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Abstract 

The goal of the current study is to identify and quantify the influence of various contributing factors 

on dockless e-scooter demand. Drawing on high-resolution e-scooter trip level data for 2019 from 

Austin, Texas, we develop Census Tract (CT) level demand data for four time periods of the day. 

The time-period specific data is partitioned for weekdays and weekends. Using the prepared 

datasets, we develop a joint panel linear regression (JPLR) model framework that accommodates 

for the influence of unobserved factors at multiple levels – CT, month, day, and time period levels. 

The analysis results indicate that the proposed JPLR models outperform the independent linear 

regression models for both weekdays and weekends. The results also manifest a significant 

association between e-scooter demand and several independent variables including 

sociodemographic attributes, transportation infrastructure variables, land use and built 

environment variables, meteorological attributes, and situational attributes. Further, several panel-

specific correlation effects are found to be significant across four dimensions highlighting the 

importance of accommodating the influence of common unobserved factors on e-scooter demand 

across different time-of-day dimensions. Model validation exercise results revealed that the 

proposed models perform well compared to the independent models. Finally, the estimated models 

are employed to conduct a policy exercise illustrating the value of the estimated models for 

understanding CT level e-scooter demand on weekdays and weekends. The results indicate that 

land use mix, proportion of commuters, and season are some of the most influential factors for e-

scooter demand. 

 

Keywords: Dockless e-scooter demand, Time of the day, Weekday, Weekend, Joint panel linear 

regression
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Introduction 1 

Shared micromobility – low speed modes of transportation such as bike share systems and e-2 

scooters - has been burgeoning across the world in recent years. The emergence of shared mobility 3 

started with station-based bicycle sharing systems (BSS) in major urban regions worldwide. In 4 

recent years, these station-based systems have given rise to dockless shared mobility systems with 5 

e-bikesharing and e-scooters (Shaheen et al., 2020). In 2019, shared micromobility accounted for 6 

136 million trips in the US. Among these trips, about 30% are attributed to station-based BSS 7 

while 70% of the trips are attributed to dockless systems (NATCO, 2019). Within dockless 8 

systems, e-scooters account for 90% of the trips. In 2019, the number of cities with dockless e-9 

scooters increased by 45% compared to the number of such cities in 2018. Dockless e-scooters can 10 

potentially contribute to transportation planning goals of reducing automobile dependency and its 11 

ensuing negative consequences (such as congestion, crashes, and air pollution). E-scooters have 12 

elicited a positive response from riders and presented a robust alternative to private vehicles for 13 

trips between half and two miles (Clewlow, 2019; Smith & Schwieterman, 2018). Early studies 14 

across the world investigating e-scooter mode have generally offered positive conclusions on the 15 

role of e-scooters in improving the transportation systems, particularly for short trips (James et al., 16 

2019; Noland, 2019; Wang et al., 2022). There is evidence indicating that e-scooters can offer 17 

increased access to economic opportunities and services in a short time frame relative to traditional 18 

transportation alternatives (Milakis et al., 2020). At the same time, there are several challenges 19 

associated with e-scooter deployment across urban regions. The sharing of sidewalk space with 20 

pedestrians and possible e-scooter speeding can result in pedestrian and e-scooter conflicts and 21 

associated safety concerns. Several urban regions have also found e-scooter parking on sidewalks 22 

and street intersections as a potential hassle for operations (Fang et al., 2018; James et al., 2019). 23 

As e-scooter deployment across urban regions speeds up, it is important that these challenges are 24 

addressed by local officials to ensure that the potential benefits of this mode are realized. 25 

The current study builds on our understanding of dockless e-scooter systems by examining 26 

the relationship between e-scooter demand and various contributing factors. The study employs a 27 

high-resolution spatio-temporal e-scooter trip level data from Austin, Texas including around 5 28 

million trips recorded in 2019. E-scooter demand for dockless systems is aggregated at a census 29 

tract (CT) level to examine spatial demand patterns. Given significant variation of e-scooter usage 30 

patterns across different time periods and weekday/weekend, we analyze e-scooter demand for 31 

four time periods of the day (Morning: 6am-11am, Midday: 11am-4pm, Evening: 4pm-9pm, 32 

Nighttime: 9pm-6am) separately for weekdays and weekends. The spatio-temporal e-scooter 33 

demand is studied employing a comprehensive set of independent variables including 34 

sociodemographic attributes, transportation infrastructure variables, land use and built 35 

environment variables, meteorological attributes, and situational attributes. Further, recognizing 36 

the presence of multiple repetitions of the CT level dependent variable, we employ a panel 37 

regression framework that accommodates for the influence of unobserved factors at multiple levels 38 

– CT, month, day, and time period levels (see Bhowmik et al., 2019 for unobserved effects at 39 

multiple levels). The model framework is rigorously tested to identify the appropriate factors 40 

influencing demand. A policy exercise is conducted to illustrate the value of the proposed models 41 

for understanding CT level e-scooter demand. The framework will allow local agencies to identify 42 

e-scooter demand hotspots and build adequate infrastructure and signage to reduce pedestrian and 43 

e-scooter conflicts. Further, understanding demand imbalances might also allow local agencies to 44 

address potential issues associated with e-scooter parking for longer time intervals. The model will 45 
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also allow e-scooter agencies to develop a robust rebalancing plan (to move unused e-scooters to 1 

locations with higher demand). 2 

 3 

Literature Review 4 

Prior research on e-scooters can broadly be classified along three directions: (a) survey-based 5 

studies of e-scooter systems, (b) comparative analysis of e-scooter and other transportation modes, 6 

and (c) e-scooter trip data analysis. In this section, we present a summary of the relevant studies 7 

focusing on these three dimensions. 8 

With regard to the first stream of studies, earlier e-scooter research efforts followed survey 9 

based approaches to investigate and understand dockless e-scooter shared systems (Almannaa et 10 

al., 2021; Campisi et al., 2021; Clewlow, 2019; Nikiforiadis et al., 2021; Sanders et al., 2020). 11 

Most of these studies focused on  understanding  perceptions of e-scooter riders and non-riders 12 

(Almannaa et al., 2021; James et al., 2019), differences in e-scooter renters and owners (Laa & 13 

Leth, 2020), impact of age, gender and level of education on e-scooter usage (Huang & Lin, 2019; 14 

Laa & Leth, 2020), relation of e-scooter with transit (Nikiforiadis et al., 2021), differences in the 15 

knowledge of rules and regulations among e-scooter riders and non-riders (James et al., 2019), and 16 

behavior of long term users (Huang & Lin, 2019). An extensive survey was conducted across 17 

eleven major US cities, and the study found that most of the people perceived e-scooters in a 18 

positive way (Clewlow, 2019). In another study, surveying employed professionals at University 19 

of Arizona, the authors identified safety concerns among women (Sanders et al., 2020).  20 

