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ABSTRACT 1 

In this study, we examine the factors affecting Chicago Transportation Networking Companies 2 

(TNC) pricing and destination choice behavior. While trip fare has been examined from various 3 

perspectives, earlier fare models have not considered an exhaustive set of independent variables. 4 

Further, trip fare decisions are significantly influenced by trip destination. Hence, in our study a 5 

joint model of trip fare and destination choice is proposed. The joint model system – linear 6 

regression for fare and multinomial logit model for destination - is developed based on Chicago 7 

TNC weekday trip data from January 2019 to December 2019. A wide range of origin and 8 

destination specific land use and built environment factors, transportation infrastructure attributes, 9 

and weather attributes were found to be significant in the model system. Based on log-likelihood 10 

(LL) and Bayesian Information Criterion (BIC) measures, the model performance of the proposed 11 

joint model is found to be superior compared to independent fare and destination models. The 12 

applicability of our proposed fare and destination choice model is illustrated through fare 13 

prediction and destination elasticity analysis. The framework can potentially be employed to 14 

generate TNC fare for inclusion in Level of Service measures for TNC model in the mode choice 15 

model.  16 

 17 

Keywords: Transportation Networking Companies (TNC), Joint Linear Regression (LR) and 18 

Multinomial Logit (MNL) Model, Prediction, Elasticity Analysis 19 

 20 

 21 

  22 
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INTRODUCTION 1 

Transportation Networking Companies (TNCs) are reshaping the transportation sector with 2 

operations in more than 10,000 cities across the world (1). As of 2021, the global ride share market 3 

is valued at 85.8 billion and is predicted to be valued at 185.1 billion by the end of 2026 (2). In a 4 

recent report, TNC heavyweight Uber (3) indicated that about 118 million users have used Uber 5 

service at least once a month in 2021. The magnitude of the user base, considering the ongoing 6 

COVID-19 pandemic in 2021, is illustrative of the major influence of TNC on mobility in urban 7 

regions. TNCs are emerging as makeshift public transport options across many urban regions 8 

across the world including Chicago (4), San Francisco (5), Boston (6), Santiago, Chille (7), 9 

Chengdu, China (8), and Hanover, Germany (9). As TNCs become an increasingly significant 10 

transportation mobility alternative across the world, there is growing literature examining TNC 11 

impact on the various facets of the transportation system.  12 

An important consideration with the growing adoption of TNC alternatives is the inclusion 13 

of these systems within urban travel demand modeling frameworks. Several research efforts have 14 

examined the impact of TNCs in the context of demand generation and distribution across the 15 

urban region. However, incorporating TNCs within the current mode choice frameworks across 16 

urban regions is not typically explored. The main reason it is challenging to develop mode choice 17 

frameworks for TNCs is the lack of an easy to adopt framework for generating Level of Service 18 

(LOS) measures. The generation of travel time measure is relatively easy as automobile travel 19 

times can be directly applied for TNC travel times (for solo passengers). However, generating the 20 

cost measure is not straightforward. The proposed study is geared towards tackling this challenge 21 

of predicting trip level TNC fare that can be incorporated within travel demand model frameworks 22 

for generating travel cost measure for TNC alternatives in mode choice. In modeling trip fare, the 23 

current study postulates that TNC user’s selection of a trip is closely linked with destination and 24 

the associated fare. For example, the destination attractiveness of a location with high density of 25 

hospitality venues (hotels/motels) is quite high. At the same time, the fare to such destinations 26 

might also be higher due to the demand. This is an example of how a destination attribute affects 27 

fare and destination choice. These can be readily considered in fare and destination models. 28 

However, it is also likely that factors such as local events (such as a concert) occurring in a 29 

destination might affect fare and demand. The information on such events might not be available 30 

for modeling. Hence, the influence of such unobserved information can be considered in the form 31 

of common unobserved factors affecting fare and destination. Further, given the ease with which 32 

TNC rides can be selected on smartphone apps, it is possible that TNC users can revisit their choice 33 

of destination in response to the fare levels shown in the app. With these considerations, in our 34 

study, we develop a joint model of fare and destination choice where trip fare is modelled using 35 

linear regression model (LR) and destination choice is modelled using a multinomial logit model 36 

(MNL). The model estimation exercise is conducted using TNC data from Chicago region. 37 

