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Abstract
[bookmark: _Hlk96434172]The goal of the current study is to identify and quantify the influence of various contributing factors on dockless e-scooter demand. Drawing on high-resolution e-scooter trip level data for 2019 from Austin, Texas, we develop Census Tract (CT) level demand data for four time periods of the day. The time-period specific data is partitioned for weekdays and weekends. Using the prepared datasets, we develop a joint panel linear regression (JPLR) model framework that accommodates for the influence of unobserved factors at multiple levels – CT, month, day, and time period levels. The analysis results indicate that the proposed JPLR models outperform the independent linear regression models for both weekdays and weekends. The results also manifest a significant association between e-scooter demand and several independent variables including sociodemographic attributes, transportation infrastructure variables, land use and built environment variables, meteorological attributes, and situational attributes. Further, several panel-specific correlation effects are found to be significant across four dimensions highlighting the importance of accommodating the influence of common unobserved factors on e-scooter demand across different time-of-day dimensions. Model validation exercise results revealed that the proposed models perform well compared to the independent models. Finally, the estimated models are employed to conduct a policy exercise illustrating the value of the estimated models for understanding CT level e-scooter demand on weekdays and weekends. The results indicate that land use mix, proportion of commuters, and season are some of the most influential factors for e-scooter demand.
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Introduction
Shared micromobility – low speed modes of transportation such as bike share systems and e-scooters - has been burgeoning across the world in recent years. The emergence of shared mobility started with station-based bicycle sharing systems (BSS) in major urban regions worldwide. In recent years, these station-based systems have given rise to dockless shared mobility systems with e-bikesharing and e-scooters (Shaheen et al., 2020). In 2019, shared micromobility accounted for 136 million trips in the US. Among these trips, about 30% are attributed to station-based BSS while 70% of the trips are attributed to dockless systems (NATCO, 2019). Within dockless systems, e-scooters account for 90% of the trips. In 2019, the number of cities with dockless e-scooters increased by 45% compared to the number of such cities in 2018. Dockless e-scooters can potentially contribute to transportation planning goals of reducing automobile dependency and its ensuing negative consequences (such as congestion, crashes, and air pollution). E-scooters have elicited a positive response from riders and presented a robust alternative to private vehicles for trips between half and two miles (Clewlow, 2019; Smith & Schwieterman, 2018). Early studies across the world investigating e-scooter mode have generally offered positive conclusions on the role of e-scooters in improving the transportation systems, particularly for short trips (James et al., 2019; Noland, 2019; Wang et al., 2022). There is evidence indicating that e-scooters can offer increased access to economic opportunities and services in a short time frame relative to traditional transportation alternatives (Milakis et al., 2020). At the same time, there are several challenges associated with e-scooter deployment across urban regions. The sharing of sidewalk space with pedestrians and possible e-scooter speeding can result in pedestrian and e-scooter conflicts and associated safety concerns. Several urban regions have also found e-scooter parking on sidewalks and street intersections as a potential hassle for operations (Fang et al., 2018; James et al., 2019). As e-scooter deployment across urban regions speeds up, it is important that these challenges are addressed by local officials to ensure that the potential benefits of this mode are realized.
The current study builds on our understanding of dockless e-scooter systems by examining the relationship between e-scooter demand and various contributing factors. The study employs a high-resolution spatio-temporal e-scooter trip level data from Austin, Texas including around 5 million trips recorded in 2019. E-scooter demand for dockless systems is aggregated at a census tract (CT) level to examine spatial demand patterns. Given significant variation of e-scooter usage patterns across different time periods and weekday/weekend, we analyze e-scooter demand for four time periods of the day (Morning: 6am-11am, Midday: 11am-4pm, Evening: 4pm-9pm, Nighttime: 9pm-6am) separately for weekdays and weekends. The spatio-temporal e-scooter demand is studied employing a comprehensive set of independent variables including sociodemographic attributes, transportation infrastructure variables, land use and built environment variables, meteorological attributes, and situational attributes. Further, recognizing the presence of multiple repetitions of the CT level dependent variable, we employ a panel regression framework that accommodates for the influence of unobserved factors at multiple levels – CT, month, day, and time period levels (see Bhowmik et al., 2019 for unobserved effects at multiple levels). The model framework is rigorously tested to identify the appropriate factors influencing demand. A policy exercise is conducted to illustrate the value of the proposed models for understanding CT level e-scooter demand. The framework will allow local agencies to identify e-scooter demand hotspots and build adequate infrastructure and signage to reduce pedestrian and e-scooter conflicts. Further, understanding demand imbalances might also allow local agencies to address potential issues associated with e-scooter parking for longer time intervals. The model will also allow e-scooter agencies to develop a robust rebalancing plan (to move unused e-scooters to locations with higher demand).