Within the second stream of research, a number of studies compared docked bikes and 21 

dockless e-bikes or e-scooters in several US cities including Washington, D.C., San Francisco, 22 

Louisville, Chicago and Austin (Almannaa et al., 2020; Guo & Zhang, 2021; Hosseinzadeh, 23 

Karimpour, et al., 2021; Lazarus et al., 2020; McKenzie, 2019; Wang et al., 2022; Yang et al., 24 

2021; Younes et al., 2020; Ziedan et al., 2021). In terms of the interaction between e-scooter and 25 

transit modes, previously published papers suggest that public transit and scooter complemented 26 

each other (Baek et al., 2021; Nawaro, 2021; Yan et al., 2021). With regard to docked bikes and 27 

dockless e-bikes or e-scooters, research studies found that the main difference between the two 28 

modes is that the docked shared bikes are more likely to be used for commuting (Faghih-Imani et 29 

al., 2017; Faghih-Imani & Eluru, 2015) while dockless e-scooters are less likely to be used for 30 

commuting (McKenzie, 2019). Moreover, average dockless e-scooter trips were longer in terms 31 

of travel distance by a third and approximately twice as long in terms of travel time than average 32 

docked shared bike trips (Lazarus et al., 2020). Another study in Chicago found that the average 33 

travel time of scooter trips is shorter than bike trips (Yang et al., 2021).  Surprisingly, earlier work 34 

found that dockless shared e-scooters are less sensitive to weather conditions than docked shared 35 

bikes (Younes et al., 2020). The investigation in Washington, D.C. identified potential competition 36 

between e-scooter and bikeshare use for non-members while complementarity was observed for 37 

members. The result is interesting and indicates occasional users choose between the modes while 38 

regular members combine the mode usage to improve their accessibility needs (Younes et al., 39 

2020). Other studies also compared e-bike and e-scooter usage patterns and concluded that e-bikes 40 

are relatively faster than e-scooters (Almannaa et al., 2020; Nawaro, 2021). Also, temporal 41 

attributes were found to be crucial factors that influence e-scooter demand (Almannaa et al., 2020). 42 

In terms of data analysis approaches, several methodologies were adopted for modelling these 43 

systems including descriptive analysis (McKenzie, 2019), negative binomial count models 44 

(Younes et al., 2020), and multi-objective clustering algorithms (Almannaa et al., 2020).  45 
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The current study falls within the third stream of research. This group of  research efforts  1 

focused on analyzing real-world dockless shared e-scooter trip data (Bai & Jiao, 2020; Caspi et 2 

al., 2020; Hawa et al., 2021; Hosseinzadeh, Algomaiah, et al., 2021; Huo et al., 2021; Li et al., 3 

2022; Mehzabin Tuli et al., 2021; Noland, 2019). Previous studies in this stream of research 4 

investigated  the primary purpose of using e-scooter and found that these emerging mobility 5 

systems are mostly used for leisure rather than for commuting purposes (Caspi et al., 2020; Noland, 6 

2019). In addition, several studies found that this mode is popular for short trips and for first- and 7 

last-mile connectivity (Mathew et al., 2019; Milakis et al., 2020; Shaheen et al., 2020). Analyzing 8 

data from Austin, contrary to expectations, authors found that e-scooters are not employed to 9 

address first- and last-mile connections, but are shifting demand from transit to e-scooter mode 10 

(Zuniga-Garcia & Machemehl, 2020). Previously published studies on shared dockless e-scooters 11 

found that many factors increased e-scooter demand including commercial and industrial presence, 12 

population density, land use mix, access to transit, bike score, central business district locations, 13 

student populated regions and weather conditions (Bai & Jiao, 2020; Caspi et al., 2020; Cheng et 14 

al., 2020; Hosseinzadeh, Algomaiah, et al., 2021; Jiao & Bai, 2020). The methodological 15 

approaches employed to study e-scooter data include negative binomial count models, linear mixed 16 

models and spatial regression models (and variants such as spatial error and autoregressive error 17 

models) (Bai & Jiao, 2020; Caspi et al., 2020; Cheng et al., 2020; Hosseinzadeh, Algomaiah, et 18 

al., 2021; Huo et al., 2021; Jiao & Bai, 2020).   19 

  20 

Current Study in the Context 21 

While earlier studies enhance our understanding of the factors influencing shared e-scooter 22 

demand, there are still significant gaps in our knowledge of factors influencing e-scooter demand. 23 

To that extent, the current study makes twofold contributions to shared micromobility literature 24 

using 2019 e-scooter trip level data from Austin. The first contribution of the study stems from our 25 

recognition that the impact of independent variables varies across the day. The recognition allows 26 

us to incorporate the impact of independent variables accurately. For example, higher employment 27 

density might contribute to higher demand for e-scooter in the morning peak period while not 28 

having a significant influence during midday. In a model examining e-scooter demand as a daily 29 

variable, the variation of the parameter impact across the day is lost. In addition to time of day, we 30 

also recognize that e-scooter demand profiles are likely to be different for weekdays and weekends. 31 

Thus, our study develops a time-of-day model with four time periods: Morning peak (6am-11am), 32 

Midday (11am-4pm), Evening peak (4pm-9pm), and Nighttime (9pm-6pm). The daily trip level 33 

data is aggregated to its census tract origin for each time period separately. The aggregate time 34 

period data is partitioned for weekdays and weekends1.  35 

The second contribution of our study arises from the flexible methodology employed for 36 

our analysis in data samples with high number of repeated observations. The nature of the e-scooter 37 

demand data offers multiple dimensions of unobserved impacts: CT level, Time of day, CT -Time 38 

of day, day of the week, spatial factors, and observation resolution. In multiple studies modeling 39 

such data, researchers have adopted spatial models such as spatial error and spatial lag models 40 

(Faghih-Imani & Eluru, 2016; Rahman et al., 2021). While spatial factors are quite important, in 41 

the presence of large number of repetitions such as is the case in our dataset, other dimensions of 42 

unobserved effects are also important. For example, in our case, our data provides for repetitions 43 

of demand at the CT level by four time periods for every day in the year. In the presence of such 44 

 
1 The reader would note that recent studies (such as Hawa et al., 2021) have considered hourly e-scooter presence. 

However, the presence variable represents the e-scooter availability and not actual trips made by e-scooter.  
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large panels, the adoption of spatial models reduces the flexibility of the model system due to the 1 

inherent complexity of developing spatial models. To elaborate, it is not readily possible to 2 

estimate multi-level random effects while also accommodating for the spatial unobserved effects. 3 