Specifically, weekday trip data spanning January 2019 through December 2019 is employed for 38 

our analysis. Trip fare and destination data are further augmented with a host of independent 39 

variables including trip attributes, origin attributes, destination attributes, land use and built 40 

environment attributes, socio-demographic attributes, and weather attributes. The model 41 

estimation process is augmented by elasticity analysis to illustrate how the proposed model can be 42 

employed to understand the influence of various independent variables on fare and destination 43 

selection.  44 

The rest of the paper is organized as follows: Literature review section summarizes relevant 45 

literature and positions the current study. Data section documents the data processing procedures 46 
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and provides an overview of the data used in our analysis. The mathematical details of the models 1 

are described in the following section. Model Estimation Results section describes the results from 2 

the models. An elasticity analysis illustrating the impact of independent variables is documented 3 

in the next section. Conclusions section presents an overview of the paper and identifies potential 4 

directions for future research. 5 

 6 

LITERATURE REVIEW AND CURRENT STUDY IN CONTEXT 7 

We present an overview of earlier research efforts on the two TNC dimensions of interest in our 8 

research – trip fare and destination.  9 

TNC fare is evaluated in two ways in earlier research. First, fare is considered as an 10 

independent variable affecting the decision to use TNC alternatives. In these studies, various TNC 11 

associated decisions such as solo or pooled trip (10, 11), competition between transit and TNC (5, 12 

12, 13), role of income in affecting TNC usage (12, 14, 15), driver economics and turnover (16–13 

18) and satisfaction with TNC (12, 19, 20) are examined. Important findings from these studies 14 

include: (a) high income individuals prefer TNC to transit (12, 15), (b) higher TNC pricing power 15 

is observed in highly walkable areas (21, 22), (c) turnover for ridehailing services is significantly 16 

high (16), (d) sharing TNC demand and supply information with drivers may lead to higher 17 

satisfaction level among drivers (20), and (e) a higher inclination among younger individuals for 18 

using TNC(5, 12, 23). Second, studies examined dynamic pricing policy (or surge pricing) in their 19 

analysis of TNC systems. In these studies, fare is modeled as a continuous variable within an 20 

optimization framework (24–26). The approaches provide elegant mathematical formulations for 21 

profit maximization or demand imbalance minimization in the context of a equilibrium based 22 

optimization models to estimate price and/or demand. The mathematical formulations are 23 

applicable under a host of assumptions such as restricted number of TNCs (25), neglecting spatial 24 

variations (27), the distances in the network are equidistant (24), and limits on the number of modal 25 

alternatives (for example only Drive vs TNC in Afifah and Guo (25)). The demand, price and 26 

model choice equations in these approaches are simplified and focus on a small set of variables 27 

such as trip length (11). While these approaches are very helpful, applying these methods for large 28 

urban regions with temporal and spatial variations are not readily practical. In our review, we 29 

found only 3 studies that developed direct fare models using TNC data (11, 28, 29) where a small 30 

set of variables such as trip distance, trip time, tolls and additional charges were considered.  31 

Destination selection behavior has been examined in multiple ride sharing domains 32 

including bicycle-sharing system (30–32), taxi (33–35), TNC and Shared Autonomous Vehicle 33 

(SAV) (36, 37). The preferred approach employed at the disaggregate level is the Multinomial 34 

Logit Model (MNL) based on the random utility maximization approach (30). Other model 35 

structures employed for analysis of destination dimensions such as Traffic Analysis Zone (TAZ) 36 

(38) includes a Generalized Spatially Correlated Logit (GSCL) Model. In some studies, aggregate 37 

destination allocations are analyzed using Multiple Extreme Continuous Extreme Value 38 

(MDCEV) models (32). Important findings on destination choice preferences include: (a) 39 

destination choice is highly correlated with employment status (39), (b) presence of high demand 40 

in the neighborhood is a strong contributor of demand (32), (c)lower fare price increases the utility 41 

of a destination (40), (d) duration of stay and home location prior to the activity affect destination 42 

choice (41), and (e) destination choice behavior is influenced by the perceived destination image 43 

from individual’s social network (42).  44 

 45 
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Contributions of the Current Study 1 

Several studies have recognized that pricing algorithms are influenced by spatio-temporal demand 2 

(such as demand at origin in preceding 15 minutes), origin and destination land use and built 3 

environment factors, transportation infrastructure attributes, and weather attributes (24, 43). 4 

