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ABSTRACT 

This study contributes to our understanding of the changes in traffic volumes on major roadway 

facilities in Florida due to COVID-19 pandemic from a spatiotemporal perspective. Three different 

models were tested in this study- a) Linear regression model, b) Spatial Autoregressive Model 

(SAR) and c) Spatial Error Model (SEM). For the model estimation, traffic volume data for the 

year 2019 and 2020 from 3,957 detectors were augmented with independent variables, such as- 

COVID-19 case information, socioeconomics, land-use and built environment characteristics, 

roadway characteristics, meteorological information, and spatial locations. Traffic volume data 

was analyzed separately for weekdays and holidays. SEM models offered good fit and intuitive 

parameter estimates. The significant value of spatial autocorrelation coefficients in the SEM 

models support our hypothesis that common unobserved factors affect traffic volumes in 

neighboring detectors. The model results clearly indicate a disruption in normal traffic demand 

due to the increased transmission rate of COVID-19. The traffic demand for recreational areas, 

especially on the holidays, was found to have declined after March 2020. In addition, change in 

daily COVID-19 cases was found to have larger impact on South Florida (District 6)’s freeway 

demand on weekdays compared to other parts of the state. Further, the gradual increase of demand 

due to the rapid vaccination was also demonstrated in this study. The model system will help 

transportation researchers and policy makers understand the changes in freeway volume during 

the COVID-19 period as well as its spatiotemporal recovery.  
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PRACTICAL APPLICATIONS 

The model framework developed in our study provides transportation planners with insight on 

infrastructure usage across freeways in Florida. Within this broad context, the study makes three 

important contributions. First, the study highlights the impact of a host of variables on traffic 

demand under normal conditions and the varying impact of these variables due to a shock. The 

model developed quantitatively identifies the varying spatiotemporal influence of variables on 

demand evolution in response to a shock. The proposed approach can be applied in other contexts 

such as a recession to reflect changes in traffic demand over time. Second, employing the model 

for Florida provides an understanding of the locations that exhibit faster recovery rates – such as 

recreational locations in Central and South Florida. Thus, in the future transportation planning can 

accommodate for potentially faster recovery in infrastructure usage in these locations. The finding 

might also be important for policy making to support various economic sectors to diversify the 

workforce adequately. Finally, the overall framework will also assist policy makers in assessing 

infrastructure usage over time under various scenarios to obtain inputs for efficient transportation 

asset management. An accurate estimation of demand over time while recognizing the freight share 

(not considered in our work) will allow evaluation of infrastructure deterioration and upkeep. 

  



   

INTRODUCTION 

As of November 2021, Coronavirus disease 2019 (COVID-19) pandemic, has affected the entire 

world with reported cases (and fatalities) amounting to 261 million (5 million) (Worldometer, 

2021). The pandemic has significantly taxed the social, health and economic systems affecting the 

mental and physical health of populations (Bhowmik & Eluru, 2021; The World Bank, 2020). 

United States is one of the significantly affected countries with the highest number of confirmed 

cases (about 48 million) and deaths (about 776 thousand) in the world (Centers for Disease Control 

and Prevention, 2021). The emergence of pandemic and the associated social distancing, mask 

mandates and stay-at-home orders affected nearly every facet of life. The US economy was 

significantly affected by COVID-19 with an unemployment rate of 14.7% by April 2020 (The 

Economics Daily, 2020). For perspective, the unemployment rate was only as high as 10% during 

the great recession. The economy also significantly transformed with a rapid shift to teleworking. 

About 71% of the total workforce moved to teleworking during the pandemic period from the pre-

pandemic levels of about 20% (Parker et al., 2020). In recent months, the largely successful 

vaccination drive in the United States – about 437 million shots delivered by October 2021 – has 

contributed to reducing cases, and fatalities (Bloomberg, 2021). While public health professionals 

are wary of potential variants and their impact on unvaccinated populations, there is growing 

optimism among the public and many communities are emerging into a post-pandemic 

environment. 

As described earlier, the pandemic has delivered a shock to every facet of life and the 

transportation system is no exception. For instance, after the stay-at-home orders were issued the 

average daily travel distance in the USA has declined by 80% (Hendrickson & Rilett, 2020). 

Traffic volume detector measurements in Florida for April 2020 indicated a drop of 41% relative 



   

to traffic volume measurements in April 2019. Transportation system usage patterns are a complex 

interaction of employment patterns, demographics, socioeconomics, transportation system 

attributes and urban regional characteristics. We hypothesize that spatial differences across regions 

are likely to result in varying evolution patterns across the country. As the country re-emerges 

from the pandemic, transportation system usage indicators can serve as important proxies for how 

the various communities were affected and possibly are reemerging from the pandemic. 

In our study, employing transportation system usage measures (such as traffic volumes) on 

major roadways as a surrogate for community mobility, we focus on (a) understanding how local 

COVID-19 case history, socio-demographics, socioeconomics, transportation system 

characteristics, and urban form influence system usage and (b) examine disparities across 

communities in transportation system demand recovery and draw insights on factors contributing 

to the recovery. Florida serves as an ideal test bed for our analysis with diversity in regional 

features, population, and COVID-19 spread. The study employs data from 3,957 detectors, across 

4 major interstate highways (I-4, I-10, I-75 and I-95) of Florida, sourced from the Regional 

Integrated Transportation Information System (RITIS) for 2019 and 2020. To analyze the rich 

database of traffic volumes across the two years for the large number of sites, we employ a 

spatiotemporal mixed linear regression model. The traffic volume data is augmented with a host 

of independent variables including detailed COVID-19 information (such as per capita COVID 

cases), socio-economic characteristics (such as median income, household vehicle availability), 

land-use characteristics (such as residential, commercial, and recreational area), built environment 

attributes (such as number of restaurants, and shopping centers), roadway characteristics (such as 

number of lanes, and maximum speed limit), meteorological information (such as wind speed and 

precipitation) and spatial locations of the traffic count detectors.  The proposed spatiotemporal 



   

transportation volume model can offer insights to transportation and economic agencies on factors 

influencing the recovery process. The performance of the proposed model is further illustrated by 

predicting traffic volumes for data records not used in the model estimation. The model provides 

a framework to predict demand recovery as conditions improve across the country.  

