡
′  also includes a scalar constant representing variations at the segment level 

within a specific time point 𝑡.  𝓻𝑖
′ and 𝝒𝑖𝑡

′  are assumed to be independent realizations from 

normal population distributions: 𝓻′~𝑁(0, 𝓻2) and 𝝒′~𝑁(0, 𝝒2). As indicated by ± sign in 

front of 𝜂𝑖𝑡 in Equations 5 and 6, the correlations in unobserved individual factors among the 

three components could be ′ + ′ or ′ − ′. Thus, in specifying the joint panel model, the following 

four correlation structures are specified:  

[𝑆𝑝𝑒𝑒𝑑 𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1), 𝐶𝑟𝑎𝑠ℎ 𝑟𝑖𝑠𝑘 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5), 
 𝐶𝑟𝑎𝑠ℎ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6)] 
~ 

[𝜂𝑖𝑡 , 𝜂𝑖𝑡 , 𝜂𝑖𝑡]; [𝜂𝑖𝑡 , 𝜂𝑖𝑡 , −𝜂𝑖𝑡]; [𝜂𝑖𝑡 , −𝜂𝑖𝑡, 𝜂𝑖𝑡]; [𝜂𝑖𝑡, −𝜂𝑖𝑡 , −𝜂𝑖𝑡] 

(10)  

A positive sign implies that the segments with greater proportions for tickets with 

higher speeding levels intrinsically incur higher crash risk and higher proportions for severe 

crashes. The second correlation structure implies that the segments with greater proportions for 

tickets with higher speeding levels intrinsically incur higher crash risk but lower proportions 

for severe crashes. The third correlation structure implies that the segments with greater 

proportions for tickets with higher speeding levels intrinsically incur lower crash risk but higher 

proportions for severe crashes. On the other hand, the fourth structure implies that the segments 

with greater proportions for tickets with higher speeding levels intrinsically incur lower crash 
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risk and lower proportions for severe crashes. To determine the appropriate sign, one can 

estimate models with ′ + ′ and ′ − ′ signs independently and then empirically test the models. 

The model structure that offers the superior data fit is considered as the final model. It is 

worthwhile to mention here that the correlation structure presented in Equation 10 is generic 

and can also be employed to capture the correlation between any two sub-set of the three 

components while restricting 𝜂𝑖𝑡 = 0 for the respective third component. For example, the 

correlation structure [𝜂𝑖𝑡 , 𝜂𝑖𝑡, 0] could be implemented to capture the correlation between speed 

enforcement and crash risk components. 

 

3.5 Model Estimation 

The parameters to be estimated in the joint panel model system include [𝜷, 𝜏, 𝜹, 𝝎, 𝝑, 𝓵, 𝜓] and 

the variances of the stochastic components [𝜶𝑖𝑡
′ , 𝜸𝑖

′, 𝝆𝑖𝑡
′ , 𝜽𝑖

′, 𝝅𝑖𝑡
′ , 𝜄𝑖𝑡

′ , Λ𝑖
′ , 𝓻𝑖

′𝝔𝑖
′, 𝝒𝑖𝑡

′ ] and in this 

paper, these elements are drawn from independent realization of normal distribution as: 

𝑁~{0, (𝜶2, 𝜸2, 𝝆2, 𝜽2, 𝝅2, 𝜄2, Λ2, 𝓻2, 𝝔2, 𝝒2)}. Let the stochastic terms are represented by 𝚵. 

Thus, conditional on 𝚵, the likelihood function for the joint probability can be expressed as: 

𝐿𝑖|𝚵 =  ∏ [∏ {(𝒫(𝑠𝑖𝑘𝑡 = 𝑘𝑡))
𝒶𝑖𝑡𝑠𝑖𝑘𝑡

∗ 𝒬(𝑐𝑡𝑖)
𝐼

𝑖=1

𝑇

𝑡=1

∗ (ℱ(𝑦𝑖𝑗𝑡 = 𝑗𝑡))
𝒷𝑖𝑡𝑦𝑖𝑘𝑡

}] 

(11)  

𝒶𝑖𝑡 is 1 if segment 𝑖 at any time period 𝑡 has non-zero speeding tickets reported and 0 otherwise. 

𝑠𝑖𝑘𝑡 is the proportion of speeding ticket categories specific to segment 𝑖 and time period 𝑡. 𝒷𝑖𝑡 

is 1 if segment 𝑖 at any time period 𝑡 has at least one crash recorded and 0 otherwise. 𝑦𝑖𝑘𝑡 is the 

proportion of crashes by severity levels specific to segment 𝑖 and time period 𝑡. Finally, the 

log-likelihood function can be written as: 

𝐿𝐿 =  ∑ 𝑙𝑛 {∫ ((𝐿𝑖|𝚵)𝑓(𝚵)dΞ)
𝚵

}

𝑖

 (12)  

The likelihood function in Equation 11 involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in 𝚵. We apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate this integral in the 

likelihood function and maximize the logarithm of the resulting simulated likelihood function 

(See Bhat 2001; Yasmin and Eluru 2013 for more details). The likelihood functions are 

programmed in Gauss (Aptech 2016).  

 

4 EMPIRICAL ANALYSIS 

4.1 Model Specification and Overall Measures of Fit 

The major focus of the study is to examine speed enforcement (in the form of speeding ticket 

issued), crash risk, crash severity simultaneously while also controlling for the endogeneity of 

speed enforcement in the crash risk and crash severity components. The empirical analysis 

involves estimation of a series of models, including (1) Independent model without speed 

enforcement endogeneity, (2) Uncorrelated model with speed enforcement endogeneity, (3) 

Correlated panel model with speed enforcement endogeneity and (4) Correlated panel random 
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effect model with speed enforcement endogeneity. Independent models without speed 

enforcement endogeneity involve a simple ordered logit fractional split model for speed 

enforcement component, a simple negative binomial model for crash risk component and a 

simple ordered logit fractional split model for crash severity component. In the independent 

models, the crash risk and crash severity models do not include the speed propensity function 

identified from the speed enforcement component as exogenous variables. These models serve 

as the basis for comparisons.   

In the second step, an uncorrelated model with speed enforcement endogeneity is 

estimated by integrating the speed enforcement propensity into the crash risk and crash severity 

components simultaneously. In this effort, ‘operational duration for speed cameras’ is 

considered as an instrumental variable in the speed enforcement component. Based on the 

result of the uncorrelated model, a correlated model with speed enforcement endogeneity is 

estimated by stitching the three dimensions of interests through a common unobserved random 

term while also capturing the panel effect of repeated observations. In estimating the correlated 

model, we have specified the correlation by using four different correlation structures as 

presented in Equation 10. The correlation structure that provides the best data fit is further 

selected for the next step of analysis.  