However, none of the earlier research studies have incorporated a wide range of attributes in 5 

modeling TNC fare. The first contribution of our study is to develop a comprehensive trip fare 6 

model while accounting for a host of independent variables. In this study, we recognize that trip 7 

fare values are closely aligned with trip destination. Hence, the second contribution of our study 8 

is to develop a joint model system that accounts for common unobserved factors affecting fare and 9 

destination. The study develops a joint linear regression (LR) for fare and multinomial logit (MNL) 10 

model for destination labelled as the LR-MNL model. The model system is developed using TNC 11 

trip data from Chicago for the year 2019.  Chicago data has been employed in the literature to 12 

study various TNC dimensions including spatial demand variations and willingness to use pool 13 

alternative (10, 21, 44). Finally, the current study contributes empirically by allowing us to 14 

understand Chicago TNC pricing model and destination choice behavior. The framework can 15 

potentially allow us to generate TNC fare for mode choice model. In application, the model 16 

developed can be employed in a sequence – destination choice outcome followed by trip fare 17 

prediction. The model framework can also allow us to identify systemic differences across the 18 

Chicago city in pricing (if any) and how various destination attributes influence destination 19 

preferences.  20 

 21 

DATA PREPARATION 22 

Data Source 23 

City of Chicago has made TNC data available for analysis beginning in November 2018. As of 24 

2019, three TNCs were operating in the Chicago area: Uber, Lyft and Via (45). For this current 25 

study, daily weekday trip data of more than 50 million records for 12 months starting from January 26 

2019 to December 2019 was compiled for our analysis(45). Origin and destination for each of 27 

these trips have been aggregated at the census tract level while trip times (start time & end time), 28 

trip fare are rounded to nearest 15 minutes and 2.50 USD respectively. The trip dataset is further 29 

augmented by trip attributes such as trip start & end time, trip distance, shared trip indicator 30 

provided by Transportation Network Providers-Chicago Data Portal (45), land use and built 31 

environment variables including distance from Central Business District (CBD), residential area, 32 

commercial area, institutional area, recreational area accessed from Chicago Data portal and 33 

Chicago Metropolitan Agency for Planning (CMAP) (44, 46), Transportation infrastructure 34 

attributes including bike lane density, street length, number of bus stops, number of transit stations, 35 

number of divvy stations walk score, transit score compiled from Chicago Data portal and Chicago 36 

Metropolitan Agency for Planning(CMAP) (45, 46) and sociodemographic attributes such as low 37 

income indicator, employment density drawn from US Census Bureau (47) and weather attributes 38 

such as snow depth obtained from National Climatic Data Center (NCDC) (48). A summary of the 39 

independent variables is provided in Table 1. 40 

 41 

Sample Formation 42 

The data processing procedures were implemented in the following sequence. First, records with 43 

missing and inconsistent information were dropped from the dataset. Second, trips that originated 44 

or destined outside of Chicago city area were removed from the dataset. Finally, weekday trips 45 

were retained amounting to more than 44 million of records. The spatial distribution of weekday 46 
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trips by origin and destination census tract are presented in Figure 1(a) and Figure 1(b) 1 

respectively. Employing the full set of records (44 million) would increase computational time for 2 

modeling exercise significantly. Further, using such large datasets in econometric models might 3 

lead to overfitting. To address these issues, we randomly select 25 samples of 10,000 records for 4 

our model estimation exercise. These samples will allow us to ensure that the parameters estimated 5 

using one sample are not significantly different from other samples of data. Towards this end, we 6 

conduct a rigorous statistically valid comparison of model estimates across all 25 samples prior to 7 

selecting a sample for further analysis.  8 

For the destination choice models, all census tracts in the region are potential alternatives. 9 

In our data for Chicago we identified 801 census tracts (49). From this broad set of alternatives, 10 

destination choice models are developed employing a random sample of 30 alternatives (inclusive 11 

of the chosen alternative). Similar random sampling process has been adopted in earlier literature 12 

for destination choice models(see 57–60 for details).  13 

 14 

TABLE 1 Descriptive Statistics of Variables 15 

Variables Variable Descriptions 
Descriptive Statistics 

Mean Std. dev. 

DEPENDENT VARIABLES 

Trip fare model 

Trip fare Ln (Trip fare) 2.079 0.577 

INDEPENDENT VARIABLES (CONTINUOUS) 

Trip Attributes 

Trip distance Distance traveled in each trip 4.149 4.129 

Network distance 
Ln (Shortest distance between census 

tracts) 
1.895 0.494 

Demand in last 15 minutes at origin 
Ln (Demand in last 15 minutes in each 

origin census tract)  
2.006 1.482 

Demand in last 15 minutes at  

    destination 

Ln (Demand in last 15 minutes in each 

destination census tract) 
2.032 1.537 

Land Use and Built Environment Attributes 

Network distance from CBD 
Ln (Network distance to census tract 

from Central Business District (CBD)) 
1.871 0.560 

Residential area 
Total residential area in each census 

tract (area/100) in acre 
0.602 0.519 

Commercial area 
Total commercial area in each census 

tract (area/100) in acre 
0.115 0.174 

Institutional area 
Total institutional area in each census 

tract (area/100) in acre 
0.113 0.280 

Recreational area 
Total recreational area in each census 

tract (area/100) in acre 
0.074 0.232 

Land use mix 

Land use mix = 

[
− ∑ (𝑃𝑘(𝑙𝑛𝑃𝑘))𝑘

𝑙𝑛𝑁
] 