Literature Review
[bookmark: _Hlk77532460]Prior research on e-scooters can broadly be classified along three directions: (a) survey-based studies of e-scooter systems, (b) comparative analysis of e-scooter and other transportation modes, and (c) e-scooter trip data analysis. In this section, we present a summary of the relevant studies focusing on these three dimensions.
[bookmark: _Hlk77532637][bookmark: _Hlk77532709]With regard to the first stream of studies, earlier e-scooter research efforts followed survey based approaches to investigate and understand dockless e-scooter shared systems (Almannaa et al., 2021; Campisi et al., 2021; Clewlow, 2019; Nikiforiadis et al., 2021; Sanders et al., 2020). Most of these studies focused on  understanding  perceptions of e-scooter riders and non-riders (Almannaa et al., 2021; James et al., 2019), differences in e-scooter renters and owners (Laa & Leth, 2020), impact of age, gender and level of education on e-scooter usage (Huang & Lin, 2019; Laa & Leth, 2020), relation of e-scooter with transit (Nikiforiadis et al., 2021), differences in the knowledge of rules and regulations among e-scooter riders and non-riders (James et al., 2019), and behavior of long term users (Huang & Lin, 2019). An extensive survey was conducted across eleven major US cities, and the study found that most of the people perceived e-scooters in a positive way (Clewlow, 2019). In another study, surveying employed professionals at University of Arizona, the authors identified safety concerns among women (Sanders et al., 2020). 
Within the second stream of research, a number of studies compared docked bikes and dockless e-bikes or e-scooters in several US cities including Washington, D.C., San Francisco, Louisville, Chicago and Austin (Almannaa et al., 2020; Guo & Zhang, 2021; Hosseinzadeh, Karimpour, et al., 2021; Lazarus et al., 2020; McKenzie, 2019; Wang et al., 2022; Yang et al., 2021; Younes et al., 2020; Ziedan et al., 2021). In terms of the interaction between e-scooter and transit modes, previously published papers suggest that public transit and scooter complemented each other (Baek et al., 2021; Nawaro, 2021; Yan et al., 2021). With regard to docked bikes and dockless e-bikes or e-scooters, research studies found that the main difference between the two modes is that the docked shared bikes are more likely to be used for commuting (Faghih-Imani et al., 2017; Faghih-Imani & Eluru, 2015) while dockless e-scooters are less likely to be used for commuting (McKenzie, 2019). Moreover, average dockless e-scooter trips were longer in terms of travel distance by a third and approximately twice as long in terms of travel time than average docked shared bike trips (Lazarus et al., 2020). Another study in Chicago found that the average travel time of scooter trips is shorter than bike trips (Yang et al., 2021).  Surprisingly, earlier work found that dockless shared e-scooters are less sensitive to weather conditions than docked shared bikes (Younes et al., 2020). The investigation in Washington, D.C. identified potential competition between e-scooter and bikeshare use for non-members while complementarity was observed for members. The result is interesting and indicates occasional users choose between the modes while regular members combine the mode usage to improve their accessibility needs (Younes et al., 2020). Other studies also compared e-bike and e-scooter usage patterns and concluded that e-bikes are relatively faster than e-scooters (Almannaa et al., 2020; Nawaro, 2021). Also, temporal attributes were found to be crucial factors that influence e-scooter demand (Almannaa et al., 2020). In terms of data analysis approaches, several methodologies were adopted for modelling these systems including descriptive analysis (McKenzie, 2019), negative binomial count models (Younes et al., 2020), and multi-objective clustering algorithms (Almannaa et al., 2020). 
The current study falls within the third stream of research. This group of  research efforts  focused on analyzing real-world dockless shared e-scooter trip data (Bai & Jiao, 2020; Caspi et al., 2020; Hawa et al., 2021; Hosseinzadeh, Algomaiah, et al., 2021; Huo et al., 2021; Li et al., 2022; Mehzabin Tuli et al., 2021; Noland, 2019). Previous studies in this stream of research investigated  the primary purpose of using e-scooter and found that these emerging mobility systems are mostly used for leisure rather than for commuting purposes (Caspi et al., 2020; Noland, 2019). In addition, several studies found that this mode is popular for short trips and for first- and last-mile connectivity (Mathew et al., 2019; Milakis et al., 2020; Shaheen et al., 2020). Analyzing data from Austin, contrary to expectations, authors found that e-scooters are not employed to address first- and last-mile connections, but are shifting demand from transit to e-scooter mode (Zuniga-Garcia & Machemehl, 2020). Previously published studies on shared dockless e-scooters found that many factors increased e-scooter demand including commercial and industrial presence, population density, land use mix, access to transit, bike score, central business district locations, student populated regions and weather conditions (Bai & Jiao, 2020; Caspi et al., 2020; Cheng et al., 2020; Hosseinzadeh, Algomaiah, et al., 2021; Jiao & Bai, 2020). The methodological approaches employed to study e-scooter data include negative binomial count models, linear mixed models and spatial regression models (and variants such as spatial error and autoregressive error models) (Bai & Jiao, 2020; Caspi et al., 2020; Cheng et al., 2020; Hosseinzadeh, Algomaiah, et al., 2021; Huo et al., 2021; Jiao & Bai, 2020).  
 
Current Study in the Context
While earlier studies enhance our understanding of the factors influencing shared e-scooter demand, there are still significant gaps in our knowledge of factors influencing e-scooter demand. To that extent, the current study makes twofold contributions to shared micromobility literature using 2019 e-scooter trip level data from Austin. The first contribution of the study stems from our recognition that the impact of independent variables varies across the day. The recognition allows us to incorporate the impact of independent variables accurately. For example, higher employment density might contribute to higher demand for e-scooter in the morning peak period while not having a significant influence during midday. In a model examining e-scooter demand as a daily variable, the variation of the parameter impact across the day is lost. In addition to time of day, we also recognize that e-scooter demand profiles are likely to be different for weekdays and weekends. Thus, our study develops a time-of-day model with four time periods: Morning peak (6am-11am), Midday (11am-4pm), Evening peak (4pm-9pm), and Nighttime (9pm-6pm). The daily trip level data is aggregated to its census tract origin for each time period separately. The aggregate time period data is partitioned for weekdays and weekends[footnoteRef:2].  [2:  The reader would note that recent studies (such as Hawa et al., 2021) have considered hourly e-scooter presence. However, the presence variable represents the e-scooter availability and not actual trips made by e-scooter. ] 

The second contribution of our study arises from the flexible methodology employed for our analysis in data samples with high number of repeated observations. The nature of the e-scooter demand data offers multiple dimensions of unobserved impacts: CT level, Time of day, CT -Time of day, day of the week, spatial factors, and observation resolution. In multiple studies modeling such data, researchers have adopted spatial models such as spatial error and spatial lag models (Faghih-Imani & Eluru, 2016; Rahman et al., 2021). While spatial factors are quite important, in the presence of large number of repetitions such as is the case in our dataset, other dimensions of unobserved effects are also important. For example, in our case, our data provides for repetitions of demand at the CT level by four time periods for every day in the year. In the presence of such large panels, the adoption of spatial models reduces the flexibility of the model system due to the inherent complexity of developing spatial models. To elaborate, it is not readily possible to estimate multi-level random effects while also accommodating for the spatial unobserved effects. Further, as the size of the panel (repeated measure per CT) increases, estimating and interpreting spatial models are not straightforward. Resorting to spatial model development will restrict the model system to considering spatial unobserved factors while not considering for the presence of multi-level unobserved dependencies identified. Towards addressing these challenges, in this study, a viable middle ground is considered. Specifically, a multi-level mixed linear regression framework that offers flexibility in accommodating for several types of unobserved dependencies such as CT level, CT- Time of the day, day of the week and observation level is developed. The mixed linear regression model framework is developed separately for weekdays and weekends using an extensive set of independent variables including sociodemographic attributes, transportation infrastructure variables, land use and built environment variables, meteorological attributes, and situational attributes[footnoteRef:3]. The performance of the estimated model is validated using a holdout sample. A policy analysis is conducted to illustrate the applicability of the proposed model system. [3:  The e-scooter demand variables can also be studied using count regression models such as Negative Binomial regression (Mehzabin Tuli et al., 2021). However, when count values are relatively high such as above 100 (as is the case in our study), the model probability values become very small and lead to estimation complexities. Further, in our case, considering the logarithm of the e-scooter demand variable resulted in a close to normal dependent variable form. Hence, a log-linear regression approach was preferred. ] 