EARLIER RESEARCH 

Examining traffic volumes on major transportation roadways is a well-researched objective. 

Several researchers develop regional models focusing on the drivers of travel using travel demand 

modeling approaches such as trip-based model and activity-based models (Bowman & Ben-Akiva, 

2001; Pendyala et al., 2012; Pinjari et al., 2008; Sider et al., 2013; Ziemke et al., 2019). However, 

these approaches are focused on capturing regional trends and are not appropriate for modeling 

traffic volumes on specific facilities. In our review, we focus on research efforts that are developed 

to specifically study traffic volumes on roadway facilities. The review is organized along two 

groups of studies. The first group of studies examine approaches to study traffic volumes on 

roadways. The second group of studies are focused on understanding volume evolution in response 

to changes/shocks to the system.  

The first group of studies analyzes traffic volume data by developing frameworks to (a) 

identify the factors affecting traffic volumes and (b) predict traffic volumes in the near future. The 

various traffic volume variables considered in earlier literature include traffic volumes (Kim et al., 

2003; Ma et al., 2020), transformed traffic volumes such as natural logarithm or Box-cox 

transformation (Boonekamp et al., 2018; Faghih-Imani & Eluru, 2016b; Tamin & Willumsen, 

1989) and change in traffic volumes over time (Abu-Eisheh & Mannering, 2002). The prevalent 

approaches for analysis of the volume variable with a focus on identifying important factors 

include simple linear regression models (Kusam & Pulugurtha, 2016), two stage least squares 



   

techniques (Boonekamp et al., 2018), geographically and temporally weighted regression model 

(Ma et al., 2020), dynamic simultaneous equation systems (Abu-Eisheh & Mannering, 2002), 

spatial mixed linear model(Faghih-Imani & Eluru, 2016a), autoregressive integrated moving 

average model (Williams & Hoel, 2003), and spatial panel mixed multilevel ordered logit model 

(Faghih-Imani & Eluru, 2016b). Multiple research efforts have also been developed with a focus 

on improving volume prediction drawing on machine learning and artificial intelligence-based 

research approaches including artificial neural networks (Yun et al., 1998; Zhu et al., 2014), 

support vector machines (Xie et al., 2010), gaussian processes (Xie et al., 2010), k-nearest 

neighbors algorithm (Z. Wang et al., 2019; Zheng & Su, 2014) and CNN-LTSM model (Shao et 

al., 2021). The most important factors identified in these research as affecting traffic volumes 

include population density, employment rate, land-use and built environment characteristics (such 

as number of restaurants, and proportion of commercial area), temperature and rain.  

The second stream of studies are focused on understanding changes to traffic volumes in 

response to a major transportation system change (such as addition of new lanes, addition of 

significant public transit facility along the roadway corridor) (Beaudoin et al., 2015; Shams & 

Zlatkovic, 2020; Slavin et al., 2013) or system level shocks (such as a major economic recession 

or a pandemic) (Lo & Hall, 2006; Park & Sener, 2019). The reader would note that some studies 

focused on understanding air quality impacts of COVID-19 and as part of their analysis developed 

aggregate traffic volume trends/predictions (Elshorbany et al., 2021; Tian et al., 2021; Xiang et 

al., 2020) and are not directly relevant to our study. A number of research efforts examined how 

COVID-19 is affecting transportation volumes on multiple roadways. For example, Loske (2020) 

and Lee et al. (2020) examined COVID-19 data until March 2020 and examined how transport 

volumes were affected.  The studies developed linear regression models with only one variable of 



   

interest (COVID-19 cases). Macioszek and Kurek (2021) employed data for 2019 and 2020 from 

a small number of intersections in an urban region to examine the changes in average daily traffic, 

changes to traffic at different points of the pandemic using linear combinations of Gaussian 

functions. Parr et al. (2020) employed data from Florida from more than 200 sites to evaluate the 

differences in traffic volumes between 2019 and 2020. The study conducted a host of univariate 

analyses comparing how traffic volumes in 2019 and 2020 changed for (a) specific locations (such 

as South Florida), (b) between urban and rural locations, (c) between arterials and interstates. Patra 

et al. (2021) examined changes in traffic volumes using Wi-Fi MAC Scanners (WMS) at two 

intersections in India in response to the multiple phases of COVID-19 lockdowns and found that 

traffic initially dropped. However, when enforcement was lax, traffic volumes were closer to 

normal due to the population ignoring the mandates.  

Current Study 

The literature presented clearly illustrates how several researchers have examined traffic volume 

data in response to COVID-19 pandemic. However, prior research efforts have several limitations. 

