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ABSTRACT 
Traffic safety research will continue to create new and improved methods for the analysis of safety data. 

Even if these models perform well,  the precise underlying crash mechanism remains unknown. The missing 

gap is a tool that may be used to evaluate how well a method identifies the cause-and-effect relationship in 

the data. To meet these safety analysis needs, a high-resolution disaggregate data generating process called 

realistic artificial data (RAD) was developed, this tool simulates crash incidence on transportation facilities 

capturing real-world causal link between individual roadway characteristics and crashes. The objective of 

this study was to check if the stochasticity embedded in the RAD generation process will be consistent for 

different random seeds and miles of data generated from the tool.  

 

To accomplish this, ten different datasets were generated from the RAD tool and estimated using the 

negative binomial model, parameter estimates from the model were checked using a revised Wald statistic. 

The t-statistics estimates showed that the differences among the parameter value across the dataset are 

within a statistically acceptable level. Given the stability of the tool, the RAD framework can be useful in 

addressing the known limitation and knowledge gap needed in assessing the extent to which a statistical 

method succeeds in identifying the cause-and-effect relationship in the data, this in return can help guide 

and improve the practical application of statistical methods and eventually lead to more effective safety 

countermeasures that can reduce highway related injuries and fatalities. 

 

Keywords: Crash data, Statistical methods, Realistic artificial data, Negative binomial distribution  
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INTRODUCTION 

Every year, approximately 1.3 million people's lives are cut short due to highway crashes. Additionally, 

between 20 and 50 million people suffer non-fatal injuries, with many of them resulting in disability because 

of their injury (1). The entire economic cost of fatal and non-fatal preventable incidents in 2020 was over 

one billion dollars, including car vehicle damage, lost wages and productivity, and medical expenses (2). 

Because of the enormous societal costs associated with these crashes, research for many decades has 

focused on developing qualitative and quantitative information on how to make roads safer (3). Despite the 

strides made in the direction of the societal goal of Vision Zero through targeted legislation and the 

implementation of relevant safety-related measures, much work remains to be done in the field of safety 

analysis (4). 

The goal of any traffic safety analysis is to identify and quantify the influences of factors 

contributing to the occurrence of traffic crashes and their associated consequences. Highway safety crash 

data have long been used to analyze safety problems ranging from identification to determining the extent 

of a safety problem and modelling efforts that are used to predict crashes (5). Even while the availability of 

safety crash data overall has expanded over the years; this does not necessarily mean that the quality of 

crash data is keeping up with the methodological advancement (4). Earlier studies have tended to 

concentrate on the modeling component of the entire crash prediction process by developing new modeling 

approaches that offer superior fit, and the acquired data is implicitly believed to be a sufficient 

representation of reality.  

  Traditional statistical methods use archived safety data to guide the development of a model 

functional form, which is then used to estimate coefficients for variables, identify and compare significant 

factors, and finally compare which statistical method is best suited for a given scenario (6). Even if a model 

performs well, it may not accurately represent or identify the cause-and-effect relationship, because the 

intention of any developed model is prediction not to identify causal factors. Unfortunately, the detailed 

driving data and crash data that would better enable identification of cause-and-effect relationships 

regarding crash probabilities are typically not available (7). Most researchers have addressed this problem 

by framing their analytic approaches to study the factors that affect the number of crashes occurring on a 

roadway segment or intersection over some specified period. 

Small sample size, time interval variation, and temporal and spatial autocorrelation are some of the 

most well-documented model estimation issues that have been raised in the literature (8). These problems 

are a potential source of error in modeling crash data that may cause incorrect estimates and inferences. 

Crash data, as previously mentioned in the literature (9,10,11,12,13), are frequently characterized by a 

sparse number of observations which can produce a low sample mean. This characteristic is attributed to 

the possibility that crash data for some roadway entities may have few observed crashes which results in a 

preponderance of zeros. Although it is believed that the size of the sample will have an impact on the crash 

prediction model's performance, some have suggested a rule of thumb for data size requirements (8,10,11). 

A study reported that the dispersion parameter of Poisson-gamma models estimated from data characterized 

by low sample mean values and small sample size can be significantly biased (the value is likely to be mis-

estimated) and negatively affect analyses commonly performed in highway safety (8). There is a significant 

increase in the probability that the dispersion parameter cannot be reliably estimated when the sample mean 

and sample size decreases. 