The rest of the paper is organized as follows: Section 3 presents data processing procedures and summarizes the data employed for model estimation. Section 4 provides a discussion of the econometric models employed in this study. The results from the models are discussed in Section 5. Section 6 presents model validation, and Section 7 presents policy analysis. Finally, the conclusion section summarizes the findings and concludes the paper.


Data 
Data Sources
[bookmark: _Hlk77243635]E-scooter trips were derived from City of Austin’s open-source data platform. The e-scooter data was augmented with built environment attributes, sociodemographic data and meteorological data which were sourced from the City of Austin open data source (https://data.austintexas.gov/), American Community Survey (https://www.census.gov/programs-surveys/acs) and National Climatic Data Center data sources (http://www.ncdc.noaa.gov/data-access)

Dependent Variables
The major focus of this study is to examine aggregate level e-scooter demand at a census tract level across different times of the day for weekdays and weekends. Before aggregating the data at a census tract level by time of day, the following steps were followed to process the trip level e-scooter data. First, e-scooter trip records with missing information were deleted (approximately 730 records). Second, to avoid including inaccurate or incorrect data in the analysis, we consider the City of Austin official trips report criteria. Therefore, we delete any trips that do not meet the following criteria: 
· Trip distance greater than or equal to .1 miles and less than 500 miles
· Trip duration less than 24 hours
[bookmark: _Hlk120499408][bookmark: _Hlk120499592]After applying the above-mentioned criteria around 600 thousand trips were deleted. Third, the data was processed to eliminate CTs with very small number of records. Among the 265 CTs, 48 CTs account for 99.2% of total trips. For our analysis, we selected trips from these 48 CTs. Finally, after cleaning the database based on the abovementioned criterion, the final e-scooter database had approximately 4.98 million trips. The spatial distribution of the yearly e-scooter trips originating in the selected 48 census tracts for the year 2019 is presented in Figure 1. From Figure 1, it is evident that most of the e-scooter trips started near the city's center in close proximity to downtown Austin and the University of Texas Campus. The time-of-day distribution of the yearly e-scooter trip patterns are presented in Figure 2. From Figure 2, it can be observed that there are significant differences in e-scooter demand across different times of the day. Furthermore, it is clear that e-scooter usage is considerably higher during midday and evening periods compared to morning and nighttime periods. Therefore, in developing the e-scooter trip demand model, we consider four time periods– Morning peak (6am-11am), Midday (11am-4pm), Evening peak (4pm-9pm), and Nighttime (9pm-6pm). Further, to explore the trip patterns across different day-of-week, the day specific trip distributions for the year 2019 are plotted in Figure 3. Figure 3 provides a representation of e-scooter trips for weekdays and weekends. Figure 3 demonstrates that e-scooter demand pattern remains stable across the weekdays (Monday–Friday) but varies on weekends (Saturday–Sunday). Hence, we consider splitting the data into weekday and weekend samples for each time period. Consequently, the e-scooter trips are aggregated by different times of day (4) and days-of week (2) at the census tract level resulting in 8 dependent variables. 

[Figure 1 near here]

[Figure 2 near here]

[Figure 3 near here]


To obtain a reasonable sample for estimation purposes from the abovementioned samples, we randomly select, for each census tract, 40 weekdays and 20 weekend days. Therefore, for weekday samples we have 1920 records [48*40], while weekend samples resulted in 920 [48*20] records. The descriptive stats of the dependent variables are presented in the first-row panel of Table 1. The data compilation procedure including dependent and independent variables are presented in Figure 4 for weekdays and weekends.
[Figure 4 near here]

Independent Variables 
The independent variables considered in this study can broadly be categorized as: 1) Sociodemographic attributes, 2) Land use and Built environment attributes, 3) Transportation infrastructure attributes, 4) Meteorological variables, and 5) Situational attributes. The sociodemographic, land use and built environment, transport infrastructure attributes are computed at census tract level. The meteorological variables are generated specific to the time-of-day and day-of week for which the e-scooter demand is computed.
The sociodemographic attributes include population density, employment density, the proportion of students, the proportion of females, proportion of commuters, proportion of commuters by mode (drive, carpool, public transport, walk and other modes) and median income. Several land use and built environment variables are considered including the density of the single-family area, density of the multi-family area, density of commercial area (mixed-use houses, retail, and wholesale), the density of office area, density of the industrial area, density of educational area (colleges, universities, primary and secondary school), density of parking area (parking garage, and parking lots), and density of parks and open space area, the density of other land-use areas (cultural services, hospitals, utilities) and historic landmarks. Finally, land use mix is computed as: “Land-use mix = ”, where  is the category of land-use,  is the proportion of the developed land area devoted to a specific land-use,  is the number of land-use categories in a census tract. 
The census tract level transportation infrastructure attributes include bus station density (capturing the influence of availability of public transit on e-scooter usage), sidewalk density, bike road density, major street density, and minor street density. The meteorological variables include precipitation, humidity, and average temperature. Situational attributes include the day of the week and seasons. A summary of the independent variables generated for our analysis are included in Table 1. The reader would note that several functional forms such as logarithm and standardized z-score were considered in our model estimation process. The functional form that offered the most intuitive fit was retained in the model. Table 1 provides the definition of the functional form employed in the model for each variable. 
 