First, a majority of these research efforts have focused on a short time frame between a few weeks 

and 3 months to study the impact of COVID-19. Second, a majority of these studies employed 

very simple descriptive measures (such as traffic volume percentage change) or linear regression 

models with only one variable. Third, earlier studies (with the exception of Parr et al. (2020)) 

focused on less than ten sites to conduct the analysis. Fourth, differences in traffic volumes 

between weekdays and holidays was not explicitly recognized. Finally, all the earlier research that 

developed statistical models used simple linear regression models without considering for potential 

spatial correlations between traffic volume sites. The proposed research addresses these limitations 

by conducting a detailed spatiotemporal analysis of traffic volumes considering 3,957 detectors 



   

processing data for the full 2019 and 2020 years on major Florida interstate facilities. The research 

develops three model systems: a) Linear regression model, b) Spatial Autoregressive Model (SAR) 

and c) Spatial Error Model (SEM) (see for earlier work using these methods (Faghih-Imani & 

Eluru, 2016b; Ferdous et al., 2013; Frazier et al., 2005; X. C. Wang et al., 2012; X. Wang & 

Kockelman, 2006)). The model development is conducted using a host of independent variables 

from seven categories: 1) COVID-19 related factors, 2) socioeconomics, 3) land-use 

characteristics, 4) built environment attributes, 5) roadway characteristics, 6) meteorological 

variables and 7) spatial factors. The model estimation results are intuitive and highlight various 

important factors affecting traffic volumes. The results also support our hypothesis that common 

unobserved factors have a significant impact on traffic volumes.  

DATA 

The data for our analysis is obtained from the Regional Integrated Transportation Information 

System (RITIS) data archive (RITIS, 2021). The RITIS database is an automated data sharing 

system with real time data feeds providing information including the hourly traffic count data, 

detector coordinates and details of the roadway. The traffic count data for the current research 

effort is obtained for 4 major interstates in the state of Florida from 5,978 detectors for the years 

2019 and 2020. The interstates considered include I-4, I-10, I-75, and I-95. The number of 

detectors for each interstate facility range between 910 and 2,061. A spatial map of the interstates 

along with the detector locations considered for the empirical study is presented in Figure 1.  

Dependent Variable 

Hourly traffic data for the evening peak period (4PM – 7PM) was the main variable of interest of 

this study. The dataset obtained from the RITIS data portal contain daily traffic volume at hourly 

resolution. For evening peak period, traffic volume data of 4PM to 7PM duration were aggregated. 



   

In our study, the I-10 corridor covers two time zones. The data compiled for our analysis for each 

detector is based on the local time at the detector location. The daily traffic volume for the peak 

period was compiled for each day for 2019 and 2020. The data was not available for all 5,978 

detectors for the 24 months duration. Hence, to maximize detector coverage and ensure adequate 

number of records from each detector, we compiled data from 3,957 detectors across the various 

roadway facilities with traffic volume data available for at least 20 months. The reader would note 

that several detectors on the eastern part of the I-10 corridor were not considered in our analysis 

as data was unavailable across multiple months. The aggregated daily peak volumes dataset was 

classified into weekdays and holidays (weekends and Florida state holidays). From the weekday 

and holiday dataset, one record per month for the two-year duration is randomly sampled for our 

analysis. We employed the one day per month randomly to reduce computational complexity. We 

examined the stability of model estimation by employing multiple random samples following the 

same process used for the estimation sample. The results of the comparison exercise are 

documented in Appendix A. The final weekday and holiday datasets contain a total of 94,373 

(Total records = ∑ M ∗ detectors with M records24
M=20 ; 20 x 27 + 21 x 36 + 22 x 132 + 23 x 115 

+ 24 x 3,647) and 94,197 (20 x 34 + 21 x 48 + 22 x 164 + 23 x 163 + 24 x 3548) observations 

respectively. The reader would note that appropriate modifications were made to ensure the spatial 

matrix employed always has an order of 3,957 x 3,957 with zero’s added in for detectors with 

missing data for the corresponding time period.  

Independent Variables 

The traffic volume data compiled was augmented with a host of independent variables from seven 

categories: 1) COVID-19 related factors, 2) socioeconomics, 3) land-use characteristics, 4) built 



   

environment attributes, 5) roadway characteristics, 6) meteorological variables and 7) spatial 

factors (regional location of the detectors).  

COVID-19 data compiled from the Johns Hopkins University COVID-19 data archive 

(Dong et al., 2020), was employed to identify county level COVID case information (see Bhowmik 

et al., 2021 for details) for each day in 2020 data (excluding January and February). The detectors 

were assigned to the corresponding county data based on their location.  The data sources for other 

independent variables include the United States Census Bureau (for demographics and socio-

economics) (US Census Bureau, 2019), Florida Department of Revenue parcel level data (for land-

use and built environment data) (Property Tax Data Portal, 2015), Florida Department of 

Transportation website (for roadway characteristics and spatial factors) (Geographic Information 

System, 2019) and Florida Automated Weather Network (FAWN) data portal (2019 and 2020 

meteorological data) (Florida Automated Weather Network, 2021). 

The data for socioeconomics, land-use, built environment and roadway information were 

aggregated within a 1.61 km (1 mile) buffer for each detector for our analysis. In earlier work, the 

use of different buffer sizes for predicting several transportation modal demand and crash analysis 

is prevalent. For instance, Chakour & Eluru (2016), and Rahman et al. (2020) examined various 

buffer size and found 800 m or 0.50 mile offering the best fit. Further, for predicting toll road or 

freeway traffic behavior Mathew et al. (2021), and Pulugurtha & Sambhara (2011) considered 1.61 

km (1 mile)  buffer area. So, in our analysis, we tested with 800 m (0.5 mile), and 1.61 km (1 mile) 

buffer and the estimation results with 1.61 km (1 mile) buffer offered improved model fit. Using 

US census data at CT resolution, we generate buffer specific variable measures by allocating full 

CTs directly and employing area-weighted characteristics from partially covered CTs. 



   

The meteorological data from 27 weather stations across the state of Florida have been 

assigned to the 3,957 traffic detectors considered in this study. The near table tool in ArcGIS 

software was used to assign the weather information of the nearest weather station to each of the 

detector. The descriptive statistics of the distance between the traffic detectors and the weather 

stations are shown in Table 1.   