Further, as the size of the panel (repeated measure per CT) increases, estimating and interpreting 4 

spatial models are not straightforward. Resorting to spatial model development will restrict the 5 

model system to considering spatial unobserved factors while not considering for the presence of 6 

multi-level unobserved dependencies identified. Towards addressing these challenges, in this 7 

study, a viable middle ground is considered. Specifically, a multi-level mixed linear regression 8 

framework that offers flexibility in accommodating for several types of unobserved dependencies 9 

such as CT level, CT- Time of the day, day of the week and observation level is developed. The 10 

mixed linear regression model framework is developed separately for weekdays and weekends 11 

using an extensive set of independent variables including sociodemographic attributes, 12 

transportation infrastructure variables, land use and built environment variables, meteorological 13 

attributes, and situational attributes2. The performance of the estimated model is validated using a 14 

holdout sample. A policy analysis is conducted to illustrate the applicability of the proposed model 15 

system. 16 

The rest of the paper is organized as follows: Section 3 presents data processing procedures 17 

and summarizes the data employed for model estimation. Section 4 provides a discussion of the 18 

econometric models employed in this study. The results from the models are discussed in Section 19 

5. Section 6 presents model validation, and Section 7 presents policy analysis. Finally, the 20 

conclusion section summarizes the findings and concludes the paper. 21 

 22 

 23 

Data  24 

Data Sources 25 

E-scooter trips were derived from City of Austin’s open-source data platform. The e-scooter data 26 

was augmented with built environment attributes, sociodemographic data and meteorological data 27 

which were sourced from the City of Austin open data source (https://data.austintexas.gov/), 28 

American Community Survey (https://www.census.gov/programs-surveys/acs) and National 29 

Climatic Data Center data sources (http://www.ncdc.noaa.gov/data-access) 30 

 31 

Dependent Variables 32 

The major focus of this study is to examine aggregate level e-scooter demand at a census tract 33 

level across different times of the day for weekdays and weekends. Before aggregating the data at 34 

a census tract level by time of day, the following steps were followed to process the trip level e-35 

scooter data. First, e-scooter trip records with missing information were deleted (approximately 36 

730 records). Second, to avoid including inaccurate or incorrect data in the analysis, we consider 37 

the City of Austin official trips report criteria. Therefore, we delete any trips that do not meet the 38 

following criteria:  39 

▪ Trip distance greater than or equal to .1 miles and less than 500 miles 40 

▪ Trip duration less than 24 hours 41 

 
2 The e-scooter demand variables can also be studied using count regression models such as Negative Binomial 

regression (Mehzabin Tuli et al., 2021). However, when count values are relatively high such as above 100 (as is the 

case in our study), the model probability values become very small and lead to estimation complexities. Further, in 

our case, considering the logarithm of the e-scooter demand variable resulted in a close to normal dependent variable 

form. Hence, a log-linear regression approach was preferred.  

https://data.austintexas.gov/
https://www.census.gov/programs-surveys/acs
http://www.ncdc.noaa.gov/data-access
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After applying the above-mentioned criteria around 600 thousand trips were deleted. Third, the 1 

data was processed to eliminate CTs with very small number of records. Among the 265 CTs, 48 2 

CTs account for 99.2% of total trips. For our analysis, we selected trips from these 48 CTs. Finally, 3 

after cleaning the database based on the abovementioned criterion, the final e-scooter database had 4 

approximately 4.98 million trips. The spatial distribution of the yearly e-scooter trips originating 5 

in the selected 48 census tracts for the year 2019 is presented in Figure 1. From Figure 1, it is 6 

evident that most of the e-scooter trips started near the city's center in close proximity to downtown 7 

Austin and the University of Texas Campus. The time-of-day distribution of the yearly e-scooter 8 

trip patterns are presented in Figure 2. From Figure 2, it can be observed that there are significant 9 

differences in e-scooter demand across different times of the day. Furthermore, it is clear that e-10 

scooter usage is considerably higher during midday and evening periods compared to morning and 11 

nighttime periods. Therefore, in developing the e-scooter trip demand model, we consider four 12 

time periods– Morning peak (6am-11am), Midday (11am-4pm), Evening peak (4pm-9pm), and 13 

Nighttime (9pm-6pm). Further, to explore the trip patterns across different day-of-week, the day 14 

specific trip distributions for the year 2019 are plotted in Figure 3. Figure 3 provides a 15 

representation of e-scooter trips for weekdays and weekends. Figure 3 demonstrates that e-scooter 16 

demand pattern remains stable across the weekdays (Monday–Friday) but varies on weekends 17 

(Saturday–Sunday). Hence, we consider splitting the data into weekday and weekend samples for 18 

each time period. Consequently, the e-scooter trips are aggregated by different times of day (4) 19 

and days-of week (2) at the census tract level resulting in 8 dependent variables.  20 

 21 

[Figure 1 near here] 22 

 23 

[Figure 2 near here] 24 

 25 

[Figure 3 near here] 26 

 27 

 28 

To obtain a reasonable sample for estimation purposes from the abovementioned samples, 29 

we randomly select, for each census tract, 40 weekdays and 20 weekend days. Therefore, for 30 

weekday samples we have 1920 records [48*40], while weekend samples resulted in 920 [48*20] 31 

records. The descriptive stats of the dependent variables are presented in the first-row panel of 32 

Table 1. The data compilation procedure including dependent and independent variables are 33 

presented in Figure 4 for weekdays and weekends. 34 

[Figure 4 near here] 35 

 36 

Independent Variables  37 

The independent variables considered in this study can broadly be categorized as: 1) 38 

Sociodemographic attributes, 2) Land use and Built environment attributes, 3) Transportation 39 

infrastructure attributes, 4) Meteorological variables, and 5) Situational attributes. The 40 

sociodemographic, land use and built environment, transport infrastructure attributes are computed 41 

at census tract level. The meteorological variables are generated specific to the time-of-day and 42 

day-of week for which the e-scooter demand is computed. 43 
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The sociodemographic attributes include population density, employment density, the 1 

proportion of students, the proportion of females, proportion of commuters, proportion of 2 

commuters by mode (drive, carpool, public transport, walk and other modes) and median income. 3 

Several land use and built environment variables are considered including the density of the single-4 

family area, density of the multi-family area, density of commercial area (mixed-use houses, retail, 5 

and wholesale), the density of office area, density of the industrial area, density of educational area 6 

(colleges, universities, primary and secondary school), density of parking area (parking garage, 7 

and parking lots), and density of parks and open space area, the density of other land-use areas 8 

(cultural services, hospitals, utilities) and historic landmarks. Finally, land use mix is computed 9 

as: “Land-use mix = [
− ∑ (𝒑𝒌(𝒍𝒏𝒑𝒌))𝒌

𝒍𝒏𝑵
]”, where 𝒌 is the category of land-use, 𝒑 is the proportion of 10 

the developed land area devoted to a specific land-use, 𝑵 is the number of land-use categories in 11 

a census tract.  12 

The census tract level transportation infrastructure attributes include bus station density 13 