Finally, all the exogenous variables in the correlated model (correlation structure with 

the best data fit) are tested for random effects while also capturing the panel effect of repeated 

observations, which is referred to as Correlated panel random effect model with speed 

enforcement endogeneity. Prior to discussing the estimation results, we compare the 

performance of different estimated models in this section. We employ Bayesian Information 

Criteria (BIC) for comparing the models. The BIC can be expressed as: 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝕂𝑙𝑛(ℚ) (13)  

where 𝐿𝐿 is the log likelihood value at convergence, 𝕂 is the number of parameters, and ℚ is 

the number of observations. The model with the lower BIC is the preferred model. The BIC 

(𝐿𝐿; 𝕂) values for the estimated models are – 

1) Independent model without speed enforcement endogeneity: 13351.93 (-6557.51, 31) 

2) Uncorrelated model with speed enforcement endogeneity: 13303.76 (-6529.61, 32) 

3) Correlated panel model with speed enforcement endogeneity and correlation structure 

[𝜂𝑖𝑡 , 𝜂𝑖𝑡 , 𝜂𝑖𝑡]: 11762.18 (-5751.17, 34) 

4) Correlated panel model with speed enforcement endogeneity and correlation structure 

[𝜂𝑖𝑡 , 𝜂𝑖𝑡 , −𝜂𝑖𝑡]: 11850.95 (-5795.56, 34) 

5) Correlated panel model with speed enforcement endogeneity and correlation structure 

[𝜂𝑖𝑡 , −𝜂𝑖𝑡, −𝜂𝑖𝑡]: 11742.54 (-5741.36, 34) 

6) Correlated panel model with speed enforcement endogeneity and correlation structure 

[𝜂𝑖𝑡 , −𝜂𝑖𝑡, 𝜂𝑖𝑡]: 11678.40 (-5709.28, 34) 

7) Correlated panel random effect model with speed enforcement endogeneity and 

correlation structure [𝜂𝑖𝑡 , −𝜂𝑖𝑡, 𝜂𝑖𝑡]: 11672.69 (-5706.43, 34) 

From the BIC values, it is evident that the uncorrelated model with speed enforcement 

endogeneity outperforms the independent model without speed enforcement endogeneity 

supporting our hypothesis that speed enforcement is endogenous to crash risk and crash 

severity. Further, all the correlated models have superior data fit over the independent and 

uncorrelated models, supporting our hypothesis that the three dimensions of interest are 

correlated. Thus, ignoring such correlation is likely to result in biased and inconsistent 

parameter estimates contributing to inefficient policy implications (Washington et al., 2020). 

Among different correlation structures, the model with [𝜂𝑖𝑡 , −𝜂𝑖𝑡, 𝜂𝑖𝑡] in the speed enforcement, 
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crash risk and crash severity components has the lowest BIC value. Thus, we can argue that 

the correlation structure [𝜂𝑖𝑡 , −𝜂𝑖𝑡, 𝜂𝑖𝑡] captures the simultaneity among the three dimensions 

better and provides the best data fit in the current study context. Finally, the correlated model 

with the correlation structure [𝜂𝑖𝑡 , −𝜂𝑖𝑡, 𝜂𝑖𝑡] is tested for random coefficients in three 

dimensions. After capturing for correlation, one of the parameters in the crash risk component 

is found to be random with improved data fit. Thus, the comparison exercise highlights the 

superiority of the correlated panel random effect model with speed enforcement endogeneity 

in terms of the data fit compared to other models.  

 

4.2 Measures of Fit for Instrumental Variable 

In this empirical study, ‘operation duration of speed camera’ is considered as an instrumental 

variable (IV) of the endogenous regressor (speed enforcement level) in developing the safety 

models. In econometric analysis, two important characteristics of the IV are – (1) relevance of 

IV (instrument relevance assumption) and (2) validity of IV (instrument exogeneity 

assumption). A valid and reliable IV is likely to explain significant variations in the endogenous 

regressor, and hence can be considered as a strong IV. The analysis results of IV relevance and 

validity are discussed in the following sub-sections.  

 

4.2.1 Relevance of Instrumental Variable 

In econometric analysis, a relevant instrumental variable (IV) is expected to be highly 

correlated with the endogenous measure of speed enforcement level. Thus, a good IV is 

expected to remain relevant (significant) in the regression estimation of the endogenous 

variable even after controlling for other exogenous variables. In empirically testing for the 

relevance of the IV, at first, an ordered logit fractional split model for speed enforcement is 

estimated by considering the IV – ‘operational duration of speed camera’ – as the only 

exogenous variable. The parameter estimates for the IV is (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑡‐ 𝑠𝑡𝑎𝑡) =
(−0.154, −5.907). Further, the model is augmented with other exogenous variables and the 

resulted parameter estimates for the IV is (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑡‐ 𝑠𝑡𝑎𝑡) = (−0.145, −6.1.89) and, 

hence, remains significant. Thus, we can argue that the considered IV is relevant in the 

empirical setting of the current study context. 

 

4.2.2 Validity of Instrumental Variable 

An Instrumental Variable (IV) can be considered valid if it is uncorrelated with the error term 

(assumption of instrument exogeneity). To be sure, it is not possible to test for such 

econometric restriction directly and/or fully, which would require a strong theoretical 

argument. An alternate approach for examining such IV validity can be performed by 

employing Overidentifying Restriction test9. Examining such instrument validity is 

econometrically feasible when 

[𝑁𝑜 𝑜𝑓 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 < 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠] 

i.e. coefficients of the instruments on the endogenous regressors has to be overidentified. 

Therefore, in the current study context, an overidentifying restriction test is employed by 

adding an additional instrument – ‘proportion of covert camera deployed per segment per year’. 

 
9 Overidentifying restriction test is also known as J-statistic, which examines the hypothesis that all instruments 

are exogenous. 
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In empirically testing for the validity of the IV, ordered logit fractional split models for speed 

enforcement is estimated with and without the additional instrument as exogenous variable. 

Further, the performance of these models is compared by employing J-statistic as:  

𝒿~𝜒𝒻−𝑟
2  ;   𝑤𝑖𝑡ℎ 𝑑𝑒𝑔𝑟𝑒𝑒𝑠‐ 𝑜𝑓‐ 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = (𝒻 − 𝑟), 

 𝒻 = 𝑛𝑜 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠, 𝑟 = 𝑛𝑜 𝑜𝑓 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 
(14)  

The computed J-statistic = 17.96 >𝜒𝒻−𝑟
2 = 6.63, which favors the validity of ‘operational 

duration of speed camera’ as instrument in this study and, hence, is consistent.   