The issue of time interval variance in crash data was also reported by other studies (10,11). Crash 

data are often collected over a certain time period. Over the collection period, some explanatory variables 

and their relationship to the crash incidents may change a reality that is not usually considered due to the 

lack of detailed data within the collection period (10). Ignoring within-period variation in explanatory 

variables may result in biased estimation of parameters and incorrect prediction of crashes as a result of 

unobserved heterogeneity. 
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While the continuing march of methodological innovation has increased our understanding of the 

factors that affect crash frequencies, the potential of integrating improving methodology with significantly 

more detailed crash data offers the most promise for the future (3). To meet these safety analysis needs, a 

high-resolution disaggregate data generating process called realistic artificial data (RAD) was developed, 

which simulates crash incidence on transportation facilities. The tool was created to capture the real-world 

causal link between individual route parameters and crash statistics. The crash counts from the tool will be 

based on a set of (secret) "causal rules" that represent predetermined correlations between crash 

frequency/severity and specific roadway geometric characteristics(4). 

Since the data generation process is now known, the RAD can serve as a testbed which will help 

us determine if a statistical model developed indeed captures the underlying relationship between the 

independent variables and the resultant crashes, and this in turn will help guide and improve the practical 

application of statistical methods that will influence highway safety policy and eventually lead to more 

effective safety countermeasure that can reduce highway related injuries and fatalities. In addition, there 

are many other questions which the RAD can help us answer: such as how many mile – years of data are 

necessary to produce valid results when a large amount of data is available?  

The purpose of this study is to examine the stability of the parameters from different datasets 

generated from a RAD tool. The tool as stated earlier is a combination of a roadway generator and a crash 

generator with a predetermined causal relationship between roadway descriptors and crash frequency and 

severity. Estimation of crash prediction models for rural two-lane undivided highway segments was 

selected as a case study. Ten different datasets; two sets each of 150, 300, 500, 750, and 1000 miles with 

different random seeds were generated from the tool. Negative binomial models were estimated with each 

of the data generated. Then we employed revised Wald statistics on the parameter estimates from the models 

to determine whether the estimates are stable across the different generated datasets. Examining the stability 

of the multiple datasets generated is important so we know that the randomness embedded in the RAD 

generation process is reliable.  

 

PREVIOUS WORK 

The idea of RAD for traffic safety is not new; the early conception can be traced back to Dr Ezra Hauer 

who presented this idea at a 2008 TRB workshop titled, Future Directions in Highway Crash Data Modeling 

(6). In a project funded by the FHWA, Council et al. (14) investigated the effectiveness of various modeling 

approaches for cross-sectional studies. Highway Safety Information System (HSIS) data from Washington 

State were used to construct a dataset with 2,400 mi of homogeneous segments that were each 0.02 mi long. 

They looked at single-vehicle lane departure crashes on two-lane  roadways. A modeler who was not aware 

of the presumed causal relationships was then given the crash and roadway data. The goal of the modeler 

was to estimate regression models and identify the causal relationships. The model's outcomes were then 

compared to the assumed relationships. Another study by Lan and Srinivasan (15) utilized datasets 

produced by RAD for rural two-lane roads to examine the effectiveness of various regression models for 

calculating the crash modification factor(CMF) of horizontal curvature. To achieve this, three volunteers 

without prior knowledge of the embedded safety relationship used the RAD to estimate CMFs for horizontal 

curvature. This comparison was conducted for different levels of AADT and terrain. The estimated CMFs 

by the volunteers were then compared to the embedded safety relationship between horizontal curvature 

and crashes within the RAD. Higher horizontal curve radii than lower horizontal curve radii generally 

resulted in estimated CMFs that were closer to the true CMF values. Models that used site characteristics 

apart from AADT and curve radius usually performed better. 

Miaou (16) studied the relationship between highway geometric characteristics and crashes using 

Negative binomial regression. Miaou suggested that the Poisson regression model should be used to 

establish the relationship between highway geometric and crashes. If overdispersion exists and is found to 
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be moderate or high, the Negative Binomial model can be explored. Another study (17) used Negative 

binomial modelling to model the frequency of crash occurrences which showed that high traffic volume, 

speeding, narrow shoulder width and narrow lane width increases the likelihood of a crash. Some variations 

of count models have also been developed, such as zero-inflated negative binomial models.  