It is observed that the mean distance between weather stations and traffic detectors is 27.60 

km (17.15 miles). Ideally, we would like the distance to be even lower. However, given that the 

data is needed reliably across the year, this is a reasonable compromise. 

The reader would note that several lockdown measures were implemented across the state. 

However, lockdown and COVID-19 policy implementations across the state were not readily 

available for consideration in our models. Hence, we employed COVID-19 temporal factors and 

spatial factors to serve as controls for these differences. For temporal factors, we examined 

indicator variables by month to represent the varying actions considered as time elapsed since the 

beginning of the pandemic. The variables considered include indicator variables for 1st March 2020 

and later, 1st April 2020 and later and so on. For spatial factors, we created indicator variables for 

the seven Florida Department of Transportation Districts. Further, we considered the potential 

interactions of these two variable groups with all independent variables in our analysis. 

The reader would recognize that temporal and spatial factors (and the various interactions) 

serve as surrogates for pandemic policy implementation across the state. 

Sample Characteristics  

A descriptive summary of the dependent and independent variables is provided in Table 1 and 2. 

An illustration of the sudden impact of COVID-19 emergence and its continuing influence on 



   

weekly traffic volumes is presented in Figure 2. From Figure 2, we can observe the sudden drop 

(46.19%) in traffic volumes in March 2020. The figure also overlays the weekly count of COVID-

19 cases in the state. The traffic volume data indicates a reasonable recovery from middle of 2020 

with traffic volumes very close (13% to 15% difference) to 2019 traffic volumes as we get to the 

end of 2020, when the difference was 4.03%. Surprisingly, the August surge in COVID-19 cases 

results in a minor dip (13.02%) in traffic volumes. Further, it is interesting to note that the 

December surge in COVID-19 cases did not influence the weekly traffic volumes. 

METHODOLOGY 

The formulation of the different spatial panel models considered in our analysis are described in 

Elhorst (2003). Let 𝑖 (= 1,2,3,    , 𝑁)  be an index to represent each detector (N = 3,957), and  𝑡 (=

1,2,3,   , 24) be an index to represent the time period of data collection. The general form of the 

pooled linear regression model considering spatial effects has the following structure: 

𝑦𝑖𝑡 = 𝛽′𝑋𝑖𝑡 + 𝜀𝑖𝑡 + 𝛿𝑖                                                                                                                                  (1) 

where,  𝑦𝑖𝑡 is the natural logarithm of traffic volume incremented by 1, 𝑋𝑖𝑡 is a matrix of variables 

at detector 𝑖 and time 𝑡, 𝛽 is the model coefficients to be estimated and 𝜀𝑖𝑡 are independently and 

identically distributed error terms for all 𝑖 and 𝑡, with zero mean and variance 𝜎2. The 𝛿𝑖 represents 

the spatial effect to account for all the detector-specific time-invariant unobserved attributes. Now, 

conditional on the specification, this 𝛿𝑖 can be treated as fixed or random effect in the model 

estimation. However, a fixed effect model is not suitable in the presence of time-invariant 

exogenous variables (Faghih-Imani & Eluru, 2016b). In our analysis, socioeconomics and land use 

patterns did not change over the months for any detector. Hence, we adopt the spatial random 

effect model formulation for our study context.  



   

Several specifications are used for accounting spatial dependence in the literature including 

Spatial Lag or Autoregressive Model (SAR), Spatial Error Model (SEM), and Geographically 

Weighted Regression Model (GWRM). In the current study, we restrict ourselves to the use of 

SAR and SEM models. The SAR accommodates for the spatial dependency by adding a spatial 

lagged dependent variable in the model while the SEM model considers a spatial lagged error 

structure for incorporating spatial correlation.  

The general form of the SAR (see equation 2) and SEM (see equation 3 and 4) are as 

follows (Elhorst, 2003): 

𝑦𝑖𝑡 = 𝛼 ∑ 𝑊𝑖𝑗𝑦𝑗𝑡

𝑁

𝑗=1
+ 𝛽′𝑋𝑖𝑡 + 𝜀𝑖𝑡 + 𝛿𝑖                                                                                                (2) 

𝑦𝑖𝑡 = 𝛽′𝑋𝑖𝑡 + 𝛿𝑖 + 𝜗𝑖𝑡                                                                                                                                   (3) 

𝜗𝑖𝑡 = 𝛾 ∑ 𝑊𝑖𝑗𝜗𝑗𝑡

𝑁

𝑗=1
+ 𝜀𝑖𝑡                                                                                                                         (4) 

where, 𝛼 represent the spatial autoregressive coefficient; 𝛾 indicates the spatial autocorrelation 

coefficient, 𝜗𝑖𝑡 is the spatial autocorrelated error term and 𝑊 is the spatial weight matrix. To be 

specific, 𝑊𝑖𝑗 depicts the element of the weight matrix between detector 𝑖 and 𝑗. In spatial 

econometrics, several functional forms of the weight matrix are commonly adopted including 

neighboring units, inverse of squared distance, inverse of distance or different threshold values 

(such as unit within 500 meters, 1.61 km (1 mile), 8.05 km (5 miles), 16.10 km (10 miles) and 

32.19 km (20 miles)). In our empirical study, we considered several weight matrices and a 

correlation structure representing reducing correlation as a function of the distance that dissipates 

to 0 beyond 16.10 km (10 miles) offered the best results in terms of statistical data fit and 

interpretation. The reader should note that, the diagonal of Weight matrix is set to be zero to 

prevent the use of 𝑦𝑖𝑡 to model itself. Further, the W matrix is normalized across rows to increase 



   

the model estimation stability (Elhorst, 2003). The models are estimated in Matlab using the 

routines provided by (Elhorst, 2003, 2014b). All the parameters are estimated using the maximum 

likelihood approaches (see (Elhorst, 2014a) for details on likelihood functions). 