 

4.3 Model Estimation results 

In interpreting the effects of exogenous variables, we will restrict ourselves to the discussion 

of the best specified model –‘Correlated panel random effects model with speed enforcement 

endogeneity’, which is referred to as joint panel model in the following sections for simplicity. 

In the current study context, the correlation structure of the joint model that provides with the 

best data fit is  

[[𝑆𝑝𝑒𝑒𝑑 𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡, 𝐶𝑟𝑎𝑠ℎ 𝑟𝑖𝑠𝑘, 𝐶𝑟𝑎𝑠ℎ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦] ~[𝜂𝑖𝑡, −𝜂𝑖𝑡 , 𝜂𝑖𝑡]]  

Table 3 presents the results of the joint panel model with the speed enforcement component 

results in the 1st row panel, crash risk component results in the 2nd row panel, and crash severity 

component results in the 3rd row panel. The correlation parameters of the joint panel model are 

presented in the last row panel of Table 3. For the ease of presentation, the results of different 

components are discussed separately in the following sections.   

 

Table 3: Model Results for the Correlated Panel Random Parameter Model with Speed 

Enforcement Endogeneity 
SPEED ENFORCEMENT COMPONENT 

Variables Estimate t-stat 

Threshold parameters 

Threshold between minor and moderate speeding citations 2.144 6.887 

Threshold between moderate and major speeding citations 4.589 14.667 

Traffic characteristics  

AADT 0.106 3.544 

Proportion of heavy vehicle 1.833 4.670 

Roadway design and operational characteristics 

Length (Offset) 1.000 ---* 

Presence of shoulder 

Yes 0.192 3.547 

No --- --- 

Posted speed limit 

High speed limit (>100 km/h) 0.491 4.426 

Medium speed limit (>50 and <100 km/h) --- --- 

Low speed limit (<50 km/h) --- --- 

Pavement sealed condition 
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  Sealed --- --- 

  Unsealed -0.769 -9.679 

Terrain type 

Rolling/Mountainous 0.195 2.439 

Flat --- --- 

Speed Camera Deployment Characteristics 

Operational duration for speed cameras  -0.089 -4.015 

CRASH RISK COMPONENT 

Variables Estimates t-stat 

Constant  -1.449 -2.783 

Traffic characteristics  

AADT 0.247 5.184 

Roadway design and operational characteristics 

Length (Offset) 1.000 --- 

Number of lanes 0.156 6.196 

Median width -0.033 -3.747 

Radius of horizontal alignment -0.016 -1.962 

Functional classification of road 

Rural road -0.804 -7.685 

Standard deviation of rural road 0.391 5.422 

Urban road --- --- 

Shoulder width -0.078 -3.362 

Shoulder type 

Paved --- --- 

Unpaved -0.304 -1.999 

Rutting 0.102 5.155 

Temporal and Situational Characteristics 

Rainfall  -0.380 -1.924 

Wind speed -0.020 -3.650 

Speed Camera Deployment Characteristics 

Speed enforcement propensity 

Constant -0.548 -8.080 

Overdispersion parameter 0.017 3.474 

CRASH SEVERITY COMPONENT 

Variables Estimates t-stat 

Threshold parameters 

Threshold between minor and major injury -1.931 -5.823 

Threshold between major and fatal injury 3.904 10.627 

Traffic characteristics  

Proportion of heavy vehicle 1.740 1.854 

Roadway design and operational characteristics 

Length (Offset) 1.000 --- 

Number of lanes -0.091 -2.425 

Posted speed limit 
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High speed limit (>100 km/h) 0.858 3.534 

Medium speed limit (>50 and <100 km/h) --- --- 

Low speed limit (<50 km/h) --- --- 

Temporal and Situational Characteristics 

Time elapsed (Linear) 0.180 4.102 

Speed Camera Deployment Characteristics 

Speed enforcement propensity 

Constant -0.868 -8.908 

CORRELATION COMPONENT 

Variables Estimates t-stat 

Standard deviation of common error among speed enforcement, crash risk and 

crash severity components (Segment level) 
0.427 19.262 

*Insignificant at 10% significance level 

 

4.3.1 Speed Enforcement Component 

The estimation results of the speed enforcement component are presented in the first-row panel 

of Table 3. In the current study, the speed enforcement component is modeled by employing 

an ordered logit fractional split modeling technique. In the fractional split model, a positive 

(negative) coefficient corresponds to increased (decreased) proportions for major speeding 

citations. A positive (negative) threshold implies that it is bound to increase (decrease). In the 

speed enforcement component, segment length is specified as an offset variable, and the 

coefficient of the offset variable is restricted to be one to normalize for the recorded events by 

segment length. The estimation results of the speed enforcement component are discussed 

below. 

In the speed enforcement component of the joint panel system, linear, non-linear 

(logarithmic) and quadratic (square) functional forms of AADT are considered. In the final 

model specification of the speed enforcement component, the logarithmic function of AADT 

is found to be significant with better data fit relative to models with other specifications 

confirming a non-linear relationship between speed enforcement propensity and AADT. From 

Table 3, it can be observed that the likelihood of major speeding citations increases with an 

increasing AADT at a roadway segment level. The higher level of traffic volume is generally 

associated with less vehicle maneuvering freedom. Hence, the effect of AADT on the speed 

enforcement propensity apparently may seem to be counterintuitive as one may expect that the 

chance of speeding is likely to decrease with the increase in traffic volume. Hu et al. (2009), in 

an experimental study, found that the relationship between speeding rate and traffic volume is 

rather quadratic with an increasing trend up to the network reaching a certain critical traffic 

volume level. After the traffic stream reaches the critical volume, the speeding rate is likely to 

decrease. Be motivated by this finding, initially, we specified AADT as a linear and square 

functions in the speed enforcement component. The linear form had a significant positive 

coefficient and the square of AADT had a negative insignificant coefficient, which was in line 

with the result from Hu et al. (2009). However, the logarithmic function of AADT provide with 

the best data fit and hence is considered in the final model specification. The positive effect of 

logarithmic of AADT on speeding citation propensity is perhaps indicating that the drivers tend 

to engage in a higher level of speeding with the perception of losing time as the traffic gets 

heavier (see Ambros et al., 2020 for similar results).       