, where k is the category of land-use, p 

is 

the proportion of the developed land 

area for specific land-use, N is 

the number of land-use categories 

0.134 0.045 

Transportation Infrastructure Attributes 
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Variables Variable Descriptions 
Descriptive Statistics 

Mean Std. dev. 

Bike lane density 
Length of bike lane in each census tract 

per acre (Density*100) (mi/acre) 
0.321 0.352 

Length of street Length of street in each census tract 5.597 4.953 

Number of bus stops 
Number of bus stops in each census 

tract 
12.486 8.330 

Number of L stations 
Number of stations of L transit system 

in each census tract 
0.156 0.529 

Number of divvy stations 
Number of divvy stations in each 

census tract 
1.029 1.441 

Walk score 
Walk score (a measure of serviceability 

of walkability) in each census tract 
82.397 26.225 

Transit score 

Transit score (a measure of 

serviceability of public transit) in each 

census tract 

8.260 0.996 

Sociodemographic Attributes 

Employment density 
Number of employments in each 

census tract per acre (Density/100) 
0.236 0.381 

Weather Attributes 

Snow depth 

Standard score (
𝑥−µ

𝜎
) of snow depth in 

each census tract. 

Where x is the observed value of snow 

depth, µ is the mean of the distribution 

of the values of snow depth and σ is the 

standard deviation of the distribution of 

the values of snow depth 

0.004 1.034 

INDEPENDENT VARIABLES (CATEGORICAL) 

Variables Variable Descriptions Freq. Percentage 

Trip Attributes 

Trip starts at AM peak Trip starts within AM peak period 1965.000 19.650 

Trip starts at PM peak Trip starts within PM peak period 2560.000 25.600 

Trip starts at other time Trip starts in other time period 5475.000 54.750 

Trip ends at AM peak Trip ends within AM peak period 1876.000 18.760 

Trip ends at PM peak Trip ends within PM peak period 2481.000 24.810 

Trip ends at other time Trip ends in other time period 5643.000 56.430 

Shared trip indicator 

Yes Trip authorized as shared  1507.000 15.070 

No Trip is not authorized as shared 8493.000 84.930 

Sociodemographic Attributes 

Low income indicator 

Yes 
Census tract with median income under 

$58 thousand USD (15th percentile) 
466.000 58.543 

No 
Census tract with median income over 

$58 thousand USD (15th percentile) 
330.000 41.457 

 1 

 2 

Figure 1 Total number of weekday trips (a) originated; (b) destined3 
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ECONOMETRIC METHODOLOGY 1 

In this study, we develop a joint trip fare and trip destination model where trip fare is modelled 2 

using a linear regression model and trip destination is modelled using a multinomial logit model. 3 

Let, 𝑞 (=1, 2, 3,…., Q=10,000) be an index to represent each individual trip, 𝑦𝑞 be an index to 4 

represent the fare associated with a trip 𝑞, and 𝑠 (= 1, 2, …, S=30) be an index to represent 5 

destination alternatives (census tracts). In the following sections, we describe two model 6 

components and then present estimation procedure for the joint model. 7 

   8 

Trip Fare Model 9 

In the linear regression formulation, we express 𝑦𝑞 as a function of independent variables 𝑧𝑞 as 10 

follows: 11 

𝑦𝑞 =  (𝛼′ + 𝜂′)𝑧𝑞 +  𝜀𝑞 (1) 

 12 

where 𝛼′ is a vector of coefficients to be estimated, 𝜂 represents the effect of common 13 

unobserved factors modifying the impact of 𝑧𝑞 in the trip fare and trip destination models (see 14 

Equation 2) and 𝜀𝑞 is an idiosyncratic random error term assumed independently normally 15 

distributed with variance 𝛾2. Now, we can express the probability of a trip, 𝑞 having fare, 𝑦𝑞 as 16 

follows: 17 

𝑃(𝑦𝑞) =  
ϕ [

𝑦𝑞 − (𝛼′ + 𝜂′)𝑧𝑞

𝛾 ]

𝛾
   

(2) 

where ϕ(.) is the standard normal probability distribution function. 18 

 19 

Trip Destination Model 20 

In the MNL model, the random utility of an alternative 𝑠 for trip q takes the following form: 21 