MODEL ESTIMATION RESULT 

Model Fit Measures 

In our empirical analysis, we estimated the following models: (a) traditional linear regression 

model, (b) Spatial Autoregressive Model (SAR) and (c) Spatial Error Model (SEM). These models 

were estimated for weekday and holiday datasets separately. The performance of these  models are 

compared on the basis of the log-likelihood (LL) at convergence, Bayesian Information Criterion 

(BIC) (Burnham & Anderson, 2004) and overall interpretability of the model. The model goodness 

of fit measures is presented in Table 3. Two observations can be made from the model fit results. 

First, models considering spatial correlation (SAR and SEM) significantly outperform the simple 

linear regression model in terms of statistical data fit. This result clearly highlights the importance 

of accommodating spatial unobserved heterogeneity in regression approaches. Second, we observe 

that SEM model offered marginal improvement in terms of data fit compared to the SAR model 

for both weekday and holiday model. Further, the variable interpretations for SAR model were 

less intuitive and hence we preferred the SEM model that offers an improved interpretation with a 

good fit.  

Variable Effects 

The SEM estimates for weekdays and holidays are shown in Table 4. For both the models, only 

the statistically significant variables (at 90% significance level) are included in the model 

estimation. A positive (negative) sign in Table 4 indicates the increased (decreased) traffic volume 



   

corresponding to the temporal period (weekday and holiday). The model results are discussed by 

variable group for the two datasets.  

COVID-19 Related Factors 

The inclusion of these variables depicts the relation between the transmission of COVID-19 and 

travel demand on interstates. As case rates change across the county, the impact on traffic volumes 

is likely to vary over time.  Therefore, in our models COVID-19 transmission variables with 1, 2 

and 3-week lag have been tested. Among these variables, ‘ln (2-week lagged COVID-19 cases per 

1M population)’ was found to offer the best model fit. The sign of this variable in both the models 

indicates a decrease in travel demand with the increase of the COVID-19 transmission rate two 

weeks prior (see similar trends reported in Lee et al. 2020; Macioszek and Kurek 2021; Parr et al. 

2020). In addition, to capture the impact of the increasing and decreasing COVID-19 transmission 

rates on traffic volume, we included a percentage difference variable which represents the change 

in weekly cases relative to the 3-week moving average. This variable indicates that the percentage 

change in the COVID-19 transmission rate has a significant impact on traffic volume. The model 

results also indicate a higher impact of percentage difference in COVID-19 cases for the South 

Florida region (District 6) on weekdays. It indicates a reduction in traffic in this region due to a 

gradual increase in COVID-19 cases.  

Socioeconomics 

Several socio-economic variables were tested in our model. The detector locations in 

neighborhoods with low median household income (≤ $35,200) are likely to have lower volumes 

for weekdays. Interestingly, the weekday traffic volumes in these locations are substantially lower 

after the pandemic started. The result highlights the disproportionate impact of the pandemic on 



   

the vulnerable population. The variable proportion of zero vehicle households in the vicinity of 

the detector provides an expected reduction in traffic volumes for both weekdays and holidays.  

Land-use Characteristics 

Traffic volumes on interstates are potentially affected by surrounding land-use characteristics. In 

our analysis, several land use variables were tested. Of these variables, distance from the nearest 

Central Business Domain (CBD), proportion of commercial, industrial, and recreational area, 

interaction of these variables with COVID-19 after 1st March 2020 have been found to be 

significant. For the weekday model, distance of the detectors from the nearest CBD is found to 

have a negative impact on the traffic volume, which is similar to the impact reported in Faghih-

Imani and Eluru (2016a).  However, for the holiday model this impact is positive. The result 

indicates that peak traffic volume is higher (lower) closer to the CBD areas in the weekdays 

(holidays). Further, a positive sign for the variable proportion of industrial areas within the 1.61 

km (1 mile) buffer zone of the detectors in the weekday model indicates traffic volume is positively 

associated in industrial areas on the weekdays. On the contrary, the proportion of commercial areas 

within the same buffer zone has a negative association with traffic volume in the holiday model. 

Finally, the proportion of recreational areas in 1.61 km (1 mile) vicinity of the detector has a 

positive impact on traffic volumes on holidays. Further, the impact of recreational areas has 

lowered after COVID-19 emergence. The reader would note that recreational areas still contribute 

to traffic volumes on holiday, but the magnitude is lower during the pandemic. The impact of 

commercial and recreational areas on the holidays’ traffic are quite similar to earlier literature (Ma 

et al., 2020).  



   

Built Environment Attributes 

In terms of built environment attributes, number of shopping centers within the 1.61 km (1 mile) 

buffer zone is found to have a positive impact on traffic volume in weekday and holiday models 

(see similar results reported in Faghih-Imani and Eluru (2016a). However, the contribution to 

traffic volume has lowered, yet remains positive, after the emergence of the pandemic. 

Roadway Characteristics 

Only one variable – number of lanes– offered statistically significant parameters in either the 

weekday or the holiday model. As expected, number of lanes is positively associated with traffic 

volume in both models. A similar relationship has been reported in Kusam and Pulugurtha (2016). 

Meteorological Variables 

Meteorological variables such as average wind speed, rainy day (=1, if average precipitation is ≥ 

0.64 cm or 0.25 inch) were considered in our study to capture the effect of weather on traffic 

volume. The weather impacts are observed to follow the trends reported in earlier literature 

(Faghih-Imani & Eluru, 2016a). The negative sign of both variables in both models indicates a 

lowering of traffic volume in high wind and heavy rainy conditions.  