[Table 1 near here]

Methodology
This section presents the econometric framework for the JPLR model (see Rahman, 2018 for similar approach). Let us assume that q (q = 1, 2, …, Q=48) be an index to represent census tracts, t (t = 1, 2, 3, …, T=40 for weekdays and 20 for weekends) represents the different days, and r (r =1, 2, …, R=4) represents different times of the day. Let,  represents the observed log-linear demand in census tract q, on day t and during time period r. Thus, the equation for modeling e-scooter demand can be written as:

	 
	(1)



where,  is the predicted demand for census tract q, for day t and time period r.  is a matrix of attributes that influence e-scooter demand (including a scalar constant); is the vector of coefficients corresponding to the attributes for the time of day  and  is a vector of unobserved factors moderating the influence of corresponding element in  in time of day dimension, . Further,  is an idiosyncratic random error term assumed to be independently normally distributed with variance . 
 represents the vector of coefficients representing the impact of common unobserved factors that jointly influence e-scooter demand at different time periods across repetition level k. As discussed earlier, in the current study context, we estimate  for different levels (k) of repetition measures including census tract, census tract-time of the day, day of the week and observation level. In accommodating unobserved effects at different levels, random numbers are assigned to the appropriate observations of the repetition measures. For example, we have a total of 48 census tracts in the estimation set. Thus, in evaluating unobserved effect at the census tract level, 48 sets of different random numbers are generated specific to each census tract and assigned to the data records based on their census tract ID. Similarly, the census tract-time of the day level repetition measure represents unobserved effects across different combination of census tracts and time periods. Thus, the census tract-time of the day combination has a total of 192 (48 census tracts*4 times of the day) records. For evaluating the unobserved effect at the census tract-time of the day, 192 sets of different random numbers are generated and assigned to the data records based on their census tract-TOD combinations. For other combinations considered, the random number are generated and assigned following a similar process.
To complete the model structure of the equations (1), it is necessary to define the structure for the unobserved vectors  and . In this paper, we assume that these vectors are independent realizations from normal distributions as follows:  and .
With these assumptions, the probability expressions for the observed demand may be derived. Conditional on and  the probability for census tract q to have e-scooter demand   in day t and time period r is given by:
	
	(2)



where (.) is the standard normal probability distribution function.
The complete set of parameters to be estimated in the multivariate model system of equations (2) are  vector and the following standard error terms:  and . Let   represent a vector that includes all the standard error parameters to be estimated. Given these assumptions the joint likelihood for e-scooter demand at four time periods for day-of-week (weekdays/weekends) is provided as follows: 
	
	(3)



[bookmark: _Hlk55927421]Finally, the unconditional likelihood function may be computed for census tract q as:
	

	(4)



Now, we can express the log-likelihood function as follows:

	

	(5)


The log-likelihood function in Equation (5) involves the evaluation of a multi-dimensional integral of size equal to the number of rows in. We apply Quasi-Monte Carlo simulation techniques based on the scrambled Halton sequence to approximate this integral in the likelihood function and maximize the logarithm of the resulting simulated likelihood function (See Bhat, 2001; Rahman et al., 2019; Yasmin & Eluru, 2013 for more details).

Model Estimations Results
Model Selection
[bookmark: _Hlk120587590]The empirical analysis involves estimation of a series of models. First, the eight simple linear regression models for the eight times of the day are estimated. These independent regression models serve as a benchmark for comparison. Next, we estimate two joint panel linear regression models for weekdays and weekends. The log-likelihood values for independent linear regression (LR) models for weekdays and weekends are -10414.08 (with 96 parameters) and -5259.19 (with 88 parameters), respectively. The log-likelihood values of joint panel linear regression models for weekday and weekend are -7981.75 (with 97 parameters) and -4254.14 (with 89 parameters). The performance of the independent model and the joint panel LR model in terms of data fit are compared by employing Bayesian Information Criterion (BIC). For weekdays, BIC values for LR and JPLR models are 20989.56 and 15946.58, respectively. For weekends, BIC values for LR and JPLR models are 10666.33 and 8657.91, respectively. From the BIC values, it is evident that the JPLR models outperformed the LR models for both weekdays and weekends. In addition, we identify the improvements in the data fit offered by the addition of different variable groups. For this purpose, we plotted the sum of squared error (SSE) by variable subsets such as socio-demographics and land use and other variable combinations. The results of the analysis are presented in Figure 5 and Figure 6 for weekday morning peak and evening peak. In terms of the sum of squared error (SSE), our model results indicate that adding variables gradually reduces SSE of the updated models.

[Figure 5 near here]
[Figure 6 near here]

Panel Linear Regression Results 
[bookmark: _Hlk120585441]The results of the JPLR models for weekdays and weekends are presented in Table 2 and Table 3, respectively. The final specification of the model development was based on removing the statistically insignificant variables in a systematic process based on statistical confidence (90% confidence level). The model estimation process followed scientific approach to model estimation. We added the independent variables one at a time and estimated the model. After adding all the variables, we examined the significance of all the variables in the model and dropped insignificant variables one by one. For example, the variable with the lowest t statistic was dropped and the model was re-estimated. The process was continued until no variables were insignificant. The reader would note that potential correlation between the various independent variables were carefully considered prior to model estimation. The variables that exhibited higher correlation values were considered separately and the variable that offered the better fit was retained (while excluding other correlated variables). The specification process was also guided by prior research and parsimony considerations[footnoteRef:4]. In estimating the models, several functional forms and variable specifications are explored. The functional form that provided the best result is used for the final model specification. In the estimated models, a positive (negative) coefficient corresponds to increase (decrease) in e-scooter demand. Please note that only the results for weekdays are described in detail for the sake of brevity. [4:  The model estimation process was guided by parsimony considerations i.e., whenever possible a simpler model was preferred to a complex model with additional parameters while ensuring the model fit was not statistically different.
] 