(capturing the influence of availability of public transit on e-scooter usage), sidewalk density, bike 14 

road density, major street density, and minor street density. The meteorological variables include 15 

precipitation, humidity, and average temperature. Situational attributes include the day of the week 16 

and seasons. A summary of the independent variables generated for our analysis are included in 17 

Table 1. The reader would note that several functional forms such as logarithm and standardized 18 

z-score were considered in our model estimation process. The functional form that offered the 19 

most intuitive fit was retained in the model. Table 1 provides the definition of the functional form 20 

employed in the model for each variable.  21 

  22 

[Table 1 near here] 23 

 24 

Methodology 25 

This section presents the econometric framework for the JPLR model (see Rahman, 2018 for 26 

similar approach). Let us assume that q (q = 1, 2, …, Q=48) be an index to represent census tracts, 27 

t (t = 1, 2, 3, …, T=40 for weekdays and 20 for weekends) represents the different days, and r (r 28 

=1, 2, …, R=4) represents different times of the day. Let, 𝑦𝑞𝑡𝑟 represents the observed log-linear 29 

demand in census tract q, on day t and during time period r. Thus, the equation for modeling e-30 

scooter demand can be written as: 31 

 32 

𝑦𝑞𝑡𝑟
∗  = (𝛼𝑟

′  + 𝛾𝑞𝑟
′ )𝑥𝑞𝑡𝑟 + (𝜂𝑘)𝑥𝑞𝑡𝑟 +  𝜀𝑞𝑡𝑟  (1) 

 33 

where, 𝑦𝑞𝑡𝑟
∗  is the predicted demand for census tract q, for day t and time period r. 𝑥𝑞𝑡𝑟 is 34 

a matrix of attributes that influence e-scooter demand (including a scalar constant); 𝛼𝑟 is the vector 35 

of coefficients corresponding to the attributes for the time of day 𝑟 and 𝛾𝑞𝑟 is a vector of 36 

unobserved factors moderating the influence of corresponding element in 𝑥𝑞𝑡𝑟 in time of day 37 

dimension, 𝑟. Further, 𝜀𝑞𝑡𝑟 is an idiosyncratic random error term assumed to be independently 38 

normally distributed with variance 𝜆𝑟
2.  39 

𝜂𝑘 represents the vector of coefficients representing the impact of common unobserved 40 

factors that jointly influence e-scooter demand at different time periods across repetition level k. 41 

As discussed earlier, in the current study context, we estimate 𝜂𝑘 for different levels (k) of 42 

repetition measures including census tract, census tract-time of the day, day of the week and 43 
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observation level. In accommodating unobserved effects at different levels, random numbers are 1 

assigned to the appropriate observations of the repetition measures. For example, we have a total 2 

of 48 census tracts in the estimation set. Thus, in evaluating unobserved effect at the census tract 3 

level, 48 sets of different random numbers are generated specific to each census tract and assigned 4 

to the data records based on their census tract ID. Similarly, the census tract-time of the day level 5 

repetition measure represents unobserved effects across different combination of census tracts and 6 

time periods. Thus, the census tract-time of the day combination has a total of 192 (48 census 7 

tracts*4 times of the day) records. For evaluating the unobserved effect at the census tract-time of 8 

the day, 192 sets of different random numbers are generated and assigned to the data records based 9 

on their census tract-TOD combinations. For other combinations considered, the random number 10 

are generated and assigned following a similar process. 11 

To complete the model structure of the equations (1), it is necessary to define the structure 12 

for the unobserved vectors 𝛾𝑞𝑟 and 𝜂𝑘. In this paper, we assume that these vectors are independent 13 

realizations from normal distributions as follows: 𝛾𝑞𝑟  ~𝑁(0, 𝜎𝑟
2) and 𝜂𝑘  ~𝑁(0, 𝜚2). 14 

With these assumptions, the probability expressions for the observed demand may be 15 

derived. Conditional on 𝛾𝑞𝑟 and 𝜂𝑘 the probability for census tract q to have e-scooter demand 𝑦𝑞𝑡𝑟  16 

in day t and time period r is given by: 17 

𝑃(𝑦𝑞𝑡𝑟)|𝛾, 𝜂 =  

ϕ [
𝑦𝑞𝑡𝑟 − ((𝛼𝑟

′ + 𝛾𝑞𝑟
′ )𝑥𝑞𝑡𝑟 + (𝜂𝑘)𝑥𝑞𝑡𝑟)

𝜆𝑟
]

𝜆𝑟
   

(2) 

 18 

where ϕ(.) is the standard normal probability distribution function. 19 

The complete set of parameters to be estimated in the multivariate model system of 20 

equations (2) are 𝛼𝑟 vector and the following standard error terms: 𝜎𝑟 and 𝜚. Let Ω  represent a 21 

vector that includes all the standard error parameters to be estimated. Given these assumptions the 22 

joint likelihood for e-scooter demand at four time periods for day-of-week (weekdays/weekends) 23 

is provided as follows:  24 

𝐿𝑞|Ω =  ∏ ∏ [𝑃(𝑦𝑞𝑡𝑟)|𝛾, 𝜂]
𝑅

𝑟=1

𝑇

𝑡=1
 

(3) 

 25 

Finally, the unconditional likelihood function may be computed for census tract q as: 26 

𝐿𝑞 =  ∫ (𝐿𝑞|Ω)𝑑Ω
Ω

 

 

(4) 

 27 

Now, we can express the log-likelihood function as follows: 28 

 29 

LL =  ∑ ln 𝐿𝑞

𝑄

𝑞=1
 

(5) 
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The log-likelihood function in Equation (5) involves the evaluation of a multi-dimensional integral 1 

of size equal to the number of rows in Ω. We apply Quasi-Monte Carlo simulation techniques 2 

based on the scrambled Halton sequence to approximate this integral in the likelihood function 3 

and maximize the logarithm of the resulting simulated likelihood function (See Bhat, 2001; 4 

Rahman et al., 2019; Yasmin & Eluru, 2013 for more details). 5 

 6 

Model Estimations Results 7 

Model Selection 8 

The empirical analysis involves estimation of a series of models. First, the eight simple linear 9 

regression models for the eight times of the day are estimated. These independent regression 10 

models serve as a benchmark for comparison. Next, we estimate two joint panel linear regression 11 

models for weekdays and weekends. The log-likelihood values for independent linear regression 12 

(LR) models for weekdays and weekends are -10414.08 (with 96 parameters) and -5259.19 (with 13 

88 parameters), respectively. The log-likelihood values of joint panel linear regression models for 14 

weekday and weekend are -7981.75 (with 97 parameters) and -4254.14 (with 89 parameters). The 15 

performance of the independent model and the joint panel LR model in terms of data fit are 16 

compared by employing Bayesian Information Criterion (BIC). For weekdays, BIC values for LR 17 

and JPLR models are 20989.56 and 15946.58, respectively. For weekends, BIC values for LR and 18 