The proportion of heavy vehicle in the speed enforcement component reveals that the 

proportion of major speeding citations is likely to be higher in the roadway segments with a 

higher proportion of heavy vehicles. The result might be attributable to the significant change 
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in driver behavior in the presence of heavy vehicles in a traffic stream. As is evident from 

earlier studies (Moridpour et al., 2015), drivers of other vehicles are likely to change their 

behavior (such as speed choice, headway, lane changing) frequently in the presence of heavy 

vehicles in the traffic stream. For instance, Kong et al. (2016) found that almost 50% of the 

drivers reported to change lane immediately when they felt the impact of a truck in a traffic 

stream. Thus, the higher proportions of major speeding citations may be attributable to 

speeding related to overtaking heavy vehicles. In an earlier study employing the same speeding 

citation data, Afghari et al. (2018) reported similar effect while noting that such relations are 

likely to be prominent on multilane roadways where there are legitimate opportunities for 

frequent lane changing and overtaking.   

The variable indicating the presence of shoulder has a positive coefficient which 

indicates that the propensity of major speeding citations is likely to be higher on roadway 

segments with shoulder relative to the roadways without shoulder. The presence of a shoulder 

is likely to provide with an additional safety margin for driving, and hence the tendency to 

drive over the posted speed limit in these locations is likely to be higher relative to locations 

with no shoulder. With regards to posted speed limit, the estimation results from Table 3 reveals 

that the roadway section with posted speed limit ≥100 kmph are likely to be associated with 

higher citations of major speed limit violations. The result may appear to be counterintuitive 

as one may do less speeding on a roadway, which is already catering a higher level of posted 

speed limit. However, as reported by Haglund and Åberg (2000), the intuition to abide by the 

posted speed limit are likely to decrease with increasing posted speed limit. In fact, the study 

found that 56% of the drivers exceeded posted speed limit by 10 km/h on a road with posted 

speed limit ≥100 km/h. Such outcome might be attributable to higher design standards of these 

roadways allowing for greater margin to drive over the posted speed limit.  

The unsealed pavement condition of a roadway section provides restrictive driving 

maneuverability, and as expected, the variable indicating unsealed condition is found to have 

a negative influence on the speeding citation propensity. With regards to other roadway 

elements, a rolling/mountainous terrain is found to have a positive association with speeding 

citation propensity.  

With regards to the speed camera deployment characteristics, operational duration for 

speed camera serves as the instrumental variable for endogenous speed enforcement 

component. From Table 3, we can see that the likelihood of major speeding citations is likely 

to be lower in the roadway segments with higher operational duration for speed camera 

enforcement. Over the time, drivers may become more cautious about the presence of speed 

camera in locations with higher enforcement duration resulting in greater self-awareness and 

less engagement in speeding violations along these roadway corridors. Moreover, the result 

might be attributable to the time-halo effect of speed camera operation. The time-halo effect 

signifies the duration over which the deterrence effects of enforcement are likely to continue 

after the operation of enforcement ends. For example, Gouda and El-Basyouny (2017) found 

that a 22 hours of speed camera enforcement operation may extend up to 5 days of time-halo 

effect, while a drop of 19% speed limit violations could be expected. Thus, it is evident that a 

longer enforcement duration of speed camera is likely to have a greater added benefit on 

deterrence effect from higher cumulative time-halo effect. In fact, creating time-halo effect of 

speed camera operation is one of the major focuses in achieving a widespread general 

deterrence effect in speeding behavior (Champness et al., 2005). Therefore, examining such 

causal effect of speed camera enforcement duration on speeding violation has greater 

importance in identifying the optimal resource allocation in achieving greater safety benefits 

of speed camera enforcement.     
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4.3.2 Crash Risk Component 

The second-row panel of Table 3 presents the estimation results of the crash risk component of 

the joint panel modeling system. In the current study, the crash risk component is modeled by 

employing the negative binomial regression technique. A positive (negative) sign for a 

coefficient in the crash risk component indicates that an increase in the magnitude of the 

variable is likely to results in higher (lower) crash risk. In the crash risk component, segment 

length is specified as an offset variable, and the coefficient of the offset variable is restricted to 

be one to normalize for the recorded events by segment length. In the subsequent sections, 

detailed discussions of the model results for the crash risk component are provided. 

In developing the crash-causal relationship, AADT is often deemed to be one of the 

most important exogenous variables controlling for exposure (Papadimitriou et al., 2019). As 

such, with respect to traffic characteristics, AADT is considered as a measure of exposure. In 

the crash risk component, a linear, non-linear (logarithmic) and quadratic (square) function of 

AADT is considered. In the final model specification, the logarithmic function of AADT is 

found to be significant, confirming the non-linear relationship between crash risk and AADT 

in the current study context. The positive coefficient of the logarithmic of AADT clearly 

underscores that the likelihood of crash risk increases with increased exposure to crashes. The 

result is in line with previous studies (Afghari et al., 2020; Wen et al., 2018). 

The positive parameter of number of lanes indicates that a higher number of traffic 

lanes contribute towards a higher likelihood of crash risk. The result might be attributable to 

greater chances of lane-changing behavior in the roadway segments with more lanes resulting 

in higher lane-changing related crash risks (Venkataraman et al., 2014; Afghari et al., 2020). 

As found in previous studies (Yu and Abdel-Aty, 2013; Farid et al., 2018), median width is 

found to have a negative association with crash risk. A wider median reflects an extra margin 

of safety for vehicle maneuvering and hence is likely to provide a higher level of safety margins 

for evasive actions in case of an impending crash (Saeed et al., 2019). Therefore, the crash risk 

on roadway segments with a wider median is likely to be lower.  

The road section with a larger horizontal curve is likely to impose less navigating 

complexity and hence are likely to be safer than a road section with tight horizontal curvature 

(Li et al., 2014; Rusli et al., 2017). Analogous to such findings, in the current study, it is found 

that a larger horizontal radius is likely to contribute towards lower crash risk. As expected, the 

results in Table 3 reveal a reduced crash risk on rural roadways relative to urban roadways, 

presumably due to the lower exposure to traffic in a rural environment. In addition, the indicator 

for rural roads is found to have random parameters, and the result indicates that the crash is 

more likely to be lower (higher) in more than 98% (less than 2%) of the cases on rural roads. 

Among other roadway cross-sectional elements, in the crash risk component, should width is 

found to be one of the significant contributors of crash risk. An increasing shoulder width is 

found to be associated with a lower likelihood of crash risk (see Anastasopoulos and 

Mannering, 2009 for similar result). 

With regards to shoulder type, the coefficient corresponding to unpaved shoulder type 

indicates that roadway with unpaved shoulder is likely to have reduced crash risk relative to 

segments with paved shoulder. In the crash risk component, the result specific to rutting 

indicates that the likelihood of crash risk increases with increasing rutting (see Hou et al., 2018 

for similar result).  