Spatial Factors 

To capture the influence of detector locations, we incorporated the district categorization for the 

Florida region (see Figure 1 for districts). These variables represent the fixed effects of the 

locations and are not interpretable after adding other variables. The reader would recognize that 

temporal and spatial factors (and the various interactions) serve as surrogates for different 

pandemic policies (such as mask regulations, business openings and occupancy) implemented 

across the state.  



   

Temporal Variables 

We considered multiple traffic volume lag variables including 1-, 7-, 14-, 21- and 28-day lag 

volumes in our modeling. For weekday and holiday models 7-day lag traffic volume was found to 

be positive and offered the best fit. Similar impacts are reported in (Faghih-Imani & Eluru, 2016b).  

Correlation Factors 

The reader would note that the weight matrix in our study follows the inverse of distance within 

16.10 km (10 miles) and 0 outside 16.10 km (10 miles) relationship. As hypothesized, for this 

relationship, spatial correlation was significant in the two models. The result highlights the role of 

common unobserved factors affecting volumes across detectors that are spatially close.  

PREDICTION ANALYSIS 

One of the principal objectives of this study is providing insight on spatiotemporal changes in 

future traffic demand while accommodating for the uncertainty of future COVID-19 transmission 

rate. In early 2021, mass vaccination efforts across the entire US have resulted in sharp reduction 

in cases encouraging more travel. However, COVID-19 transmission rate increased substantially 

after the month of May 2021. To evaluate the impact of this sudden rise, the spatial and temporal 

recovery in traffic volume for the months of June, August and October has been presented in Figure 

3 and 4 for weekdays and holidays respectively.  

To compare our model performance in reflecting the improving pandemic condition in 

Florida, we employ our model system to predict future traffic volumes (for time periods not 

considered in the model development) and examine the difference in observed and predicted 

recovery rates using equations (5) and (6). A value greater than 0.95 would imply either similar 

(0.95 to 1) or higher (>1) volume in 2021 relative to 2019, representing a near to full recovery of 

traffic volumes. 



   

 𝑇𝑟𝑢𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 2021

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 2019
                                                       (5) 

and,  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 =  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 2021

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 2019
                                   (6) 

The confusion matrix with recovery rate categories as: <0.81, 0.81 – 0.90, 0.90 – 0.95 and > 0.95 

for weekday and holiday model are presented in Table 5. From the table, we can observe that the 

weekday model predicts (1.34+2.59+64.03=) 67.96% of the alternatives correctly, while the 

corresponding number for the holiday model is (0.97+3.10+50.48=) 54.55%. It is also important 

for the reader to recognize that these accuracy values are excellent given that the model is built on 

2020 data that does not consider vaccinations in 2021. 

Several observations can be made from these figures. First, weekday traffic volumes 

present varying spatial patterns across the state. Traffic volumes in Central Florida (District 5) and 

West Central Florida (District 7) regions are well into the recovery while parts of the southwest 

(District 1), northeast (District 2) and northwest (District 3) regions are away from a full recovery. 

Central Florida region (District 5) with multiple tourist attractions including several amusement 

parks in Orlando and beaches on the east coast experienced a faster recovery (recovery rate is more 

than 0.95) due to the pent-up demand because of pandemic closures. On the contrary, northeast, 

and northwest regions of Florida are home to commercial entities. As several businesses and 

institutions continued work-from-home patterns even in 2021, the recovery was relatively slower 

(less than 0.90) in those regions. Second, for holidays, the trend is slightly different. The results 

indicate an overall slower pattern of recovery across the state potentially highlighting how 

COVID-19 has reduced discretionary travel. Interestingly, for holiday travel, the Southeast 

(District 4) and Central Florida (District 5) region appears to be recovering at a faster rate (more 

than 0.95) compared to the rest of the state. Southeast district is home to several beach destinations 



   

and benefitted from tourism demand (similar to Central Florida). Overall, the results indicate a 

faster recovery in locations with high share of tourism activity. Third, the results also illustrate 

changing traffic volumes over time. As we move from June through August the number of 

detectors that experienced recovery of traffic volume closer to 2019 levels have declined (in 

particular for weekdays). For instance, 1,718 detectors indicate a full recovery (> 95%) with 

respect to weekday traffic volume in August 2021, a decrease of around 13.5% from June 2021. 

On the contrary, in holidays the recovery rate is found to remain almost constant from June through 

August with a full recovery in 40% of the total detectors. However, in October, traffic volume for 

weekdays and holidays begins to be recover. Overall, the figures clearly illustrate how the 

proposed model can be utilized to examine the spatiotemporal traffic trends at a high resolution. 

A representation of traffic volumes in earlier months of 2021 are included in the Appendix B for 

interested readers.   

CONCLUSION 

Several earlier research efforts have examined the impact of COVID-19 on traffic volumes. 

However, these efforts were either limited to a very short time frame and/or examine data from a 

small number of locations. Further, earlier work employed simple descriptive comparisons or 

statistical models that do not control for a host of factors that affect traffic volumes. In our current 

study, using traffic volume data for 2019 and 2020 from 3,957 detectors on four interstate facilities 

in Florida, an econometric framework for traffic volume spatiotemporal analysis is developed. 

Recognizing the presence of multiple repeated datapoints for each detector and the presence of 

common unobserved factors affecting traffic volumes at neighboring detectors, a comprehensive 

set of panel spatial models are estimated. The dataset was also partitioned for weekdays and 

holidays to capture intrinsic differences in traffic volumes on weekdays and holidays. The model 



   

estimation process considered an exhaustive set of independent variables including detailed 

COVID-19 information (such as per capita COVID cases), socioeconomic characteristics (such as 

employment rate, median income), land-use characteristics (such as residential, commercial, and 

recreational area), built environment attributes (such as number of restaurants, and shopping 

centers), roadway characteristics (such as number of lanes, and maximum speed limit), 

meteorological information (such as wind speed and precipitation) and spatial factors (district-

wise detectors location). Among the spatial models, Spatial Error Model offered the best fit for 

weekdays and holidays.  