Joint Panel Linear Regression Model for Weekdays
The estimation results of the joint model for weekdays are presented in Table 2. In the joint system, the demand components for morning peak, midday, evening peak and nighttime are presented in the second, third, fourth and fifth column panels of Table 2, respectively. The estimation results of these components are discussed in the following sections by variable groups. 
Sociodemographic Attributes
Several sociodemographic attributes at the census tract level are considered in the model. Surprisingly, population density variable has a negative coefficient in morning peak, midday, and evening peak for weekdays. The results imply that the e-scooter demand during weekdays is likely to be less in the census tracts with higher population density. The variable also exhibits significant variation across all time periods as indicated by the random parameter estimated for population density. So, while the average impact might indicate lower demand with increasing population, there is significant variability across census tracts. The reader would note that we retained the same distribution variance across all time periods for maintaining a parsimonious specification. On the other hand, employment density in a census tract is found to increase e-scooter demand at all times (see (Caspi et al., 2020; Jiao & Bai, 2020) for similar findings). The results indicate that as the proportion of females in the CT population increases, there is a reduction in e-scooter demand in morning peak and nighttime. The result might reflect the lower exposure to e-scooters and/or safety concerns among women. The proportion of students affects e-scooter demand positively across all time periods. Thus, it is evident from the results that the e-scooter demand is likely to be higher in census tract for specific cohorts of population rather than across all population categories in a census tract.
The increase in proportion of commuters is likely to increase e-scooter demand across all time periods. The proportion of commuters using public transit is found to affect e-scooter demand negatively in all four time periods. Different trends by mode for commuters are perhaps alluding to the competition between e-scooter and public transportation mode for commuting (see (Zuniga-Garcia & Machemehl, 2020) for a similar finding). With regard to census tract level income, the results show that the census tracts with higher level of median income are likely to have lower level of e-scooter demand across all time points except evening time. 
Land Use and Built Environment Attributes
Several land use attributes considered in the study are found to have a significant influence on e-scooter demand. Among land use categories, density of office area, density of commercial area, density of educational area, density of parks and open space and density of other land use area are found to be significant influencers of e-scooter demand. The density of office has negative association with e-scooter demand across the day. In the midday and evening peak demand components, the e-scooter demand is found to be positively associated with higher density of commercial area, while density of commercial area is not significant in the demand components for morning peak and nighttime as most of the stores are closed in this time of the day. The density of educational area is found to be negatively associated with e-scooter demand during morning peak and nighttime periods. The result is to be viewed in conjunction with the proportion of students’ variable. When we consider the net values of proportion of student and density of educational area in the census tract, the net result yields a positive value. The results reveal that parks and open space, and other land use (cultural services, hospitals, utilities) areas in the census tracts are likely to attract more e-scooter riders. 
To test the relationship between land use diversity and e-scooter demand, we also consider land-use mix as independent variable in the demand components. The results in Table 2 for weekdays reveal that, land use mix is significant and positive across all time periods (see (Huo et al., 2021) for a similar finding) . The results support the positive influence of diversified land use that encourages an active and livable community. Given that the presence of historical landmarks is a surrogate for recreational activity presence, it is not surprising that they are likely to encourage e-scooter demand across all four time periods. 
Transportation Infrastructure Attributes
Among different transportation infrastructure attributes considered, the effect of bus stop density, rail and metro density, sidewalk density, and bike route density are found to be significant indicators of e-scooter demand for weekdays. While proportion of commuters using public transit affects scooter demand negatively, the bus stop density, rail and metro density are positively associated with higher scooter demand.  Hence, the results suggest that e-scooter may have a complex relationship with public transit switching from competition to complementarity across the region and by time of day (see (Yan et al., 2021) for a similar finding). Rail and metro density is closely aligned with increasing e-scooter demand. E-scooter clearly serves as a fist- and last-mile connector for rail and metro alternatives. Higher level of sidewalk density and bike route density reflect good infrastructure for riding e-scooter, possibly leading to higher demand.

Meteorological Attributes
Among meteorological attributes considered, precipitation, humidity, and temperature are found to be significant determinants. Precipitation is found to contribute towards lower e-scooter demand during midday and evening peak periods (see (Noland, 2021) for a similar finding). Humidity has a negative coefficient across the time of the day (other than nighttime) indicating that with increasing humidity, the likelihood of e-scooter ridership decreases, perhaps an indication of discomfort resulting from higher humidity. E-scooter demand is found to be higher for the weekdays with temperature higher than 15°C. The temperature>30°C does not have effect on the morning peak and nighttime dimensions. The result may indicate the fact that e-scooter users are likely to be more sensitive to cold weather (see (Noland, 2021) for similar finding). 
Situational Attributes
With regard to seasons, spring is found to be associated with higher e-scooter demand for all time periods. Fall is associated with increased e-scooter demand in morning peak and decreased e-scooter demand in the nighttime. With regard to different weekdays, the indicator for Tuesday and Wednesday is found to have significant impact in midday, evening peak and nighttime demand models. The indicator has a negative coefficient revealing that Tuesday and Wednesday are associated with reduced e-scooter demand. Thursday is also associated with lower demand for midday and nighttime periods. The results provide support to our hypothesis that variable impacts vary by time period.
Panel Correlation Effects 
In the joint panel model for weekdays, we consider several panel-specific (census tract, census tract-time of the day, day of the week and observation level) correlation effects across four dimensions. Among the different panel level parameters, two parameters were found to be significant. These include (a) common unobserved factors at the CT panel level across all time periods, and (b) CT – normalized population density (discussed earlier in Sociodemographic attributes section). Overall, the results clearly highlight the importance of accommodating for the common unobserved factors influencing e-scooter demand across different time-of-day dimensions.
[Table 2 near here]
[Table 3 near here]
Model Validation
[bookmark: _Hlk120501636]A hold-out sample was created for validation purposes using the same method as the estimation sample. The hold-out sample consists of 221 weekdays and 84 weekends. From these hold-out samples, random samples of days were drawn and employed in repeated model performance evaluation over 30 samples. For weekdays we draw 50 days for each repetition, while for weekends we draw 30 days for each repetition. For each sample, the predicted log-likelihood was estimated employing the independent linear regression model and the proposed joint panel model. The performance of the models were compared using the Bayesian Information Criterion (BIC). The results from the exercise are presented in Figure 7. From Figure 7, we observe that BIC values for the JPLR model improved for a majority of the validation samples (27 out of 30) compared to BIC values for the LR model for both weekdays and weekends. The results clearly illustrate the improved out-of-sample performance of our JPLR model for weekdays and weekends.