 22 

𝑢𝑞𝑠 =  (𝛽′ + 𝜂′)𝑥𝑞𝑠 +  Є𝑞𝑠 (3) 

 23 

where 𝑢𝑞𝑠 is the utility obtained by user 𝑞 by choosing census tract 𝑠 as the destination 24 

from a choice set of 30 census tracts. 𝑥𝑞𝑠 is a vector of attributes and β is a vector of model 25 

coefficients to be estimated. The random error term, Є𝑞𝑠, is assumed to be independent and 26 

Gumbel-distributed identically across the dataset. In random utility maximization (RUM) 27 

approach, a user making the trip, q will choose a census tract as the destination that offers the 28 

highest utility. Therefore, the probability expression takes the following multinomial logit form: 29 

 30 

𝑃(𝑠𝑞) =
𝑒𝑥𝑝 ((𝛽′ + 𝜂′)𝑥𝑞𝑠)

∑ 𝑒𝑥𝑝 ((𝛽′ + 𝜂′)𝑥𝑞𝑠)𝑆
𝑠=1

 (4) 

 31 

The destination alternatives in our study context are not labelled (i.e., they are not typical 32 

categorical alternatives such as travel mode (car, bike)). Hence, our model estimation approach 33 

considers a generic parameter structure across all alternatives. The approach will allow for 34 

parameter estimation for variables that vary across destination alternatives such as destination 35 

employment or destination land use mix. In the model structure, accounting for variables at the 36 

trip level such as trip start time or origin destination can be considered as an interaction term with 37 
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variables varying across the destination (such as Trip starts in AM peak x Number of divvy stations 1 

in CT).  2 

 3 

Estimation Procedure 4 

To complete the model structure of the Equations (1) and (3), it is necessary to define the structure 5 

for the unobserved vector 𝜂. In this paper, we assume that this vector is independent realizations 6 

from normal distributions as follows: 𝜂 ~𝑁(0, 𝜎2). With this assumption, the joint probability 7 

expression for trip fare and trip destination may be derived. Conditional on 𝜂 the probability for a 8 

trip, q to have fare, 𝑦𝑞 and destination 𝑠 can be expressed as follows: 9 

 10 

𝑃(𝑦𝑞 , 𝑠𝑞)|𝜂 =  𝑃(𝑦𝑞) × 𝑃(𝑠𝑞) (5) 

 11 

The complete set of parameters to be estimated in the model system of Equation (5) are 12 

𝛼, 𝛽 and 𝛾 and standard error term, 𝜎. Let, Ω  represents a vector that includes all the standard 13 

error parameters to be estimated. Given this assumption, the joint likelihood for trip fare and trip 14 

destination is provided as follows: 15 

 16 

𝐿𝑞|Ω = ∏ [𝑃(𝑦𝑞 , 𝑠𝑞)|𝜂]
𝑑𝑞𝑠

  
𝑆

𝑠=1
 (6) 

 17 

where 𝑑𝑞𝑠 is a dummy variable taking a value of 1 if a user making the trip, 𝑞 chooses the 18 

destination, 𝑠 and 0 otherwise. Finally, the unconditional likelihood function may be computed for 19 

a trip, q as follows: 20 

 21 

𝐿𝑞 =  ∫ (𝐿𝑞|Ω)𝑑Ω
Ω

 

 

(7) 

 22 

Now, we can express the log-likelihood function of the final joint model as follows: 23 

 24 

LL =  ∑ ln 𝐿𝑞

𝑄

𝑞=1
 (8) 

 25 

The log-likelihood function in Equation (8) involves the evaluation of a multi-dimensional 26 

integral of size equal to the number of rows in Ω. We apply Quasi-Monte Carlo simulation 27 

techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 28 

function and maximize the logarithm of the resulting simulated likelihood function (See Bhat, (54); 29 

Yasmin and Eluru, (55) for more details). 30 

 31 

MODEL DEVELOPMENT 32 

As described earlier, we estimate the model components employing a randomly chosen dataset of 33 

10,000 records for computational efficiency and avoiding overfitting. Given the possibility that 34 

the random sample might not represent the population, we draw 25 samples of 10,000 and examine 35 

the role of randomness in the parameter stability across the samples for linear regression and 36 
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multinomial logit models. To examine parameters stability, we employ the following revised Wald 1 

test statistic approach across 25 samples: 2 

Parameter test statistic = 𝑎𝑏𝑠 [
(𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)