JPLR models are 10666.33 and 8657.91, respectively. From the BIC values, it is evident that the 19 

JPLR models outperformed the LR models for both weekdays and weekends. In addition, we 20 

identify the improvements in the data fit offered by the addition of different variable groups. For 21 

this purpose, we plotted the sum of squared error (SSE) by variable subsets such as socio-22 

demographics and land use and other variable combinations. The results of the analysis are 23 

presented in Figure 5 and Figure 6 for weekday morning peak and evening peak. In terms of the 24 

sum of squared error (SSE), our model results indicate that adding variables gradually reduces SSE 25 

of the updated models. 26 

 27 

[Figure 5 near here] 28 

[Figure 6 near here] 29 

 30 

Panel Linear Regression Results  31 

The results of the JPLR models for weekdays and weekends are presented in Table 2 and Table 3, 32 

respectively. The final specification of the model development was based on removing the 33 

statistically insignificant variables in a systematic process based on statistical confidence (90% 34 

confidence level). The model estimation process followed scientific approach to model estimation. 35 

We added the independent variables one at a time and estimated the model. After adding all the 36 

variables, we examined the significance of all the variables in the model and dropped insignificant 37 

variables one by one. For example, the variable with the lowest t statistic was dropped and the 38 

model was re-estimated. The process was continued until no variables were insignificant. The 39 

reader would note that potential correlation between the various independent variables were 40 

carefully considered prior to model estimation. The variables that exhibited higher correlation 41 

values were considered separately and the variable that offered the better fit was retained (while 42 

excluding other correlated variables). The specification process was also guided by prior research 43 
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and parsimony considerations3. In estimating the models, several functional forms and variable 1 

specifications are explored. The functional form that provided the best result is used for the final 2 

model specification. In the estimated models, a positive (negative) coefficient corresponds to 3 

increase (decrease) in e-scooter demand. Please note that only the results for weekdays are 4 

described in detail for the sake of brevity. 5 

Joint Panel Linear Regression Model for Weekdays 6 

The estimation results of the joint model for weekdays are presented in Table 2. In the joint system, 7 

the demand components for morning peak, midday, evening peak and nighttime are presented in 8 

the second, third, fourth and fifth column panels of Table 2, respectively. The estimation results 9 

of these components are discussed in the following sections by variable groups.  10 

Sociodemographic Attributes 11 

Several sociodemographic attributes at the census tract level are considered in the model. 12 

Surprisingly, population density variable has a negative coefficient in morning peak, midday, and 13 

evening peak for weekdays. The results imply that the e-scooter demand during weekdays is likely 14 

to be less in the census tracts with higher population density. The variable also exhibits significant 15 

variation across all time periods as indicated by the random parameter estimated for population 16 

density. So, while the average impact might indicate lower demand with increasing population, 17 

there is significant variability across census tracts. The reader would note that we retained the same 18 

distribution variance across all time periods for maintaining a parsimonious specification. On the 19 

other hand, employment density in a census tract is found to increase e-scooter demand at all times 20 

(see (Caspi et al., 2020; Jiao & Bai, 2020) for similar findings). The results indicate that as the 21 

proportion of females in the CT population increases, there is a reduction in e-scooter demand in 22 

morning peak and nighttime. The result might reflect the lower exposure to e-scooters and/or safety 23 

concerns among women. The proportion of students affects e-scooter demand positively across all 24 

time periods. Thus, it is evident from the results that the e-scooter demand is likely to be higher in 25 

census tract for specific cohorts of population rather than across all population categories in a 26 

census tract. 27 

The increase in proportion of commuters is likely to increase e-scooter demand across all 28 

time periods. The proportion of commuters using public transit is found to affect e-scooter demand 29 

negatively in all four time periods. Different trends by mode for commuters are perhaps alluding 30 

to the competition between e-scooter and public transportation mode for commuting (see (Zuniga-31 

Garcia & Machemehl, 2020) for a similar finding). With regard to census tract level income, the 32 

results show that the census tracts with higher level of median income are likely to have lower 33 

level of e-scooter demand across all time points except evening time.  34 

Land Use and Built Environment Attributes 35 

Several land use attributes considered in the study are found to have a significant influence on e-36 

scooter demand. Among land use categories, density of office area, density of commercial area, 37 

density of educational area, density of parks and open space and density of other land use area are 38 

found to be significant influencers of e-scooter demand. The density of office has negative 39 

association with e-scooter demand across the day. In the midday and evening peak demand 40 

components, the e-scooter demand is found to be positively associated with higher density of 41 

 
3 The model estimation process was guided by parsimony considerations i.e., whenever possible a simpler model was 

preferred to a complex model with additional parameters while ensuring the model fit was not statistically different. 
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commercial area, while density of commercial area is not significant in the demand components 1 

for morning peak and nighttime as most of the stores are closed in this time of the day. The density 2 

of educational area is found to be negatively associated with e-scooter demand during morning 3 

peak and nighttime periods. The result is to be viewed in conjunction with the proportion of 4 

students’ variable. When we consider the net values of proportion of student and density of 5 

educational area in the census tract, the net result yields a positive value. The results reveal that 6 

parks and open space, and other land use (cultural services, hospitals, utilities) areas in the census 7 

tracts are likely to attract more e-scooter riders.  8 

To test the relationship between land use diversity and e-scooter demand, we also consider 9 

land-use mix as independent variable in the demand components. The results in Table 2 for 10 

weekdays reveal that, land use mix is significant and positive across all time periods (see (Huo et 11 

al., 2021) for a similar finding) . The results support the positive influence of diversified land use 12 

that encourages an active and livable community. Given that the presence of historical landmarks 13 

is a surrogate for recreational activity presence, it is not surprising that they are likely to encourage 14 

e-scooter demand across all four time periods.  15 

Transportation Infrastructure Attributes 16 

Among different transportation infrastructure attributes considered, the effect of bus stop density, 17 

rail and metro density, sidewalk density, and bike route density are found to be significant 18 

indicators of e-scooter demand for weekdays. While proportion of commuters using public transit 19 

affects scooter demand negatively, the bus stop density, rail and metro density are positively 20 

associated with higher scooter demand.  Hence, the results suggest that e-scooter may have a 21 

complex relationship with public transit switching from competition to complementarity across 22 

the region and by time of day (see (Yan et al., 2021) for a similar finding). Rail and metro density 23 

is closely aligned with increasing e-scooter demand. E-scooter clearly serves as a fist- and last-24 

mile connector for rail and metro alternatives. Higher level of sidewalk density and bike route 25 

density reflect good infrastructure for riding e-scooter, possibly leading to higher demand. 26 