[Figure 7 near here]


Policy Analysis
[bookmark: _Hlk78639945]The model specifications in Table 2 and Table 3 demonstrate how parameters affect e-scooter demand. To further illustrate the applicability of the models developed, we perform an elasticity analysis to identify the magnitude of the impacts of the independent variables. To evaluate the impact of exogenous variables on e-scooter demand, we consider changes in aggregate scooter demand in response to a 15 and 25 percent change in independent variables. In this research, we perform elasticity analysis considering a selected set of significant factors. The results of elasticity analysis for weekdays are illustrated in Figure 8 while the results of elasticity analysis for weekends are shown in Figure 9. Regarding the weekday model components, we found proportion of commuters, land use mix, proportion of other land use to be the significant factors that influence the e-scooter demand positively for weekdays. Proportion of transit commuter and density of office area are the most significant factors found to influence the demand negatively. In contrast, weather factors are found to have the least influence on e-scooter demand. For weekend model components, land use mix, density of other land use, medium temperature and proportion of commuters using public transit are the most influential variables for e-scooter demand.

[Figure 8 near here]
[Figure 9 near here]

Conclusions
The current study contributes to our understanding of dockless e-scooter systems by identifying and quantifying the influence of various contributing factors on dockless e-scooter demand. The study recognizes the significant variation of e-scooter usage patterns across different time periods and weekday/weekend. The study employs high-resolution spatiotemporal e-scooter trip level data from Austin, Texas to generate census tract (CT) level e-scooter demand by time period (Morning, Midday, Evening, Nighttime) separately for weekdays and weekends. 
As data generated is available for multiple observations per CT (by day and time period), the study develops a framework that accommodates for the influence of unobserved factors at multiple resolutions including CT level unobserved factors, time period level unobserved factors, and potential variation in the influence of various attributes (random parameters). The framework takes the form of a joint panel regression model framework. The model framework is developed separately for weekdays and weekends using an extensive set of independent variables including sociodemographic attributes, transportation infrastructure variables, land use and built environment variables, meteorological attributes, and situational attributes. 
The proposed model system is compared with its traditional counterpart - an independent linear regression (LR) model for weekdays and weekends. A comparison of the two model systems based on BIC measures reveals that the JPLR models outperform the LR models for both weekdays and weekends. From the analysis results, we observe a significant association between the dependent variables and various independent variables. The results also highlight variation in parameter effects across time of day. For instance, the influence of public transit stops highlights that e-scooter may have a complex relationship with public transit switching from competition to complementarity across the region and time of day. Multiple panel-specific correlation effects are found to be significant across four dimensions highlighting the importance of accommodating the influence of common unobserved factors on e-scooter demand across different time-of-day dimensions. Finally, the estimated model is employed to conduct a policy exercise illustrating the value of the estimated model for understanding CT level e-scooter demand. The results indicate that land-use mix variable has a significant impact on e-scooter demand for weekdays and weekends.  The finding is quite encouraging and suggests mixed land use growth regions can attract higher e-scooter demand potentially reducing auto reliance. 
To be sure, the study is not without limitations. E-scooter usage data from multiple years could be employed to enhance our understanding of the temporal variability of the demand. It might also be interesting to compare the proposed model performance with the performance of spatial lag and error models in a future effort (for example see Faghih-Imani & Eluru, 2016; Rahman et al., 2021). The data considered in our analysis is from 2019 and was unaffected by Corona Virus Diseases 2019 (COVID-19). As documented in many recent studies, COVID-19 has significantly transformed transportation systems. Future efforts might consider how the changes have affected e-scooter demand. 
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FIGURE 1 Total number of E-scooter trips in thousand in Austin at the census tract level for the year 2019 (Data source: City of Austin open data portal)
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FIGURE 2 Hourly trips based on the day-of-week for the year 2019
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FIGURE 3 Trip patterns based on the day-of-week and time-of-day for the year 2019
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TABLE 1 Descriptive Summary of Sample Characteristics
	Variables Names
	Definitions
	Descriptive Statistics

	
	
	Minimum
	Maximum
	Mean

	DEPENDENT VARIABLES

	Share E-scooter Trip Demand for Weekdays

	Morning Peak Trips 
	Ln (Total number of weekday morning peak trips in each CT)
	0.000
	7.504
	2.229

	Midday Trips 
	Ln (Total number of weekday midday trips in each CT)
	0.000
	8.873
	2.683

	Evening Peak Trips 
	Ln (Total number of weekday evening peak trips in each CT)
	0.000
	9.147
	2.893

	Nighttime Trips 
	Ln (Total number of weekday nighttime trips in each CT)
	0.000
	8.492
	2.139

	Share E-scooter Trip Demand for Weekends

	Morning Peak Trips 
	Ln (Total number of weekend morning peak trips in each CT)
	0.000
	7.391
	1.919

	Midday Trips 
	Ln (Total number of weekend midday peak trips in each CT)
	0.000
	9.016
	3.121

	Evening peak Trips 
	Ln (Total number of weekend evening peak trips in each CT)
	0.000
	9.304
	3.117

	Nighttime Trips 
	Ln (Total number of weekend nighttime trips in each CT)
	0.000
	8.536
	2.496

	INDEPENDENT VARIABLES

	Sociodemographic Attributes

	Population Density
	Z-score ((Population in each CT / Total area of each CT)/1000)
	-0.911
	3.769
	0.000

	Employment Density
	Z-score ((Number of jobs in each CT/ Total area of each CT)/1000)
	-1.327
	3.363
	0.000

	Proportion of Students
	Number of high school and university students in each CT/ Total population in each CT
	0.034
	0.977
	0.204

	Proportion of Female
	Number of females in each CT/ Total population in each CT
	0.352
	0.597
	0.477

	Proportion of Commuters
	Number of individuals who commute to work in each CT/ Total population in each CT
	0.283
	0.816
	0.627

	Proportion of commuters who drive to work
	Number of individuals who drive (drive alone) to work in each CT/ Total number of commuters in each CT
	0.391
	0.795
	0.656

	Proportion commuters who take public transport to work
	Number of individuals who use public transit to work in each CT/Total number of commuters in each CT
	0.006
	0.205
	0.067