√𝑆𝐸𝑠𝑎𝑚𝑝𝑙𝑒
2+𝑆𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2
] 3 

  4 

The population benchmark is computed as the average value of the parameter across the 5 

25 samples. If any parameter for a sample is significantly different from the population benchmark, 6 

the Wald statistics will be larger than the 90% t-statistic value of 1.65. Figure 2 and Figure 3 7 

illustrates the range of revised Wald test statistic for 25 samples for trip fare model and destination 8 

choice model respectively in a box plot. It is evident from Figure 2 and Figure 3 that means of 9 

the revised Wald test statistic of all the exogenous variables (and majority of the realizations) are 10 

well within 90% test statistic. To be precise, in case of the trip fare model (destination choice 11 

model), only two (six) test statistic values among 450 (500) values generated were found to be 12 

greater than 90% test statistic. Therefore, we can conclude that the parameters estimated across 13 

the random samples are stable and there is no significant difference in parameters estimated across 14 

samples.  15 

After establishing that the random sample based models are stable, we estimate a joint LR-16 

MNL model which accounts for common unobserved heterogeneity between trip fare and trip 17 

destination for one sample.  18 
 19 

Figure 2 Asymptotic t-statistic for the parameters estimated of trip fare model 20 

 21 

Figure 3 Asymptotic t-statistic for the parameters estimated of destination choice model 22 

 23 

MODEL ESTIMATION RESULTS 24 

The model performance of the proposed joint model is compared to the independent fare and 25 

destination models using log-likelihood (LL) and Bayesian Information Criterion (BIC) measures.  26 

The LL (BIC) values of the independent LR and MNL model are -22857.920 (46075.043). For the 27 

joint LR-MNL model system, LL (BIC) values were found to be -22717.000 (45793.203). Hence, 28 

the joint model system clearly outperforms the independent model system. For the sake of brevity, 29 

the results from the Joint LR-MNL model estimation results are discussed (see Table 2). The 30 

discussion is organized by variable group.  31 

 32 

Trip Fare Model 33 

 34 

Trip Attributes 35 

In Table 2 several trip attributes are found to have significant impact on TNC fare. Trip distance, 36 

as expected, has a positive impact on trip fare. Controlling for everything else, longer trips have 37 

higher fares. If the trip starts and ends in PM peak period, fare is likely to increase for the 38 

corresponding trip. Similarly, when a trip ends in AM peak period, an increase in fare is observed. 39 
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The results are along expected lines and suggest that during peak periods a higher fare is levied. 1 

Finally, we also find that shared trips are likely to have a lower fare as expected. 2 

 3 

TABLE 2 Joint LR-MNL Model Result 4 

Variable Estimate t-stat 

Trip Fare Model 

Constant 1.638 86.286 

Trip Attributes 

Trip distance 0.104 77.797 

Trip start time (Base: Other periods) 

PM peak period  0.096 3.546 

Trip end time (Base: Other periods) 

AM peak period 0.045 2.276 

PM peak period 0.045 2.326 

Shared trip indicator (Base: No) 

Yes -0.371 -37.494 

Origin Attributes 

Demand in last 15 minutes at origin*AM peak period -0.019 -2.683 

Demand in last 15 minutes at origin*PM peak period 0.021 2.683 

Network distance to origin from CBD 0.010 5.271 

Network distance to origin from CBD*PM peak period -0.011 -2.713 

Number of L stations*AM peak period -0.008 -1.643 

Employment density at origin -0.012 -2.675 

Snow depth -0.010 -2.838 

Destination Attributes 

Demand in last 15 minutes at destination*AM peak period 0.032 5.157 

Network distance to destination from CBD -0.007 -3.836 

Network distance to destination from CBD*AM peak period -0.005 -2.335 

Number of Divvy stations -0.004 -4.535 

Land use mix 0.183 1.959 

Employment density 0.014 3.096 

Scale 0.229 31.564 

Destination Choice Model 

Land Use and Built Environment Attributes  

Network distance between O-D -1.092 -57.340 

Distance from CBD -0.539 -16.967 

Distance from CBD*Trip starts at AM peak -0.254 -4.705 

Residential area -0.927 -14.191 

Commercial area 0.396 7.397 

Institutional area -0.168 -2.939 

Recreational area 0.306 7.262 
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Variable Estimate t-stat 