Anastasopoulos and Mannering (18) explored the use of random parameter count models as another 

methodological alternative in analyzing accident frequencies. Their findings showed that ignoring the 

possibility of random parameters when estimating count-data models can result in substantially different 

marginal effects and subsequent inferences relating to the magnitude of the effect of factors affecting 

accident frequencies. Shankar (19) suggests that simple Poisson and negative binomial modeling efforts do 

not address the possibility that some roadway sections observed to have no accidents during a specified 

time period may be qualitatively different from Poisson or negative binomial distributed accident frequency 

counts.  

A study by Malyshkina and Mannering (20) proposed a two-state Markov switching count-data 

model as an alternative to zero-inflated models to account for the preponderance of zeros sometimes 

observed in transportation count data, they proposed to overcome some of the criticism associated with the 

zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between 

zero and normal-count states over time. They showed that the Markov switching model is a viable 

alternative and results in a superior statistical fit relative to the zero-inflated models. However, Lord et al. 

(21) in their study provided a defensible guidance on how to appropriate model crash data. They suggested 

carefully selecting the time/space scales for analysis, including an improved set of explanatory variables 

and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical 

methods (observations with low exposure) represent the most defensible modeling approaches for datasets 

with a preponderance of zeros. 

Other models that have been applied to crash frequency analysis based on their strength include 

multivariate model : can model different crash types simultaneously (22,23). Poisson lognormal due to the 

fact that they are more flexible than Poisson gamma to handle overdispersion (24,25), generalized 

estimating equation for its ability to handle temporal correlation (26 – 28). 

 

A BRIEF OVERVIEW OF THE REALISTIC ARTIFICAL DATA (RAD) GENERATION 

PROCESS 

RAD Generation Process  

The roadway generator and crash data generator are the two parts of the RAD framework used in this 

work. The roadway generator generates homogeneous segments with realistic road characteristics and  that 

represent variables typically found in the inventories of state transportation agencies. The Markov Chain 

Monte-Carlo principle is used in the road generator to assign specific values for the road characteristics. 

Markov Chain is a systematic method for generating a sequence of random variables where the current 

value is probabilistically dependent on the value of the prior variable. Specifically, selecting the next 

variable is only dependent upon the last variable in the chain. The assignment characteristics of the roadway 

generator developed and incorporates various Markov Chain transition tables that determine probabilities 

of a descriptor changing based on data from various states (4). A random variable indicating how well the 

roadway characteristics change based on segment length according to the type of facility was also 

incorporated into the framework. i.e., if you are trying to assign the shoulder width on a given segment, it 

has some high probability of being the same as the preceding segment but there is also some low probability 

that it will change. 

The crash data generator is embedded with secret causal rules defining the true relationship between 

roadway descriptors and crash frequency and severities, i.e., specifies how each roadway descriptor would 

affect a given crash type. Crash counts by crash type and severity was generated using well known model 

structures and realistic relationships between crash counts and roadway characteristics, with this process, 

randomness in crashes per segment is generated for each user’s data (4). A system then combines the 
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roadway and crash generator which generates combined roadway file that attaches crash counts to each 

segment. The overall framework for generating the RAD is presented in the flow chart shown in Figure 1. 

The RAD generation tool is in the form of a database standalone software application that can be 

customized and run to prepare multiple realizations of data for various facility types under different random 

seeds and dataset specifications, such as total dataset mileage. various combinations of inputs. This tool 

will be owned and operated by an entity where researchers who have no knowledge of the safety 

relationships that were embedded into the system can compare the results from their analysis. The degree 

to which they succeed would then be evident by having the entity who owns the RAD generator compare 

the estimated parameters to the known relationships embedded in the data. The tool will serve as a testbed 

to help determine if a statistical model developed indeed captures the underlying cause and effect 

relationship. 
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Figure 1: RAD Generation Flow Chart 

 

Crash Model Estimation Method 

Although different mixed-Poisson distributions have been developed to model crash data (e.g., Poisson-

lognormal, Poisson-Inverse gaussian, etc.), the most common distribution used for modeling crash data 

remains the Poisson-gamma, aka the Negative Binomial (NB) distribution. The NB distribution offers a 

simple way to accommodate the over-dispersion, especially since the final equation has a closed form and 

the mathematics to manipulate the relationship between the mean and the variance structures is relatively 

simple (13). The negative binomial/Poisson-gamma model assumes that the Poisson parameter follows a 

gamma probability distribution. The model results in a closed-form equation and the mathematics to 

manipulate the relationship between the mean and the variance structures is relatively simple. The negative 

binomial model is derived by rewriting the Poisson parameter for each observation i as 