 27 

Meteorological Attributes 28 

Among meteorological attributes considered, precipitation, humidity, and temperature are found 29 

to be significant determinants. Precipitation is found to contribute towards lower e-scooter demand 30 

during midday and evening peak periods (see (Noland, 2021) for a similar finding). Humidity has 31 

a negative coefficient across the time of the day (other than nighttime) indicating that with 32 

increasing humidity, the likelihood of e-scooter ridership decreases, perhaps an indication of 33 

discomfort resulting from higher humidity. E-scooter demand is found to be higher for the 34 

weekdays with temperature higher than 15°C. The temperature>30°C does not have effect on the 35 

morning peak and nighttime dimensions. The result may indicate the fact that e-scooter users are 36 

likely to be more sensitive to cold weather (see (Noland, 2021) for similar finding).  37 

Situational Attributes 38 

With regard to seasons, spring is found to be associated with higher e-scooter demand for all time 39 

periods. Fall is associated with increased e-scooter demand in morning peak and decreased e-40 

scooter demand in the nighttime. With regard to different weekdays, the indicator for Tuesday and 41 

Wednesday is found to have significant impact in midday, evening peak and nighttime demand 42 

models. The indicator has a negative coefficient revealing that Tuesday and Wednesday are 43 

associated with reduced e-scooter demand. Thursday is also associated with lower demand for 44 
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midday and nighttime periods. The results provide support to our hypothesis that variable impacts 1 

vary by time period. 2 

Panel Correlation Effects  3 

In the joint panel model for weekdays, we consider several panel-specific (census tract, census 4 

tract-time of the day, day of the week and observation level) correlation effects across four 5 

dimensions. Among the different panel level parameters, two parameters were found to be 6 

significant. These include (a) common unobserved factors at the CT panel level across all time 7 

periods, and (b) CT – normalized population density (discussed earlier in Sociodemographic 8 

attributes section). Overall, the results clearly highlight the importance of accommodating for the 9 

common unobserved factors influencing e-scooter demand across different time-of-day 10 

dimensions. 11 

[Table 2 near here] 12 

[Table 3 near here] 13 

Model Validation 14 

A hold-out sample was created for validation purposes using the same method as the estimation 15 

sample. The hold-out sample consists of 221 weekdays and 84 weekends. From these hold-out 16 

samples, random samples of days were drawn and employed in repeated model performance 17 

evaluation over 30 samples. For weekdays we draw 50 days for each repetition, while for weekends 18 

we draw 30 days for each repetition. For each sample, the predicted log-likelihood was estimated 19 

employing the independent linear regression model and the proposed joint panel model. The 20 

performance of the models were compared using the Bayesian Information Criterion (BIC). The 21 

results from the exercise are presented in Figure 7. From Figure 7, we observe that BIC values for 22 

the JPLR model improved for a majority of the validation samples (27 out of 30) compared to BIC 23 

values for the LR model for both weekdays and weekends. The results clearly illustrate the 24 

improved out-of-sample performance of our JPLR model for weekdays and weekends. 25 

 26 

[Figure 7 near here] 27 

 28 

 29 

Policy Analysis 30 

The model specifications in Table 2 and Table 3 demonstrate how parameters affect e-scooter 31 

demand. To further illustrate the applicability of the models developed, we perform an elasticity 32 

analysis to identify the magnitude of the impacts of the independent variables. To evaluate the 33 

impact of exogenous variables on e-scooter demand, we consider changes in aggregate scooter 34 

demand in response to a 15 and 25 percent change in independent variables. In this research, we 35 

perform elasticity analysis considering a selected set of significant factors. The results of elasticity 36 

analysis for weekdays are illustrated in Figure 8 while the results of elasticity analysis for 37 

weekends are shown in Figure 9. Regarding the weekday model components, we found proportion 38 

of commuters, land use mix, proportion of other land use to be the significant factors that influence 39 

the e-scooter demand positively for weekdays. Proportion of transit commuter and density of office 40 

area are the most significant factors found to influence the demand negatively. In contrast, weather 41 

factors are found to have the least influence on e-scooter demand. For weekend model components, 42 

land use mix, density of other land use, medium temperature and proportion of commuters using 43 

public transit are the most influential variables for e-scooter demand. 44 
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[Figure 8 near here] 2 

[Figure 9 near here] 3 

 4 

Conclusions 5 

The current study contributes to our understanding of dockless e-scooter systems by identifying 6 

and quantifying the influence of various contributing factors on dockless e-scooter demand. The 7 

study recognizes the significant variation of e-scooter usage patterns across different time periods 8 

and weekday/weekend. The study employs high-resolution spatiotemporal e-scooter trip level data 9 

from Austin, Texas to generate census tract (CT) level e-scooter demand by time period (Morning, 10 

Midday, Evening, Nighttime) separately for weekdays and weekends.  11 

As data generated is available for multiple observations per CT (by day and time period), 12 

the study develops a framework that accommodates for the influence of unobserved factors at 13 

multiple resolutions including CT level unobserved factors, time period level unobserved factors, 14 

and potential variation in the influence of various attributes (random parameters). The framework 15 

takes the form of a joint panel regression model framework. The model framework is developed 16 

separately for weekdays and weekends using an extensive set of independent variables including 17 

sociodemographic attributes, transportation infrastructure variables, land use and built 18 

environment variables, meteorological attributes, and situational attributes.  19 

The proposed model system is compared with its traditional counterpart - an independent 20 

linear regression (LR) model for weekdays and weekends. A comparison of the two model systems 21 

based on BIC measures reveals that the JPLR models outperform the LR models for both weekdays 22 

and weekends. From the analysis results, we observe a significant association between the 23 

dependent variables and various independent variables. The results also highlight variation in 24 

parameter effects across time of day. For instance, the influence of public transit stops highlights 25 

that e-scooter may have a complex relationship with public transit switching from competition to 26 

complementarity across the region and time of day. Multiple panel-specific correlation effects are 27 

found to be significant across four dimensions highlighting the importance of accommodating the 28 

influence of common unobserved factors on e-scooter demand across different time-of-day 29 

dimensions. Finally, the estimated model is employed to conduct a policy exercise illustrating the 30 

value of the estimated model for understanding CT level e-scooter demand. The results indicate 31 

that land-use mix variable has a significant impact on e-scooter demand for weekdays and 32 

weekends.  The finding is quite encouraging and suggests mixed land use growth regions can 33 

attract higher e-scooter demand potentially reducing auto reliance.  34 

To be sure, the study is not without limitations. E-scooter usage data from multiple years 35 

could be employed to enhance our understanding of the temporal variability of the demand. It 36 

might also be interesting to compare the proposed model performance with the performance of 37 

spatial lag and error models in a future effort (for example see Faghih-Imani & Eluru, 2016; 38 

Rahman et al., 2021). The data considered in our analysis is from 2019 and was unaffected by 39 