Transportation Infrastructure Attributes 

Bike lane density 0.160 4.685 

Street Length 0.073 25.453 

Number of bus stops 0.007 3.064 

Number of bus stops*Trip starts at AM peak 0.020 5.408 

Number of bus stops*Low income origin 0.017 4.692 

Number of L stations  -0.117 -7.473 

Number of L stations*Low income origin -0.120 -3.726 

Number of Divvy stations 0.037 4.465 

Number of Divvy stations*Trip starts at AM peak 0.039 2.524 

Walk score 0.004 4.158 

Transit score 0.089 3.597 

Demographic Attributes 

Low income indicator (Base: Median income over 15th percentile) 

Yes -0.926 -24.680 

Employment density 0.061 2.242 

Unobserved heterogeneity 

Constant in LR and Distance between O-D in MNL 0.266 36.494 

Constant in LR and Street Length in MNL  0.039 7.148 

 1 

Origin Attributes 2 

In our analysis, we wanted to consider the influence of demand in preceding time intervals on trip 3 

fare. For this purpose, origin demand in the last 15 minutes in AM and PM peak periods was 4 

considered in the model. The model estimates offer interesting results. In the AM peak period, 5 

higher demand has a negative coefficient. While this might appear counter-intuitive on first glance, 6 

the reader will recognize that the demand variable interacts with the AM peak main effect thus, 7 

the net effect is still likely to be positive. For PM peak period, the impact on fare is more 8 

pronounced clearly highlighting that higher demand at the origin contributes to a higher fare.  9 

From Table 2, it is evident that trip fare is likely to increase as distance between origin of 10 

the trip and CBD increases. The result represents the supply side challenge (or rerouting costs) for 11 

drivers to pick up riders away from CBD (see (56) for similar findings).  The negative coefficient 12 

for interaction of distance variable and PM peak period indicates that during PM peak the impact 13 

of distance from CBD is moderated potentially due to increase expected supply for TNC. Chicago 14 

L, a rapid transit system, operates inside the city of Chicago. The number of L stations in the AM 15 

peak period has negative impact on TNC fare highlighting potential competition  between Chicago 16 

L and TNC (57). Interestingly, higher employment density at the origin is negatively associated 17 

with TNC fare potentially reflecting the presence of infrastructure for non-motorized modes and 18 

improved land use (58, 59). The results indicate that in adverse weather conditions such as higher 19 

level of snow depth, TNC fares are likely to be lower possibly due to supply demand imbalance 20 

(60, 61). 21 

 22 



Parvez et al.  13 

 

Destination Attributes 1 

The demand in the last minutes at the destination also offers interesting results. We find that 2 

interaction of destination demand with AM peak is positive indicating that higher fares are likely 3 

to destinations with higher demand in AM peak (similar findings in 11). As the distance of the 4 

destination census tract increases from CBD, TNC fare is likely to be lower. The result is expected 5 

because with all else same, travel away from CBD is typically faster and thus trip fare is expected 6 

to be lower. The effect is more pronounced in the AM peak period as congestion is likely to be 7 

lower away from CBD during AM peak.  8 

Chicago bike sharing system (Divvy) and TNC appear to have competitive relationship as 9 

highlighted by the negative coefficient on the number of divvy stations (see (30) for evidence of 10 

how individuals use divvy system to make commuting trips in CBD). The results also indicate that 11 

destination with diverse land use is likely to have higher fares. TNC travel in these locations will 12 

be slower and hence require longer travel time resulting in higher fares. Finally, destinations with 13 

higher employment density will contribute to higher TNC fare as expected. 14 

 15 

Destination Choice Model 16 

Land use and Built Environment Attributes 17 

Several land use and built environment variables offer significant and expected results. As the 18 

distance between origin and destination and distance of the destination from CBD increases, the 19 

likelihood of the alternative being selected reduces. The impact of distance to CBD is significantly 20 

higher in the AM peak period as users are unlikely to travel away from the CBD in the AM peak. 21 

The various built-up areas also offer expected results. Census tracts with residential and 22 

institutional areas are less likely to be destination. On the other hand, census tracts with higher 23 

areas of commercial and recreational areas have a higher likelihood of being chosen (see (32, 63) 24 

for similar results).  25 

Transportation Infrastructure Attributes 26 

The results for transportation infrastructure attributes offer multiple significant and nuanced 27 

relationships with destination preferences. Destination attributes that represent non-motorized and 28 

transit infrastructure such as bike lanes, bus stops, divvy stations, walk score and transit offer 29 

positive association with destination choice. Several earlier studies have documented these some 30 

or all of these relationships (21, 22, 60, 64–66). For bus stops and divvy stations, the impact on 31 

destination selection is even higher during the AM peak period. An exception to this is the 32 

parameter for L stations. The result clearly highlights that in census tracts with L stations, TNC 33 

users are less likely to choose these destinations. The income of origin census tract also offers a 34 

conflicting interaction with bus stops and L stations. The users starting their travel from low-35 

income census tracts have higher affinity to travel to destinations with higher number of bus stops. 36 