λi = EXP(βXi + 𝜀i)  (1) 

where EXP(𝜀i) is a gamma-distributed error term with mean 1 and variance α. The addition of this term 

allows the variance to differ from the mean as VAR[yi] = E[yi][1+ αE[yi]] = E[yi]+ αE[yi]. The Poisson 

Use the estimated crash distribution to generate the observed crashes for each site, 
which leads to the final RAD.

Use the crash prediction model to estimate the parameters of the underlying crash 
distribution for each site

Define the crash prediction model for crash generation and identify the coefficients for 
roadway characteristics in crash prediction models

Aggregate the adjacent segment unit if the roadway characteristics remain the same

Generate the initial and transition probability matrix for the roadway characteristics 
based on some random number

Divide all sites into homogenous unit segments with roadway characteristics to be 
generated from the tool

Define roadway facility type and select the existing data used in Markov Chain 
principle
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regression model is a limiting model of the negative binomial regression model as α approaches zero, which 

means that the selection between these two models is dependent upon the value of α. The parameter α is 

often referred to as the overdispersion parameter.  

 

Data Generation 

The data for the analysis is drawn from the RAD tool. The two-lane undivided roadway data contained 

horizontal curve data, crash data and roadway data as described in Table 1, 2 and 3. To accomplish the 

objective of this study, all that was needed was to generate several RADs differing in mile-years of data, 

run various statistical models on all the dataset with the goal of showing the stability of the parameters from 

the dataset generated from the tool by examining the differences between the estimated and the assumed 

parameter values. Only the negative binomial model for total crashes will be illustrated in this study due to 

space limitations. Ten different datasets; two sets each of 150, 300, 500, 750, 1000 miles, with different 

random seeds were generated. It should be noted that the same sized dataset (i.e., the two sets of 150 miles) 

resulted in different numbers of observations due to the fact that the data were randomly generated. In 

addition to that the roadway characteristics generated had the same distribution as the sample size increase 

which is due to the effects described by the central limit theorem.



Olufowobi, Ivan, Zhao, Wang and Eluru 

                                                                                              9 

TABLE 1: Descriptive Statistics for Continuous Variables (Datasets 1-5) 

 

 

Continuous Variables 

Data 1 (n=1351) 

150 miles 

Data 2 (n=2742) 

300 miles 

Data 3 (n=4690) 

500 miles 

Data 4 (n=4140)                       

750 miles 

Data 5 (n=8667)                      

1000 miles 

Mean St.d Mean St.d Mean St.d Mean St.d Mean St.d 

Crash Counts PDO 0.938 1.752 0.856 1.615 0.853 1.684 1.231 2.52 0.95 1.80 

Crash Counts K 0.005 0.094 0.003 0.060 0.005 0.092 0.007 0.150 0.004 0.088 

Crash Counts A 0.168 0.565 0.137 0.477 0.143 0.504 0.223 0.765 0.168 0.583 

Crash Counts B 0.041 0.247 0.041 0.241 0.047 0.278 0.060 0.374 0.057 0.323 

Crash Counts C 0.157 0.454 0.165 0.493 0.158 0.486 0.282 0.908 0.193 0.552 

Pavement Roughness 104 34.04 104.5 34.656 105.3 40.64 107.6 40.30 105.9 39.800 

Pavement  Condition 40.170 3.090 39.85 3.077 23.0 3.714 39.37 3.791 39.33 3.730 

Average Super Elevation 0.769 2.603 0.769 2.586 -8.00 2.576 -8.183 11.94 -19.61 9.240 