	Proportion commuters who carpool to work
	Number of individuals who use share ride (carpool) to work in each CT tract /Total number of commuters in each CT
	0.006
	0.153
	0.067

	Proportion commuters who walk to work
	Number of individuals who walk to work in each CT/Total number of commuters in each CT
	0.000
	0.458
	0.060

	Proportion of commuters who use other modes to work
	Number of individuals who use other modes to commute in each CT/Total number of commuters in each CT
	0.015
	0.156
	0.057

	Median Income
	Z-score (Median income in each CT/1000)
	-2.188
	2.525
	0.000

	Land use and Built Environment Attributes

	Density of Single-Family Area
	Defined as ratio of the area of the variable and total area of CT
	0.000
	0.548
	0.252

	Density of Multi-family Area
	
	0.006
	0.631
	0.134

	Density of Commercial Area
	
	0.001
	0.283
	0.066

	Density of Office Area
	
	0.000
	0.203
	0.046

	Density of Industrial Area
	
	0.000
	0.280
	0.030

	Density of Educational Area
	
	0.000
	0.162
	0.027

	Density of Parking Area
	
	0.000
	0.066
	0.008

	Density of Park and Open space Area
	
	0.000
	0.705
	0.110

	Density of Other Land Use Area
	
	0.000
	0.970
	0.327

	Land use mix
	Land use mix = ,  where k is the category of land-use, p is the proportion of the developed land area devoted to a specific land-use, N is the number of land-use categories in each CT
	0.081
	0.832
	0.657

	Historic Landmarks
	Z-score (Number of Historic landmarks in each CT)
	-0.487
	5.664
	0.000

	Transportation Infrastructure Attributes

	Bus Station Density
	Z-score (Total number of bus stops in each CT/Total area of each CT)
	-1.744
	2.890
	0.000

	Sidewalk Density
	Z-score (Total sidewalk length in each CT in mile /Total area of each CT)
	-2.073
	1.672
	0.000

	Rail and MetroRapid Density
	Z-score (Total number of rail and MetroRapid stops in each CT /Total area of each CT)
	-0.627
	4.589
	0.000

	Bike Road Density
	Z-score (Total bike roads length in each CTin mile /Total area of each CT)
	-1.718
	3.680
	0.000

	Meteorological variables

	Precipitation
	Amount of Precipitation for the day the demand is under consideration (in mm)
	0.000
	8.041
	0.100

	Humidity
	Z-score (Relative Humidity for the day the e-scooter demand is under consideration (in %))
	-2.429
	1.650
	0.000

	Categorical Variables
	Definitions
	Frequency (%)

	Temperature
	Low Temperature (<=15 C)
	19.500

	
	Medium Temperature (15.1 - 30 C)
	57.800

	
	High Temperature (>30 C)
	22.700

	Situational Attributes

	Categorical Variables
	Definitions
	Frequency (%)

	Seasons
	Spring (March-May)
	32.825

	
	Summer (June-August)
	24.840

	
	Fall (September-November)
	25.286

	
	Winter (December-February)
	17.049

	Weekdays
	Monday
	17.892

	
	Tuesday
	17.921

	
	Wednesday
	18.174

	
	Thursday
	20.414

	
	Friday
	25.599

	Weekends
	Saturday
	57.925

	
	Sunday
	42.075



TABLE 2 Panel Linear Regression Model Results for Weekdays
	Variables
	Morning Peak
	Midday
	Evening Peak
	Nighttime

	
	Estimate
	t-statistic
	Estimate
	t-statistic
	Estimate
	t-statistic
	Estimate
	t-statistic

	Constant
	-5.304
	-13.474
	-5.312
	-15.711
	-4.715
	-13.864
	-3.879
	-9.230

	Sociodemographic Attributes

	Population Density
	-0.558
	-1.650
	-1.247
	-3.878
	-0.679
	-2.077
	--
	--

	   Standard Deviation of Population Density
	-4.426
	-52.291
	-4.426
	-52.291
	-4.426
	-52.291
	-4.426
	-52.291

	Employment Density
	0.161
	6.160
	0.208
	7.892
	0.215
	7.867
	0.171
	6.186

	Proportion of Female
	-0.873
	-2.149
	--
	--
	--
	--
	-1.454
	-3.554

	Proportion of students 
	2.807
	17.211
	3.222
	20.530
	2.874
	18.537
	2.488
	15.125

	Proportion of Commuters
	6.386
	23.527
	5.484
	18.816
	4.562
	18.477
	4.985
	15.326

	Mode of commuting to work (Base: other modes)

	Proportion public transport
	-13.740
	-26.361
	-14.443
	-29.822
	-12.608
	-26.463
	-11.933
	-22.068

	Median Income
	-0.461
	-12.199
	-0.251
	-6.499
	--
	--
	-0.293
	-7.154

	Land use and Built Environment Attributes

	Land use (Base: Density of Single-Family Area, Density of Multi-family Area, and Density of Industrial Area)

	Density of Office Area 
	-12.418
	-23.639
	-11.299
	-21.112
	-10.909
	-20.352
	-11.335
	-20.297

	Density of Commercial Area
	--
	--
	1.815
	4.603
	1.857
	4.659
	--
	--

	Density of Educational Area
	-4.020
	-7.816
	--
	--
	--
	--
	-4.417
	-6.862

	Density of Park and Open space Area
	5.115
	19.642
	6.968
	27.125
	6.657
	25.069
	4.960
	18.805

	Density of Other Land Use Area
	3.172
	16.739
	3.207
	16.914
	3.003
	15.518
	2.669
	14.000

	Land use mix
	4.888
	20.169
	5.102
	20.351
	5.271
	20.279
	4.935
	18.872

	Historic Landmarks
	0.401
	15.172
	0.326
	12.626
	0.291
	11.199
	0.384
	14.236

	Transportation Infrastructure Attributes

	Bus Station Density
	0.124
	4.594
	0.245
	9.485
	0.252
	11.456
	0.192
	7.065

	Rail and Metro MetroRapid Density
	0.205
	8.017
	0.320
	11.852
	0.261
	9.566
	0.243
	8.388