The average climate condition is often considered in developing crash prediction 

models to capture the situational condition of the roadway environment. Among different 

climate conditions, the findings from the existing studies for the effect of average rainfall on 

crash risks are rather multifaceted. Some of the studies found the relationship to be positive 

(Yu et al., 2015), while other studies reported this to be negative (Jung et al., 2014). From Table 

3, it can be observed that average rainfall per year has a negative impact on crash risk, 
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presumably reflecting the risk compensation behavior of the drivers. Among other 

meteorological variables, wind speed is found to be significant with a negative impact on crash 

risk. Afghari et al. (2018) found a similar impact in a study employing the crash data from 

Queensland, Australia.  

The effect of speeding ticket propensity, which addresses the effect of speed 

enforcement endogeneity in crash risk, is found to have a significant effect on the crash risk 

component. In the final model, the speed propensity is specified as a scalar constant (other 

exogenous variables and unobserved effects are not found to be significant). The effect of 

speeding ticket propensity is negative, which indicates that the likelihood of total crash risk 

decreases with an increase in the latent propensity of major speeding citations. Given a legal 

sanction like speeding tickets, one of the major focuses of law enforcement is to increase the 

certainty of deterrence and comprehension (Tay, 2005), which may result in greater levels of 

enforcement in the form of more speeding tickets in locations with speed enforcement. The 

roadways under examination in this study are the major arterial corridors of Queensland, which 

are most likely to be used by regular commuters throughout the year. For these regular 

commuters, the information set of a higher level of major speeding citations along these 

corridors may instigate higher levels of perceived apprehension resulting in more cautious 

driving behavior. For example, Li et al. (2011) reported that the drivers ticketed for speeding 

are likely to be associated with a lower level of subsequent speeding citations. Therefore, the 

result associated with speeding ticket propensity on crash risk is perhaps an indication that 

stringent enforcement of posted speed limit is highly likely to improve the overall safety in 

these locations. 

 

4.3.3 Crash Severity Component 

The estimation results of the crash severity component of the joint panel modeling system are 

presented in the third-row panel of Table 3. In the current study, the crash severity component 

is estimated by employing an ordered logit fractional split modeling technique. In the fractional 

split model, a positive (negative) coefficient corresponds to increased (decreased) proportions 

for severe injury outcomes. A positive (negative) threshold implies that it is bound to increase 

(decrease). In the crash severity component, segment length is specified as an offset variable, 

and the coefficient of the offset variable is restricted to be one to normalize for the recorded 

events by segment length. The estimation results of the crash severity component are discussed 

below. 

The estimation result for heavy vehicle proportion has a positive coefficient in the crash 

severity component, suggesting that higher volumes of heavy vehicles in a traffic stream are 

likely to incur a higher fraction of severe crashes. Number of lanes has an opposing impact in 

the crash severity component than in the crash risk component. The variable has a negative 

impact on the proportion of crash severity outcomes, implying a lower likelihood of severe 

crashes on roadway segments with more lanes. 

Relative to roadway segments with posted speed limit<100 km/h, the posted speed 

limit≥100 km/h is associated with a higher proportion of severe crashes. The result could be 

attributed to the higher energy of collision on a higher posted speed limit location (Farmer, 

2017). The time elapsed variable (linear form) is found to be significant in the crash severity 

component only of the joint panel system. Over the last decade, there was a significant decline 

in road fatalities in Australia, but the trend in hospitalized/serious injury has increased since 

2013 (BITRE, 2020). The positive effect of the time elapsed variable in the crash severity 

component is perhaps picking up such an increasing trend of serious injury crashes. 

The effect of speeding ticket propensity, which addresses the effect of speed 

enforcement endogeneity in crash severity, is found to have a significant effect on the crash 
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severity component. In the final model, the speed propensity is specified as a scalar constant, 

while other exogenous variables and unobserved effects are found to be insignificant. The 

effect of speeding ticket propensity is negative, which indicates that the likelihood of severe 

crashes decreases with an increased propensity of major speeding citations. As explained in the 

crash risk component, a higher level of enforcement is likely to result in a greater probability 

of perceived apprehension among drivers. Thus, a general deterrent impact of speed 

enforcement is the reduction in speeding behavior. On the other hand, speeding is a major 

contributor to fatal crashes, and in fact, speeding is one of the ‘fatal five’ behavior of road 

trauma in Queensland (Salmon et al., 2016). Therefore, we can argue that a higher level of 

speed enforcement is likely to contribute towards less speeding behavior, which in turn is likely 

to result in lower incidences of serious crash events.    

 

4.3.4 Correlation Component 

The last row panel of Table 3 represents the correlation component of the joint panel model 

system. In the model, we consider different levels of (segment and observation) correlation 

effects across three dimensions. Further, we have also considered different levels of 

correlations between two sub-set dimensions at different levels (segment and observation). 

Moreover, the correlation structure is parameterized as a function of other exogenous variables 

(as discussed in Section 3.4). In the final specified model, the correlation structure, represented 

as a scalar constant term, at the roadway segment panel level is found to be significant. Further, 

as discussed in the methodology section, the correlation among the three components could be 

either positive or negative. The correlation structure that provides the best data fit is  

[[𝑆𝑝𝑒𝑒𝑑 𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡, 𝐶𝑟𝑎𝑠ℎ 𝑟𝑖𝑠𝑘, 𝐶𝑟𝑎𝑠ℎ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦] ~[𝜂𝑖𝑡, −𝜂𝑖𝑡 , 𝜂𝑖𝑡]] 

The correlation structure implies that the unobserved factors resulting in greater proportions of 

major speeding citations intrinsically incur lower crash risk but intrinsically incur higher 

proportions for severe crashes. In this study context, the associations among speed 

enforcement, crash risk and crash severity are examined at a roadway network level without 

consideration of specific driver-level traits. Thus, the absence of driver behavior data may be 

a significant source of unobserved heterogeneity in this empirical analysis. In the correlation 

component, the negative association between speed enforcement and crash risk is perhaps 

indicating that the majority of the drivers are compliant with the posted speed limit due to the 

higher level of perceived apprehension on the roadways with stricter enforcement levels. On 

the other hand, a portion of high-risk taking drivers are less likely to be compliant to traffic 

rules irrespective of the level of enforcement. High-risk takers (attributed to speeding, drink-

driving and/or disobeying traffic rules) are likely to be involved in more severe crashes (Gebers 

and Peck, 2033). In fact, Factor (2014) found a strong positive correlation between the number 

of tickets drivers receive and their subsequent involvement in severe crashes. Thus, in this 

study, the positive correlation between speed enforcement and crash severity components is 

perhaps indicating the unobserved effects of risky driving behavior and the consequent crash 

severity outcomes irrespective of high enforcement levels.   