Curvature Degree 4.320 8.435 5.217 10.354 5.21 9.30 0.00 4.750 5.52 10.91 

Arc Angle 36.53 20.62 35.16 21.904 10.0 22.08 43.29 12.42 36 22.670 

Log(Radius) 7.686 0.904 7.189 0.943 7.17 0.830 8.281 0.842 7.153 0.920 

Log Segment Length -2.710 1.066 -2.72 1.058 -2.75 1.056 -2.383 1.22 -2.63 1.101 

Vertical Approach 0.225 0.828 0.293 0.910 0.355 0.895 0.504 1.094 0.44 0.960 

Vertical  Leaving 0.239 0.873 0.213 0.822 0.221 0.831 0.340 1.017 0.26 0.930 

Log(AADT) 7.735 0.570 7.394 0.845 7.628 0.832 7.381 0.851 7.56 0.804 

Grade 0.353 1.075 0.402 1.090 0.462 1.080 0.671 1.30 0.56 1.170 
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TABLE 2: Descriptive Statistics for Continuous Variables (Datasets 6-10) 

 

 

Continuous Variables 

Data 6 (n=1361) 

     150 miles 

Data 7 (n=2229) 

      300 miles 

Data 8 (n=4270) 

      500 miles 

Data 9 (n=3749) 

     750 miles 

Data 10 (n=7050) 

     1000 miles 

Mean St.d Mean St.d Mean St.d Mean St.d Mean St.d 

Crash Counts PDO 0.870 1.751 0.988 1.997 0.923 1.841 1.432 2.751 1.087 2.13 

Crash Counts K 0.0044 0.085 0.0085 0.232 0.0014 0.037 0.008 0.230 0.0079 0.27 

Crash Counts A 0.153 0.561 0.156 0.536 0.165 0.629 0.247 0.855 0.167 0.63 

Crash Counts B 0.036 0.234 0.052 0.306 0.054 0.336 0.073 0.386 0.064 0.370 

Crash Counts C 0.196 0.527 0.213 0.613 0.186 0.618 0.397 0.810 0.219 0.641 

Pavement Roughness 104.7 33.54 104.9 34.96 105.1 39.29 108.5 40.83 106.7 40.7 

Pavement  Condition 40.28 3.173 39.63 3.18 39.59 3.76 39.4 3.728 39.24 3.70 

Average Super Elevation 0.802 2.60 0.771 2.608 0.737 2.59 -9.14 12.14 -19.07 9.74 

Curvature Degree 5.155 10.17 4.624 8.563 5.062 8.943 3.122 2.970 5.367 10.27 

Arc Angle 36.06 22.72 40.75 18.904 37.79 19.92 45.33 5.557 37.41 20.93 

Log(Radius) 7.143 0.931 7.694 1.094 7.463 1.051 8.657 0.304 7.397 1.034 

Log Segment Length -2.69 1.053 -2.58 1.126 -2.69 1.087 -2.29 1.249 -2.576 1.150 

Vertical Approach 0.2323 0.850 0.316 0.950 0.361 0.913 0.548 1.134 0.459 0.990 

Vertical  Leaving 0.252 0.905 0.250 o.874 0.236 0.848 0.369 1.055 0.277 0.936 

Log(AADT) 7.739 0.575 7.411 0.858 7.616 0.835 7.357 0.891 7.542 0.820 

Grade 0.370 1.05 0.446 1.145 0.4741 1.104 0.728 1.35 0.594 1.200 
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TABLE 3: Descriptive Statistics for Categorical Variables (Datasets 1-10) 

 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 

Shoulder Width (ft) 

0 42 80 280 208 465 16 69 260 194 413 

2 454 845 939 1134 2029 20 697 860 1044 121 

4 186 589 1196 1083 2070 444 467 1081 970 2876 

6 387 462 620 593 1387 171 379 570 532 1824 

8 282 755 1655 1122 2116 705 617 1499 1005 1816 

Speed Limit (mph) 

25 95 92 100 78 203 94 109 104 51 157 

30 26 34 75 73 159 19 41 60 57 129 

35 26 35 55 81 220 33 35 54 75 129 

40 54 138 272 229 472 50 101 260 200 393 

45 85 133 311 258 486 86 122 253 224 418 

50 31 96 151 258 486 86 122 253 224 418 

55 1037 2205 3726 3303 6339 1043 1747 3399 3025 5604 

Lane Width (ft) 

9 0 3 37 107 247 0 3 37 103 203 

10 50 183 354 311 382 50 180 327 267 347 

11 269 664 11075 919 1829 264 558 912 835 1651 

12 1032 1881 3224 2803 5609 1042 1488 2992 2540 4849 

Lighting 

Present 77 201 353 344 530 72 172 316 328 530 

Not Present 1274 2530 4337 3796 7537 1284 2057 3954 3417 6520 
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Empirical Analysis 

Negative binomial regression model was estimated for each dataset. The objective was to check if the 

stochasticity embedded in the RAD generation process will be consistent for different random seed of data 

generated from the tool. To achieve this, the parameter estimate from the negative binomial models for each 

dataset was examined using the revised Wald test statistics created by Hoover et al. (29) as shown below. 