However, the result is exactly opposite in the context of L stations. The variation might be 37 

reflecting the different neighborhood characteristics of census tracts with higher number of buses 38 

vis-à-vis census tracts with higher number of L stations (62, 67, 68).  39 

 40 

Demographic Attributes 41 

Census tracts with lower income are less likely to be chosen as TNC destinations. The result 42 

indicates to income inequity in the adoption of TNC for mobility needs in Chicago and other urban 43 

regions (see similar findings in (23, 69, 70). As expected, on weekdays, a census tract with higher 44 

employment density is likely to attract more TNC trips (31, 69). 45 

 46 
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Unobserved Heterogeneity 1 

The proposed LR-MNL joint model system accommodates for common unobserved heterogeneity 2 

between trip fare and destination choices. Several unobserved factors were tested in the joint 3 

model. The variables that offered significant unobserved correlation are reported in the last row 4 

panel of Table 2.  The two parameters represent interaction of a constant in fare model with origin 5 

-destination distance and street length. These significant correlations reinforce our hypothesis that 6 

trip fare and destination choices are influenced by shared factors and incorporating such correlation 7 

is important. 8 

 9 

PREDICTION AND ELASTICITY ANALYSIS 10 

To illustrate the applicability of the proposed model, we employ the model results for 11 

understanding the influence of independent variables on fare and destination choice models. We 12 

employ the model results for the fare model to generate trip cost predictions for five randomly 13 

chosen trips in the PM peak and off-peak periods. These trips are plotted in Figures 4 (a) and (b). 14 

The prediction illustrates how the proposed model can be employed for generating trip fares across 15 

the region. The trip fares presented in Figure 4 illustrate the higher cost of TNC during PM peak 16 

(relative to off-peak period). The procedure can be readily applied to generate travel cost schemes 17 

for a mode choice model in the region with TNC alternative.  18 

For the destination model, an elasticity analysis has been undertaken in an effort to capture 19 

the changes in dependent variables (destination) in response to changes in independent variables. 20 

Figure 5 illustrate the percent change in fare and aggregate probability of the chosen destination 21 

alternative respectively due to change in independent variables by 10%. The results summarized 22 

in Figure 5 offer interesting results. We notice that distance between origin destination, transit 23 

score and street length variables exhibit the highest impact on destination preferences. We also 24 

observe that walk score, divvy stations, bus stops, residential area and distance form CBD affect 25 

destination preferences reasonably. In summary, the elasticity effect highlights how transportation 26 

planners and TNC owners can examine trends influencing destination choice behavior. 27 

 28 

Figure 4 Trip fare prediction across (a) PM peak period; (b) Off peak period 29 

 30 

Figure 5 Elasticity analysis 31 

 32 

CONCLUSIONS 33 

Given the prevalence of Transportation Networking Companies (TNCs) across the world, there is 34 

growing literature dedicated to TNC usage analysis. However, there is limited research on 35 

comprehensively examining the influence of independent variables on TNC fare. In this study, we 36 

postulate that TNC trip fare is closely linked to TNC trip destination and develop a joint 37 

econometric model linking the two outcomes. A wide range of origin and destination specific land 38 

use and built environment factors, transportation infrastructure attributes, and weather attributes 39 

were found to be significant in the joint the model system. Based on log-likelihood (LL) and 40 

Bayesian Information Criterion (BIC) measures, the model performance of the proposed joint 41 

model is found to be superior compared to independent fare and destination models. The model 42 

results were augmented with fare prediction exercise and destination model elasticity analysis. The 43 

fare prediction exercise illustrated how the proposed model can be employed to generate TNC 44 
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travel costs for use in a mode choice model with TNC alternative. The destination elasticity 1 

analysis highlighted the important factors affecting destination preferences.  2 

The study is not without limitations. TNC trip data does not provide any user related 3 

information. Access to sociodemographic, socioeconomic, and other relevant information can 4 

significantly enhance the models developed in our analysis. Trip level TNC data employed in this 5 

study provides trip origin and destination aggregated at the census tract level potentially to 6 

preserve user and operator privacy. The aggregated destination information can result in large 7 

differences in travel distances for short trips within the census tracts. The model developed can be 8 

further refined in the presence of more disaggregate data. It is also important to recognize that 9 

TNC trip fare can be influenced by business strategies of TNCs that are not readily declared 10 

publicly. Understanding the effect of TNC business strategies might be an avenue for future 11 

research.  12 
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