The model estimates clearly highlight the impact on COVID-19 on traffic volumes. The 

model also recovered several important associations with other independent variables. The 

findings from the model highlight the inequity in the impact of pandemic on lower income 

households. The model for holidays indicates that traffic volumes during the pandemic are lower 

for recreational areas (relative to pre-pandemic conditions). The model estimation results are 

further augmented with a policy analysis exercise to illustrate the value of the proposed model 

system. The policy analysis clearly identifies spatiotemporal variations across the state in terms of 

traffic volume recovery. Further, the recovery patterns are quite different for weekdays and 

holidays. For weekdays, Central Florida region (District 5) appears to have recovered close to pre-

pandemic traffic volumes while the northwest (District 3), northeast (District 2) and southwest 

region (District 1) are below the pre-pandemic levels. For holidays, the trends are quite different 

with both Central (District 5) and southeast region (District 4) are closer to recovery than rest of 

the state. Further, across the state, holidays have lower traffic volumes highlighting the impact of 

COVID-19 on discretionary travel.  



   

The proposed model system has wide application for understanding traffic volume patterns 

as well as traffic volume prediction. With the number of cases increasing rapidly across the 

country, it is possible that increased measures to reduce COVID-19 spread might be instituted 

affecting traffic volume recovery. Employing the growing case numbers the proposed model 

system can offer guidelines on future recovery paths for traffic volumes on weekdays and holidays. 

The model developed can be enhanced by incorporating vaccination data at the county level in 

future research to incorporate spatiotemporal variations in vaccination rates across Florida.  

This paper is not without any limitations. First, in our study traffic volume including 

different vehicle classes were considered in the same category due to data unavailability. In future 

research, it might be useful to explore traffic trends by vehicle class. Second, the data compiled 

from RITIS does not identify traffic incidents on roadways. Hence, an interruption of the regular 

traffic due to traffic incidents has not been explicitly accommodated in this study. We examined 

the potential prevalence of such incidents affecting traffic volume and observed them to be a small 

share of our sample. However, in future efforts of traffic flow prediction it might be useful to 

consider data with this information. Third, due to the absence of origin and destination of the trips, 

it has not been possible to differentiate the pass-through traffic from the local traffic in the 

interstate system. It would be beneficial to consider data that clearly demarcates demand by origin-

destination characteristics in future research. Fourth, in our analysis we tested 800 m and 1.61 km 

(1 mile) buffers to generate estimates of CT variables around each traffic sensor. It might be 

beneficial to test alternative formulations of catchment areas for the sensors in future research. 

Fifth, while we employed COVID-19 case numbers, it might be interesting to consider data on 

COVID-19 fatalities and recoveries to further enhance the proposed models. Finally, the work can 



   

be further extended in the future by comparing the estimated models with the Geographically 

Weighted Regression Model. 
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Figure 1: Locations of the traffic count detectors 



   

 

Figure 2: Weekly COVID-19 transmission rate and traffic volume in Florida 2019 and 2020 

 

 



   

 

Figure 3: Spatial and temporal changes in weekday’s traffic volume  



   

 

Figure 4: Spatial and temporal changes in holiday’s traffic volume

Table 1: Descriptive Summary of Variables with Same Values in Both Models (N = 3,957) 

 



   

Variable Variable Description Min. Max. Mean 

Socioeconomics 

Low median 

income 
Annual median income ≤ $35,200 0.00 1.00 0.04 

Proportion of no 

vehicle 

household 

Number of no vehicle household/ 

Total number of households in 1.61 

km (1 mile) buffer 

0.00 0.33 0.07 

Employment 

population ratio 

Total number of employed 

population/ Total population in 1.61 

km (1 mile) buffer 

0.00 85.60 58.92 

Land use characteristics 

Distance from 

the nearest CBD 

Distance of the detectors from the 

nearest CBD in kilometers  
0.43 300.71 72.73 

Proportion of 

commercial area 

Commercial area/ Total land-use area 

in 1.61 km (1 mile) buffer zone 
0.00 1.00 0.14 

Proportion of 

industrial areas 

Industrial area/ Total land-use area in 

1.61 km (1 mile) buffer zone 
0.00 0.88 0.05 

Proportion of 

recreational area 

Recreational area/ Total land-use area 

in 1.61 km (1 mile) buffer zone 
0.00 1.00 0.13 

Proportion of 

institutional area 

Institutional area/ Total land-use area 

in 1.61 km (1 mile) buffer zone 
0.00 0.79 0.07 

Proportion of 

residential area 

Residential area/ Total land-use area in 

1.61 km (1 mile) buffer zone 
0.00 1.00 0.58 

Built environment attributes 



   

Number of 

shopping center 

Total number of shopping centers in 

1.61 km (1 mile) buffer zone 
0.00 279.00 18.30 

Number of 

restaurants 

Total number of restaurants in 1.61 

km (1 mile) buffer zone 
0.00 321.00 13.13 

Roadway characteristics 

Number of Lanes 
Average number of lanes in 1.61 km 

(1 mile) buffer zone 
2.00 7.00 3.53 

Maximum speed 

limit 

Maximum speed limit within 1.61 km 

(1 mile) buffer zone in kmph (mph)  
80.47 (50.00) 112.65 (70.00) 109.34 (67.94) 