None of the other specifications in the correlation component are found to be 

significant. Other exogenous variables are also found to be insignificant in the correlation 

component. Overall, the results clearly highlight the importance of accommodating the 

common unobserved factors influencing speed enforcement and safety.  

 

4.4 Model Implications 
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4.4.1 Elasticity Effects 

To quantify the effects of parameter estimates of the joint model (presented in Section 4.3), we 

have computed aggregate level “elasticity effects” of variables in the speed enforcement, crash 

risk and crash severity components (see Eluru and Bhat (2007) for a detailed discussion of 

methodology for computing elasticities). The elasticity effects are computed by changing the 

value of indicator variables from zero (one) to one (zero), by considering 10% increase in 

continuous variables or by one unit increase for ordinal variables. The elasticities are computed 

for the three components simultaneously considering 300 realizations of parameters (mean and 

the associated standard deviation) employing normal distributions, and the values are presented 

as the average measure of elasticities in Figure 2. In speed enforcement and crash severity 

components, the elasticity effects can be interpreted as the percentage change in the 

probabilities of dependent variable alternatives due to the changes in an exogenous variable 

(other characteristics being equal). In the crash risk component, elasticity effects can be 

interpreted as the percentage change in expected number of crashes due to a change in an 

exogenous variable (other characteristics being equal).  

Several important observations can be made from the elasticity estimates presented in 

Figure 2. With regards to the speed enforcement component, the most important factors 

associated with major speeding citations are the high posted speed limit, rolling/mountainous 

terrain, and presence of shoulder. On the other hand, unsealed pavement condition and 

operation duration of speed camera are the two major factors associated with less serious 

speeding citations. In the crash risk component, roadway segment with unsealed condition and 

AADT have higher elasticities indicating 32.76% and 20.86% increase in expected number of 

crashes, respectively. With respect to crash severity component, the elasticity effects for 

unsealed pavement condition and high posted speed limit show 52.67% and 47.04% increase 

in fatal crash risk proportions. Rolling/mountainous terrain and the presence of shoulder are 

the most important variables associated with the reduction in fatal crash proportions.  

 It is important to mention here that the exogenous variables in the speed enforcement 

component have indirect effects10 (also referred to as mediating effect) on crash risk and crash 

severity components through the latent propensity function of speed enforcement components. 

The independent model ignores such common causes, which may result in spurious effect of 

mediator on the associated dependent variable. The exogenous variables in the safety 

components which are not mediated by speed enforcement propensity can be referred to as 

direct effect. Thus, the total effect of a variable sums up to direct and indirect effects. The type 

of mediating effects of exogenous variables in the safety components is presented in Figure 2, 

along with the elasticity effects. 

In the safety components, high posted speed limit (≥100 km/h), rolling/mountainous 

terrain, presence of shoulder, AADT, proportion of heavy vehicle, operational duration for 

speed camera and unsealed pavement condition have indirect effects. Among the variables, 

AADT is likely to lead to higher crash risk and higher citations of major speeding events. Such 

a common cause could be attributed to drivers’ perception of loosing time in heavier traffic 

which may lead to higher speeding behavior resulting in higher crash risk. On the other hand, 

the high posted speed limit indicator is likely to lead to higher citations of major speeding 

events while also contributing towards an increase in the proportions of both fatal and major 

injury crashes. The potential common cause for such outcome could be attributed to longer 

duration of speeding events on higher functional class of roads with a high posted speed limit. 

As argued in Kong et al. (2020), the speeding behavior of drivers tends to last longer in 

roadways with higher functional class. The higher construction and operational standards of 

 
10 According to Sobel (1990), an indirect effect represents a causal hypothesis whereby an independent variable 

causes a mediating variable, which, in turn, causes a dependent (response/outcome) variable. 
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these roads might provide drivers with a false sense of safety, which in turn may result in longer 

duration speeding events. Such unsafe behavior may contribute towards serious speeding 

events resulting in serious crash outcomes.  
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Figure 2: Elasticity effects and Type of Mediating Effects (I=Indirect Effect; D=Direct Effect; N= No Effect) 
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4.4.2 Policy Scenario Analysis 

From the parameter estimates presented in Section 4.3, it is evident that speed 

enforcement has a causal effect on safety. To illustrate the implications of such intricate results, 

we employ the estimates from the best-specified model (presented in Table 3) to generate 

hypothetical scenarios with different speed enforcement levels (while other characteristics 

remain equal) and compute the associated elasticity effects for the safety components. In doing 

so, it is important to realize that in the joint modeling system, the speed enforcement levels are 

represented by the latent propensity function (𝑠𝑖𝑡
∗ ) in the safety components (in Equations 5 and 

6). Therefore, to impose a change in the speed enforcement level, we rescale the latent 

propensity of the speed enforcement component (𝑠𝑖𝑡
∗  in Equation 1, 5 and 6) following Jackman 

(2000) as: 

𝕊𝑖𝑡
∗ = 𝓂 ∗ 𝑠𝑖𝑡

∗ + 𝔤 (15)  

Where 𝕊𝑖𝑡
∗  is the rescaled latent propensity function of speed enforcement, 𝓂 is the 

rescaling constant and 𝔤 is the location shift11. Finally, with rescaled 𝕊𝑖𝑡
∗ , the elasticities 

(percentage changes) in speed enforcement levels, crash risk and crash severity levels can be 

computed as: 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑙𝑒𝑣𝑒𝑙𝑠 = [
𝒫̂(𝑘𝑡|𝒙𝑖𝑡, 𝕊𝑖𝑡

∗ ) − 𝒫(𝑘𝑡|𝒙𝑖𝑡, 𝑠𝑖𝑡
∗ )

𝒫(𝑘𝑡|𝒙𝑖𝑡, 𝑠𝑖𝑡
∗ )

] ∗ 100 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑐𝑟𝑎𝑠ℎ 𝑟𝑖𝑠𝑘

= [
{𝜇̂𝑖𝑡 = 𝔼(𝑐𝑖𝑡|𝒛𝑖𝑡, 𝕊𝑖𝑡

∗ )} − {𝜇𝑖𝑡 = 𝔼(𝑐𝑖𝑡|𝒛𝑖𝑡, 𝑠𝑖𝑡
∗ )}

{𝜇𝑖𝑡 = 𝔼(𝑐𝑖𝑡|𝒛𝑖𝑡, 𝑠𝑖𝑡
∗ )}

] ∗ 100 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑐𝑟𝑎𝑠ℎ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙𝑠

= [
ℱ̂(𝑗𝑡|𝓛𝑖𝑡, 𝕊𝑖𝑡

∗ ) − ℱ(𝑗𝑡|𝓛𝑖𝑡, 𝑠𝑖𝑡
∗ )

(𝑗𝑡|𝓛𝑖𝑡, 𝑠𝑖𝑡
∗ )

] ∗ 100 

(16)  

where 𝑠𝑖𝑡
∗  and 𝕊𝑖𝑡

∗  are the original and rescaled latent propensity function for speed 

enforcement component. 𝒫 and 𝒫̂ are probabilities for speeding citation level 𝑘 specific to 𝑠𝑖𝑡
∗  

and 𝕊𝑖𝑡
∗ , respectively. 𝜇 and 𝜇̂ are expected crash count specific to 𝑠𝑖𝑡

∗  and 𝕊𝑖𝑡
∗ , respectively. ℱ 

and ℱ̂ are probabilities for severity 𝑗 specific to 𝑠𝑖𝑡
∗  and 𝕊𝑖𝑡

∗ , respectively. The rest of the terms 

are defined in Section 2. In generating the hypothetical scenarios, we have considered changes 

in speed enforcement levels with respect to ‘changes in proportion of speeding citations’ and 

changes in ‘operation duration for speed camera’12. Specifically, the hypothetical scenarios 

considered are: 

 

 
11 As argued in Jackson (2000), “It is sometimes possible to re-define the latent variable as substantively 

meaningful quantity” leveraging different identification constraints imposed in estimating ordered models. Thus, 

in this study, we have redefined the speeding enforcement propensity in generating a different levels of speeding 

proportions relative to observed ones.  
12 Operational duration for speed camera has indirect effect on safety components through the latent propensity 

function of speed enforcement and hence are likely to generate different safety profile with different operational 

duration. 
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Scenario 1: 𝓂 = 0.5, 𝔤 = −0.0513, 𝕆𝔻 

Scenario 2: 𝓂 = 1.15, 𝔤 = 0.01, 𝕆𝔻 

Scenario 3: 𝓂 = 1.25, 𝔤 = 0.02, 𝕆𝔻 

Scenario 4: 𝕆𝔻 +100 hour for all 𝑖 
Scenario 5: 𝓂 = 1.25, 𝔤 = 0.02 , 𝕆𝔻 +100 hour for all 𝑖 
Scenario 6: 𝓂 = 1.25, 𝔤 = 0.02, 𝕆𝔻 +100 hour for randomly selected 266 (out of 

521) 𝑖 
Scenario 7: 𝓂 = 1.25, 𝔤 = 0.02, [(𝕆𝔻 +200 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 

in 2010) > 2}] + [(𝕆𝔻 +100 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) = 1 or 2}] + 

[(𝕆𝔻 +0 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) ≤ 0}] 

Scenario 8: 𝓂 = 1.25, 𝔤 = 0.02, [(𝕆𝔻 +200 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 

in 2010) > 2}] + [(𝕆𝔻 +100 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) = 1 or 2}] + 

[(𝕆𝔻 * 0.5) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) ≤ 0}] 

Scenario 9: 𝓂 = 1.25, 𝔤 = 0.02, [(𝕆𝔻 +400 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 

in 2010) > 2}] + [(𝕆𝔻 +200 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) = 1 or 2}] + 

[(𝕆𝔻 * 0.5) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) ≤ 0}] 

Scenario 10: 𝓂 = 1.30, 𝔤 = 0.02, [(𝕆𝔻 +200 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 +
𝑐𝑖3 in 2010) > 2}] + [(𝕆𝔻 +100 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) = 1 or 2}] + 

[(𝕆𝔻 * 0.5) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) ≤ 0}] 

Scenario 11: 𝓂 = 1.30, 𝔤 = 0.02, [(𝕆𝔻 +400 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 +
𝑐𝑖3 in 2010) > 2}] + [(𝕆𝔻 +200 hour) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) = 1 or 2}] + 

[(𝕆𝔻 * 0.5) if {(𝑐𝑖2 + 𝑐𝑖3 in 2013) − (𝑐𝑖2 + 𝑐𝑖3 in 2010) ≤ 0}] 

 

where 𝓂 is the rescaling constant and 𝔤 is the location shift in Equation 15, 𝕆𝔻 is the 

operational duration for speed cameras, 𝑖 is roadway segment, 𝑐𝑖2 is the number of major injury 

crashes for segment 𝑖 and 𝑐𝑖3 is the number of fatal injury crashes for segment 𝑖. The computed 

elasticities (following Equation 16) in speeding and safety levels for the considered scenarios 

are presented in Figure 3. 

For the policy scenario illustration, at first, we have imposed changes in speeding 

citations by rescaling the latent propensity of the speed enforcement component (Scenarios 1 

through 3). From these scenarios, we can observe that changes in the proportion of speeding 

citations have a greater impact on the changes in the proportion of fatal injury crashes. An 

increase in minor speeding citations is likely to contribute towards an increase in crash risk and 

an increase in the proportion of serious injury categories. However, a higher level of major 

speeding citations is likely to contribute towards reduction in crash risk, major and fatal injury 

proportions. As is evident from Figure 3, about a 55% increase in the proportion of major 

speeding citations is likely to contribute towards more than 9% reduction in crash risk and more 

than 33% reduction in fatal crash proportion. The amount of kinetic energy produced by a crash 

is directly proportionate to speed, thus a higher speeding level is likely to result in serious crash 

outcomes. As such, stricter enforcement of major speeding violations is likely to contribute 

towards a greater reduction in crash severity than to the total number of crashes (as also argued 

in Elvik, 2012). 

The second attribute of the speed enforcement measure is ‘operation duration for speed 

camera’. In Scenario 4, we have considered an increase in operation duration across all 

roadway segments. From this scenario, we can observe that an increase in operation duration 

without imposing a stricter level of speed enforcement might not be effective in achieving 

 
13 Our major focus is on understanding the trade-off between changes in speeding ticket levels and safety levels. 

Therefore, in this study, we have chosen arbitrary numbers for m and c to generate different speed enforcement 

levels. To be sure, such exercise could be demonstrated for any defined levels of speed enforcement. 
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safety gain. Therefore, in the third step of policy analysis, we have imposed changes in the 

operation duration of speed cameras along with changes in speeding citations by rescaling the 

latent propensity (Scenarios 5 through 9). In these scenarios, the same rescaling parameters as 

in Scenario 3 are considered, and hence, Scenario 3 serves as the base case for comparison. 