Corona Virus Diseases 2019 (COVID-19). As documented in many recent studies, COVID-19 has 40 

significantly transformed transportation systems. Future efforts might consider how the changes 41 

have affected e-scooter demand.  42 
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  1 
FIGURE 1 Total number of E-scooter trips in thousand in Austin at the census tract level 2 

for the year 2019 (Data source: City of Austin open data portal) 3 

 4 
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 1 
FIGURE 2 Hourly trips based on the day-of-week for the year 2019 2 

 3 

 4 
FIGURE 3 Trip patterns based on the day-of-week and time-of-day for the year 2019  5 
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TABLE 1 Descriptive Summary of Sample Characteristics 1 

Variables Names Definitions 
Descriptive Statistics 

Minimum Maximum Mean 

DEPENDENT VARIABLES 

Share E-scooter Trip Demand for Weekdays 

Morning Peak Trips  Ln (Total number of weekday morning peak trips in each CT) 0.000 7.504 2.229 

Midday Trips  Ln (Total number of weekday midday trips in each CT) 0.000 8.873 2.683 

Evening Peak Trips  Ln (Total number of weekday evening peak trips in each CT) 0.000 9.147 2.893 

Nighttime Trips  Ln (Total number of weekday nighttime trips in each CT) 0.000 8.492 2.139 

Share E-scooter Trip Demand for Weekends 

Morning Peak Trips  Ln (Total number of weekend morning peak trips in each CT) 0.000 7.391 1.919 

Midday Trips  Ln (Total number of weekend midday peak trips in each CT) 0.000 9.016 3.121 

Evening peak Trips  Ln (Total number of weekend evening peak trips in each CT) 0.000 9.304 3.117 

Nighttime Trips  Ln (Total number of weekend nighttime trips in each CT) 0.000 8.536 2.496 

INDEPENDENT VARIABLES 

Sociodemographic Attributes 

Population Density Z-score ((Population in each CT / Total area of each CT)/1000) -0.911 3.769 0.000 

Employment Density Z-score ((Number of jobs in each CT/ Total area of each CT)/1000) -1.327 3.363 0.000 

Proportion of Students 
Number of high school and university students in each CT/ Total 

population in each CT 
0.034 0.977 0.204 

Proportion of Female Number of females in each CT/ Total population in each CT 0.352 0.597 0.477 

Proportion of Commuters 
Number of individuals who commute to work in each CT/ Total 

population in each CT 
0.283 0.816 0.627 

Proportion of commuters who 

drive to work 

Number of individuals who drive (drive alone) to work in each CT/ Total 

number of commuters in each CT 
0.391 0.795 0.656 

Proportion commuters who take 

public transport to work 

Number of individuals who use public transit to work in each CT/Total 

number of commuters in each CT 
0.006 0.205 0.067 

Proportion commuters who 

carpool to work 

Number of individuals who use share ride (carpool) to work in each CT 

tract /Total number of commuters in each CT 
0.006 0.153 0.067 

Proportion commuters who 

walk to work 

Number of individuals who walk to work in each CT/Total number of 

commuters in each CT 
0.000 0.458 0.060 

Proportion of commuters who 

use other modes to work 

Number of individuals who use other modes to commute in each CT/Total 

number of commuters in each CT 
0.015 0.156 0.057 

Median Income Z-score (Median income in each CT/1000) -2.188 2.525 0.000 

Land use and Built Environment Attributes 
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Density of Single-Family Area 

Defined as ratio of the area of the variable and total area of CT 

0.000 0.548 0.252 

Density of Multi-family Area 0.006 0.631 0.134 

Density of Commercial Area 0.001 0.283 0.066 

Density of Office Area 0.000 0.203 0.046 

Density of Industrial Area 0.000 0.280 0.030 

Density of Educational Area 0.000 0.162 0.027 

Density of Parking Area 0.000 0.066 0.008 

Density of Park and Open space 

Area 
0.000 0.705 0.110 

Density of Other Land Use Area 0.000 0.970 0.327 

Land use mix 
Land use mix = [

− ∑ (𝒑𝒌(𝒍𝒏𝒑𝒌))𝒌

𝒍𝒏𝑵
],  where k is the category of land-use, p is 

the proportion of the developed land area devoted to a specific land-use, N 

is the number of land-use categories in each CT 

0.081 0.832 0.657 

Historic Landmarks Z-score (Number of Historic landmarks in each CT) -0.487 5.664 0.000 

Transportation Infrastructure Attributes 

Bus Station Density Z-score (Total number of bus stops in each CT/Total area of each CT) -1.744 2.890 0.000 

Sidewalk Density Z-score (Total sidewalk length in each CT in mile /Total area of each CT) -2.073 1.672 0.000 

Rail and MetroRapid Density 
Z-score (Total number of rail and MetroRapid stops in each CT /Total 

area of each CT) 
-0.627 4.589 0.000 

Bike Road Density Z-score (Total bike roads length in each CTin mile /Total area of each CT) -1.718 3.680 0.000 

Meteorological variables 

Precipitation 
Amount of Precipitation for the day the demand is under consideration (in 

mm) 
0.000 8.041 0.100 

Humidity 
Z-score (Relative Humidity for the day the e-scooter demand is under 

consideration (in %)) 
-2.429 1.650 0.000 

Categorical Variables Definitions Frequency (%) 

Temperature 

Low Temperature (<=15 C) 19.500 

Medium Temperature (15.1 - 30 C) 57.800 

High Temperature (>30 C) 22.700 

Situational Attributes 

Categorical Variables Definitions Frequency (%) 

Seasons 

Spring (March-May) 32.825 

Summer (June-August) 24.840 

Fall (September-November) 25.286 

Winter (December-February) 17.049 
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Weekdays 

Monday 17.892 

Tuesday 17.921 

Wednesday 18.174 

Thursday 20.414 

Friday 25.599 

Weekends 
Saturday 57.925 

Sunday 42.075 

1 
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TABLE 2 Panel Linear Regression Model Results for Weekdays 1 

Variables 
Morning Peak Midday Evening Peak Nighttime 

Estimate t-statistic Estimate t-statistic Estimate t-statistic Estimate t-statistic 

Constant -5.304 -13.474 -5.312 -15.711 -4.715 -13.864 -3.879 -9.230 

Sociodemographic Attributes 

Population Density -0.558 -1.650 -1.247 -3.878 -0.679 -2.077 -- -- 

   Standard Deviation of Population Density -4.426 -52.291 -4.426 -52.291 -4.426 -52.291 -4.426 -52.291 

Employment Density 0.161 6.160 0.208 7.892 0.215 7.867 0.171 6.186 

Proportion of Female -0.873 -2.149 -- -- -- -- -1.454 -3.554 

Proportion of students  2.807 17.211 3.222 20.530 2.874 18.537 2.488 15.125 

Proportion of Commuters 6.386 23.527 5.484 18.816 4.562 18.477 4.985 15.326 

Mode of commuting to work (Base: other modes) 