	Sidewalk Density
	0.440
	13.309
	0.379
	11.554
	0.277
	9.196
	0.285
	8.499

	Bike Road Density
	0.509
	18.910
	0.534
	19.988
	0.536
	19.707
	0.519
	18.378

	Meteorological variables

	Precipitation 
	--
	--
	-0.207
	-7.215
	-0.286
	-4.699
	--
	--

	Humidity
	-0.243
	-4.991
	-0.041
	-2.347
	-0.065
	-3.488
	--
	--

	Temperature (Base: Low Temperature)

	Temperature (Medium)
	0.317
	9.621
	0.179
	4.334
	0.241
	5.660
	0.308
	6.948

	Temperature (High)
	--
	--
	0.250
	5.385
	0.429
	8.430
	--
	--

	Situational attributes

	Seasons (Base: Summer)

	Spring
	0.237
	6.099
	0.373
	9.118
	0.503
	11.910
	0.086
	1.834

	Fall
	0.106
	2.656
	--
	--
	--
	--
	-0.206
	-4.194

	Winter
	--
	--
	--
	--
	--
	--
	-0.294
	-4.921

	Weekdays (Base: Monday, Friday)

	Tuesday and Wednesday
	--
	--
	-0.183
	-5.070
	-0.092
	-2.732
	-0.233
	-6.501

	Thursday
	--
	--
	-0.158
	-3.662
	--
	--
	-0.105
	-2.438

	Variance Component

	Constant
	0.671
	60.404
	0.673
	60.465
	0.700
	60.820
	0.675
	60.044

	Panel Correlation Effect

	 
	Estimate
	t-statistic

	Census Tract (Constant)
	-0.298
	-27.462




TABLE 3 Panel Linear Regression Model Results for Weekends
	Variables
	Morning Peak
	Midday
	Evening Peak
	Nighttime

	
	Estimate
	t-statistic
	Estimate
	t-statistic
	Estimate
	t-statistic
	Estimate
	t-statistic

	Constant
	-2.699
	-5.971
	-2.768
	-7.063
	-1.687
	-5.792
	-2.766
	-5.818

	Sociodemographic Attributes

	Population Density
	-1.055
	-7.774
	-0.817
	-5.198
	-1.061
	-9.23
	-0.868
	-5.495

	Standard Deviation of Population Density
	0.723
	29.249
	0.723
	29.249
	0.723
	29.249
	0.723
	29.249

	Employment Density
	1.275
	12.043
	1.126
	8.987
	1.309
	13.828
	1.178
	9.146

	Proportion of students 
	1.411
	4.068
	0.523
	1.751
	0.666
	2.327
	1.025
	3.267

	Proportion of Female
	--
	--
	--
	--
	-2.117
	-3.179
	-1.488
	-2.608

	Proportion of Commuters
	--
	--
	1.322
	2.851
	--
	--
	1.032
	1.857

	Proportion of modes of commuting to work (Base: other modes)

	Proportion commuters public transport
	-10.608
	-11.186
	-14.679
	-19.317
	-14.972
	-19.976
	-12.196
	-15.966

	Median Income
	--
	--
	--
	--
	--
	--
	-0.178
	-3.493

	Land use and Built Environment Attributes

	Land use (Base: Density of Single-Family Area, Density of Multi-family Area, and Density of Industrial Area)

	Density of Commercial Area
	1.901
	3.232
	2.163
	3.708
	1.963
	3.504
	2.695
	4.577

	Density of Office Area 
	-8.125
	-8.78
	-9.468
	-11.638
	-9.197
	-11.912
	-10.348
	-12.758

	Density of Park and Open space Area
	6.809
	15.199
	9.828
	23.593
	9.622
	23.397
	8.197
	20.129

	Density of Other Land Use Area
	4.001
	11.423
	5.24
	15.97
	4.81
	14.81
	5.122
	16.392

	Land use mix
	4.903
	14.357
	5.295
	17.432
	5.112
	16.969
	5.594
	17.971

	Historic Landmarks
	0.184
	4.434
	0.075
	1.988
	0.073
	1.929
	0.264
	7.036

	Transportation Infrastructure Attributes

	Bus Station Density
	--
	--
	0.156
	4.878
	0.104
	3.31
	--
	--

	Rail and Metro MetroRapid Density
	0.322
	8.286
	0.442
	12.125
	0.488
	13.475
	0.431
	12.11

	Sidewalk Density
	0.381
	8.704
	0.528
	13.143
	0.457
	11.469
	0.458
	11.664

	Bike Road Density
	0.56
	12.328
	0.744
	18.553
	0.758
	19.045
	0.696
	17.635

	Meteorological variables

	Precipitation 
	-0.155
	-3.909
	-0.165
	-4.311
	--
	--
	--
	--

	Humidity
	-0.094
	-3.821
	-0.139
	-5.322
	-0.134
	-5.379
	-0.112
	-4.613

	Temperature (Base: Low Temperature)

	Temperature (Medium)
	0.272
	5.542
	--
	--
	--
	--
	0.4
	6.621

	Temperature (High)
	--
	--
	--
	--
	0.195
	3.303
	--
	--

	Situational attributes

	Seasons (Base: Summer) 

	Spring
	0.295
	5.259
	0.526
	8.872
	0.679
	11.476
	0.29
	4.931

	Fall
	0.161
	2.713
	0.122
	1.904
	--
	--
	--
	--

	Winter
	--
	--
	--
	--
	--
	--
	-0.193
	-2.594

	Weekdays (Base: Saturday)

	Sunday
	-0.236
	-5.17
	-0.313
	-6.438
	-0.383
	-7.971
	-0.432
	-9.218

	Variance Component

	Constant
	0.667
	41.562
	0.715
	42.685
	0.709
	42.712
	0.69
	42.408

	Panel Effect

	 
	Estimate
	t-statistic

	Census Tract (Constant)
	-0.563
	-33.738

	Census Tract (Morning peak)
	-0.124
	-4.597


		15

2


[image: Diagram

Description automatically generated]
FIGURE 4 Flow chart demonstrating data preparation procedure for weekdays and weekends 
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FIGURE 5 Sum of squared error for weekday morning peak 
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FIGURE 6 Sum of squared error for weekday evening peak
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FIGURE 7 Model validation
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FIGURE 8 Elasticity analysis for weekdays
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FIGURE 9 Elasticity analysis for weekends
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