From these scenarios, we can observe that imposing both speed enforcement measures is likely 

to have an overall safety gain. However, the safety gain is relatively lower in these scenarios 

compared to the base case scenario. This is expected as an increase in operation duration is 

likely to decrease the serious speeding citations relative to the base condition. Hence, the level 

of safety gains in fatal and major injury categories are also likely to be lower in these scenarios 

relative to the base case scenario (Scenario 3).  

It is worthwhile to notice that an improved safety gain is possible by increasing the 

operation duration of speed cameras where safety situation got worse over time. From 

Scenarios 7 and 8, we can see that if we decrease the operation duration of speed camera for 

the locations with unchanged/improved safety situation by 50%, keeping the same level of 

operation duration for locations with worsening safety conditions, we are likely to have 

approximately 2% safety gain in crash risk and fatal injury proportions. On the contrary, from 

Scenarios 7 and 9, we can see that if we decrease the operation duration of speed cameras for 

the locations with unchanged/improved safety situation by 50% while increasing the operation 

duration for locations with worsening safety situation, we are likely to have approximately 2% 

safety loss in crash risk and fatal injury proportions. To delve into this further, in Scenarios 10 

and 11, we have rescaled the speeding citation propensity with different parameters to achieve 

a higher proportion of major speeding tickets keeping the operation duration of the speed 

camera at the same level as in Scenarios 8 and 9, respectively. From Scenarios 10 and 11, we 

can observe that stricter enforcement of serious speeding offences has greater safety gain in 

reducing crash risk and crash severity levels; however, the maximum safety gain might be 

possible for an optimal operation duration of speed camera balanced across targeted locations14. 

From the policy scenario analysis, we can argue that stricter speed enforcement for 

serious level of speeding offenses is likely to have greater safety benefits in reducing crash 

severity levels. However, the effect is not as pronounced for reducing the overall crash risk. 

However, such stricter measures could be imposed by increasing the operation duration of 

speed cameras as it would allow citing of more offenders over a longer time. In doing so, a 

targeted increase in operation duration along with stricter citations for major speeding is likely 

to have significant safety gain. Moreover, there are trade-offs in safety gains due to the changes 

in speed enforcement levels (changes in the proportion of speeding citations and changes in 

operational duration for speed cameras). Thus, we can argue that identification of optimal 

operational duration of speed camera and enforcement levels are imperative in achieving 

targeted safety benefits.  

 
14 The analysis for the identification of optimal operational duration of speed camera in achieving the targeted 

safety gain is beyond the scope of this study. Our major focus of this study is to identify the causal relationship of 

speed camera enforcement with safety. Such extension could be an avenue for future research while considering 

the outcome of this study as a base case condition.   
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Figure 3: Policy Scenario Analysis Illustration (Sc= Scenario,  scenarios are described in Section 4.4.2)
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5 CONCLUSION 

Speeding is one of the fatal five characteristics (speeding, drink driving, fatigue, no 

restraints and distraction) of road traffic crashes. It significantly contributes towards the 

increase in crash risk and crash severity outcomes. Different speed enforcement measures are 

devised and implemented all around the world in dealing with these serious safety concerns. In 

order to devise an optimal solution to combat speeding, it is of utmost importance to quantify 

the relative magnitude of the impact of speed enforcement on safety while controlling for other 

exogenous variables (such as traffic exposure, roadway geometry, and situational attributes). 

As such, the current study contributes towards existing safety literature by presenting an 

econometric approach that estimates the causal effect of speed enforcement on safety while 

also addressing the endogeneity issue by employing an instrumental variable approach in 

conjunction with a maximum simulated likelihood approach. In our study, safety enforcement 

was represented as the number of speeding tickets issued from the speed camera systems, while 

safety profile was presented as two dimensions of interest, including total crash risk and crashes 

by injury severity levels. The study employed crash data and speed enforcement data from 

Queensland, Australia, for the years 2010 through 2013. The joint model was estimated by 

employing a correlated panel random parameters model with speed enforcement endogeneity. 

In estimating the causal effect of speed enforcement on safety, the empirical analysis proposed 

in this study addressed three different econometric issues, including (1) correcting for speed 

enforcement endogeneity in crash risk and crash severity, (2) observation level unobserved 

heterogeneity (sourced from panel structure of dataset), and (3) other unobserved heterogeneity 

(sourced from missing information).  

From the empirical analysis, it was found that the effect of speeding ticket propensity 

was endogenous in both crash risk and crash severity components. The effect of speed 

enforcement propensity was found to be negative in crash risk and crash severity components 

which indicated that the likelihoods of total crash risk and higher severity outcomes decrease 

with an increase in the latent propensity of speeding citations. The result could be an indication 

that stringent enforcement of posted speed limits is highly likely to improve overall safety in 

these locations. The study highlighted the importance of incorporating the effect of endogeneity 

in establishing the causal relationship between speed enforcement and safety.  

From elasticity effects computation, it was observed that the most important factors 

associated with major speeding citations were the high posted speed limit, rolling/mountainous 

terrain, and presence of shoulder. On the other hand, unsealed pavement condition and 

operation duration of speed camera were the two major factors associated with less serious 

speeding citations. In the crash risk component, roadway segment with unsealed condition and 

AADT had higher elasticities, respectively. With respect to crash severity component, the 

elasticity effects for unsealed pavement condition and high posted speed limit were associated 

with greater increase in fatal crash risk proportions. Rolling/mountainous terrain and the 

presence of shoulder were the most important variables associated with the reduction in fatal 

crash proportions.  

From the policy scenario analysis, we found that stricter speed enforcement for serious 

level of speeding offenses is likely to have greater safety benefits in reducing crash severity 

levels. Such stricter measures could be imposed by increasing the operation duration of speed 

cameras as it would allow citing of more offenders over a longer time. In doing so, a targeted 

increase in operation duration along with stricter citations for major speeding is likely to have 

significant safety gain. Moreover, there were trade-offs in safety gains due to the changes in 

speed enforcement levels (changes in the proportion of speeding citations and changes in 

operational duration for speed cameras). Thus, we argued that identification of optimal 

operational duration of speed camera and enforcement levels are imperative in achieving 
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targeted safety benefits. The outcome of the study will allow the decision-makers to identify a 

robust resource allocation and speed camera deployment plan. The study is not without 

limitations. In the current study, the models were estimated without considering the effect of 

spatial heterogeneity, which could an avenue for future research. 
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