Spatial factors 

Central region Detectors in Central region 0.00 1.00 0.22 

South region Detectors in South region 0.00 1.00 0.08 

Southeast region Detectors in Southeast region 0.00 1.00 0.19 

Southwest region Detectors in Southwest region 0.00 1.00 0.16 

Northeast region Detectors in Northeast region 0.00 1.00 0.16 

Northwest region Detectors in Northwest region 0.00 1.00 0.08 

West central 

region 
Detectors in West central region 0.00 1.00 0.09 

Distance to 

nearest weather 

station 

Distance of the detectors from the 

nearest weather station (km) 
0.69 68.35 27.60 

Table 2: Descriptive Summary of Variables Varies in Weekday and Holiday Models 



   

Variables Variable Description 
Weekday (N = 94,373) Holiday (N = 94,197) 

Min. Max. Mean Min. Max. Mean 

Covid-19 transmission Factors 

2-weeks lag 

average 

COVID case 

per 1M 

population 

Number of average COVID cases of 2-

weeks lag per 1 million population 
0.00 19,235.00 511.98 0.00 19,235.00 518.68 

Difference 

with the 3-

weeks moving 

average 

Moving average = (Sum of 1-, 2-, 3- 

weeks lag average COVID case)/3 

Diff. with 3-week moving average = ((1 

week lag case - moving 

average)/moving average) *100 

-1.00 2.00 0.07 -1.00 2.00 0.08 

Meteorological variables 

Precipitation 
Average precipitation ≥ 0.64cm (0.25 

inch) during the PM peak period 
0.00 1.00 0.02 0.00 1.00 0.01 

Average wind 

speed 

Average wind speed of the 

corresponding date in PM peak period 
0.00 67.52 5.93 0.00 21.15 5.79 

Temporal Factors 

1 week lag 

traffic volume 

Traffic volume of 1 week lag of the 

corresponding date in PM peak period 
0.00 20091.00 6255.80 0.00 20085.00 5795.80 

Dependent variable 

Traffic volume 
Traffic volume of the corresponding 

date in PM peak period 
0.00 20091.00 6281.37 0.00 20089.00 5748.17 

 



   

Table 3: Goodness of Fit Measures 

Model 

Weekday Model Holiday Model 

Log-

likelihood 

(LL) 

Bayesian 

Information 

Criterion 

(BIC) 

Log-

likelihood 

(LL) 

Bayesian 

Information 

Criterion 

(BIC) 

Ordinary Least Squares 

Linear Regression Model 
-126,400 252,983 -132,300 264,783 

Spatial Autoregressive 

Model (SAR) 
-88,145 176,485 -92,552 185,299 

Spatial Error Model 

(SEM) 
-87,926 176,035 -92,357 184,898 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

Table 4: Model Estimation Results 

Variable 
Weekdays Holidays 

Coefficient T-value Coefficient T-value 

Intercept 7.312 132.11 6.721 105.11 

Covid-19 transmission Factors 

ln (2-week lagged COVID-19 cases per 1M 

population +1) x10-2 
-0.741 -8.78 -0.572 -5.86 

% Difference with the preceding 3 weeks moving 

average 
-0.068 -10.32 -0.118 -19.09 

x Effect in the South region -0.053 -2.19 ---- ---- 

Socioeconomics 

Low median income -0.461 -7.79 ---- ---- 

x COVID effect after 1st March 2020 -0.073 -3.02   

Proportion of Zero vehicle household -3.172 -11.84 -3.401 -12.31 

Land use characteristics 

Distance from the nearest CBD x10-2 -0.071 -2.31 0.134 4.04 

Proportion of commercial area ---- ---- -0.279 -3.75 

Proportion of industrial areas 0.334 3.04 ---- ---- 

Proportion of recreational area ---- ---- 0.214 4.15 

 x COVID effect after 1st March 2020 ---- ---- -0.053 -2.89 

Built environment attributes 

Number of shopping centers x10-2 0.182 3.69 0.192 3.56 

x Covid effect after 1st March 2020 x10-2 -0.039 -2.67 -0.034 -1.81 

Roadway Characteristics 

Number of Lanes 0.162 11.64 0.213 14.65 

Meteorological variables 

Precipitation -0.053 -2.92 -0.031 -1.69 

Average wind speed x10-2 -0.201 -2.65 -0.207 -2.51 

Spatial Factors 

Base: Other regions in Florida     

Central Region ---- ---- 0.491 16.93 

South Region -0.570 -8.52 -0.483 -6.67 

Temporal Factors 

1 week lag traffic volume/1000 0.121 125.48 0.142 135.95 

Correlations 

Spatial autocorrelation 0.252 32.27 0.274 36.49 

 

 

 



   

Table 5: Confusion matrix for weekday (holiday) model 

 Predicted traffic volume recovery rate 

True 

traffic 

volume 

recovery 

rate 

 Less than 

0.81 

0.81 to 

0.90 

0.90 to 

0.95 

More than 

0.95 
Total 

Less than 

0.81 

--- 

(---) 

--- 

(---) 

--- 

(---) 

--- 

(---) 

--- 

(---) 

0.81 to 

0.90 

0.11% 

(0.10%) 

1.34% 

(0.97%) 

0.20% 

(0.24%) 

0.21% 

(0.58%) 

1.86% 

(1.89%) 

0.90 to 

0.95 

0.01% 

(0.13%) 

2.15% 

(3.72%) 

2.59% 

(3.10%) 

0.56% 

(1.68%) 

5.32% 

(8.63%) 

More than 

0.95 

0.07% 

(0.18%) 

5.41% 

(10.66%) 

23.31% 

(28.16%) 

64.03% 

(50.48%) 

92.82% 

(89.49%) 

Total 
0.20% 

(0.41%) 

8.90% 

(15.36%) 

26.10% 

(31.50%) 

64.80% 

(52.74%) 

100% 

(100%) 

 