Proportion public transport -13.740 -26.361 -14.443 -29.822 -12.608 -26.463 -11.933 -22.068 

Median Income -0.461 -12.199 -0.251 -6.499 -- -- -0.293 -7.154 

Land use and Built Environment Attributes 

Land use (Base: Density of Single-Family Area, Density of Multi-family Area, and Density of Industrial Area) 

Density of Office Area  -12.418 -23.639 -11.299 -21.112 -10.909 -20.352 -11.335 -20.297 

Density of Commercial Area -- -- 1.815 4.603 1.857 4.659 -- -- 

Density of Educational Area -4.020 -7.816 -- -- -- -- -4.417 -6.862 

Density of Park and Open space Area 5.115 19.642 6.968 27.125 6.657 25.069 4.960 18.805 

Density of Other Land Use Area 3.172 16.739 3.207 16.914 3.003 15.518 2.669 14.000 

Land use mix 4.888 20.169 5.102 20.351 5.271 20.279 4.935 18.872 

Historic Landmarks 0.401 15.172 0.326 12.626 0.291 11.199 0.384 14.236 

Transportation Infrastructure Attributes 

Bus Station Density 0.124 4.594 0.245 9.485 0.252 11.456 0.192 7.065 

Rail and Metro MetroRapid Density 0.205 8.017 0.320 11.852 0.261 9.566 0.243 8.388 

Sidewalk Density 0.440 13.309 0.379 11.554 0.277 9.196 0.285 8.499 

Bike Road Density 0.509 18.910 0.534 19.988 0.536 19.707 0.519 18.378 

Meteorological variables 
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Precipitation  -- -- -0.207 -7.215 -0.286 -4.699 -- -- 

Humidity -0.243 -4.991 -0.041 -2.347 -0.065 -3.488 -- -- 

Temperature (Base: Low Temperature) 

Temperature (Medium) 0.317 9.621 0.179 4.334 0.241 5.660 0.308 6.948 

Temperature (High) -- -- 0.250 5.385 0.429 8.430 -- -- 

Situational attributes 

Seasons (Base: Summer) 

Spring 0.237 6.099 0.373 9.118 0.503 11.910 0.086 1.834 

Fall 0.106 2.656 -- -- -- -- -0.206 -4.194 

Winter -- -- -- -- -- -- -0.294 -4.921 

Weekdays (Base: Monday, Friday) 

Tuesday and Wednesday -- -- -0.183 -5.070 -0.092 -2.732 -0.233 -6.501 

Thursday -- -- -0.158 -3.662 -- -- -0.105 -2.438 

Variance Component 

Constant 0.671 60.404 0.673 60.465 0.700 60.820 0.675 60.044 

Panel Correlation Effect 

  Estimate t-statistic 

Census Tract (Constant) -0.298 -27.462 

  1 
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TABLE 3 Panel Linear Regression Model Results for Weekends 1 

Variables 
Morning Peak Midday Evening Peak Nighttime 

Estimate t-statistic Estimate t-statistic Estimate t-statistic Estimate t-statistic 

Constant -2.699 -5.971 -2.768 -7.063 -1.687 -5.792 -2.766 -5.818 

Sociodemographic Attributes 

Population Density -1.055 -7.774 -0.817 -5.198 -1.061 -9.23 -0.868 -5.495 

Standard Deviation of Population Density 0.723 29.249 0.723 29.249 0.723 29.249 0.723 29.249 

Employment Density 1.275 12.043 1.126 8.987 1.309 13.828 1.178 9.146 

Proportion of students  1.411 4.068 0.523 1.751 0.666 2.327 1.025 3.267 

Proportion of Female -- -- -- -- -2.117 -3.179 -1.488 -2.608 

Proportion of Commuters -- -- 1.322 2.851 -- -- 1.032 1.857 

Proportion of modes of commuting to work (Base: other modes) 

Proportion commuters public transport -10.608 -11.186 -14.679 -19.317 -14.972 -19.976 -12.196 -15.966 

Median Income -- -- -- -- -- -- -0.178 -3.493 

Land use and Built Environment Attributes 

Land use (Base: Density of Single-Family Area, Density of Multi-family Area, and Density of Industrial Area) 

Density of Commercial Area 1.901 3.232 2.163 3.708 1.963 3.504 2.695 4.577 

Density of Office Area  -8.125 -8.78 -9.468 -11.638 -9.197 -11.912 -10.348 -12.758 

Density of Park and Open space Area 6.809 15.199 9.828 23.593 9.622 23.397 8.197 20.129 

Density of Other Land Use Area 4.001 11.423 5.24 15.97 4.81 14.81 5.122 16.392 

Land use mix 4.903 14.357 5.295 17.432 5.112 16.969 5.594 17.971 

Historic Landmarks 0.184 4.434 0.075 1.988 0.073 1.929 0.264 7.036 

Transportation Infrastructure Attributes 

Bus Station Density -- -- 0.156 4.878 0.104 3.31 -- -- 

Rail and Metro MetroRapid Density 0.322 8.286 0.442 12.125 0.488 13.475 0.431 12.11 

Sidewalk Density 0.381 8.704 0.528 13.143 0.457 11.469 0.458 11.664 

Bike Road Density 0.56 12.328 0.744 18.553 0.758 19.045 0.696 17.635 

Meteorological variables 
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Precipitation  -0.155 -3.909 -0.165 -4.311 -- -- -- -- 

Humidity -0.094 -3.821 -0.139 -5.322 -0.134 -5.379 -0.112 -4.613 

Temperature (Base: Low Temperature) 

Temperature (Medium) 0.272 5.542 -- -- -- -- 0.4 6.621 

Temperature (High) -- -- -- -- 0.195 3.303 -- -- 

Situational attributes 

Seasons (Base: Summer)  

Spring 0.295 5.259 0.526 8.872 0.679 11.476 0.29 4.931 

Fall 0.161 2.713 0.122 1.904 -- -- -- -- 

Winter -- -- -- -- -- -- -0.193 -2.594 

Weekdays (Base: Saturday) 

Sunday -0.236 -5.17 -0.313 -6.438 -0.383 -7.971 -0.432 -9.218 

Variance Component 

Constant 0.667 41.562 0.715 42.685 0.709 42.712 0.69 42.408 

Panel Effect 

  Estimate t-statistic 

Census Tract (Constant) -0.563 -33.738 

Census Tract (Morning peak) -0.124 -4.597 

1 
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 1 

FIGURE 4 Flow chart demonstrating data preparation procedure for weekdays and 2 

weekends   3 
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 1 

FIGURE 5 Sum of squared error for weekday morning peak  2 

  3 

FIGURE 6 Sum of squared error for weekday evening peak  4 
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 1 
FIGURE 7 Model validation 2 
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 1 
FIGURE 8 Elasticity analysis for weekdays 2 

 3 
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 1 
FIGURE 9 Elasticity analysis for weekends 2 