Parameter test statistics = abs[
𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

√𝑆𝐸 𝑠𝑎𝑚𝑝𝑙𝑒2− √𝑆𝐸 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2
]                                                     (2) 

To check the differences in the parameters across the datasets, the t-statistics for all the parameters across 

all the datasets samples are computed using the computation of the test statistic mentioned above. Dataset 

10 (1000 miles) was used as the benchmark to evaluate if the parameters for other datasets are statistically 

different relative to this sample dataset. If the parameter test statistic is greater than the 90% t-statistic, it 

indicates that there is a significant difference between the datasets, On the other hand, if the parameter test 

statistics is below the 90% t-statistic, there is no significant difference between the datasets, and we can 

trust that the stochasticity in the RAD tool is consistent across different generations with different random 

seeds. 

 

MODEL RESULTS 

Table 4 shows the Negative Binomial parameter estimates for total crashes for all ten databases. A visual 

examination reveals that the parameter estimates for each dataset model are relatively close to one other. 

Comparing the estimated parameters requires having the same variables in all models, in order to balance 

variable significance with identical variable sets, we dropped variables that were statistically insignificant 

based on the 90% significance level in more than six datasets. It was noted that the majority of the categories 

for lane width and speed limit in datasets 1 and 6 were statistically insignificant at 90%  significant level; 

nonetheless, these variables were left in because the parameter estimate was rather logical in comparison 

to what has been published in other literature. Overall, the parameter estimates are consistent with what 

would normally be obtained when using conventional crash data, showing that the RAD tool generates data 

with reasonable relationships among the variables. However, the main objective of the study was focused 

on checking for parameter stability across the datasets with different random seeds and varying sizes 

generated using the tool.  

              Dataset 10 (1000 miles) was used as the population benchmark to evaluate if each parameter in 

any model is statistically different from the corresponding one in that dataset. Dataset 10 was used because 

it had the largest number of observations and was believed to be the most able to produce convincing 

parameter estimates. As previously mentioned, if the parameter test statistic computed is higher than the 

90% t-statistic, the result would indicate significant difference between the corresponding dataset and 

dataset 10.  

Table 5 shows the revised Wald test statistics on the model parameter estimates. The test statistics 

for segment length across the datasets were lower than the 90% confidence value of 1.65 which could mean 

that there is no significant difference between the estimated parameters in the corresponding dataset and 

dataset 10. The test statistics across the datasets for the AADT parameter were also lower than the 90% 

confidence value of 1.65 indicating that the variation across the different datasets is within a statistically 

acceptable level. Note that the test statistics for some of the speed limit category coefficients (i.e., 30 mph, 

35 mph, and 55 mph) in Dataset 6 exceeded the 90% confidence value, which might indicate that the 

parameter values for those categories could be significantly different relative to Dataset 10. The possible 

reasoning for this could be that these parameter estimates were actually statistically insignificant on their 

own. 
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TABLE 4: Negative Binomial Estimates for Total Crashes 
Parameter Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10 

Intercept -0.621a 

(0.860)b 

-3.870 

(0.685) 

-1.856 

(0.369) 

-2.001 

(0.389) 

-1.965 

0.291 

-1.000* 

(1.176) 

-3.278 

(0.671) 

-1.917 

(0.448) 

-2.438 

(0.385) 

-2.223 

  (0.321) 

Ln(Length) 0.963 

(0.036) 

1.054 

(0.034) 

1.023 

(0.021) 

1.058 

(0.019) 

1.049 

(0.017) 

0.965 

(0.050) 

1.050 

(0.031) 

1.074 

(0.025) 

1.048 

(0.021) 

1.064 

(0.017) 

Ln(AADT) 0.392 

(0.065) 

0.627 

(0.045) 

0.548 

(0.027) 

0.452 

(0.025) 

0.474 

(0.023) 

0.415 

(0.089) 

0.533 

(0.044) 

0.464 

(0.032) 

0.530 

(0.043) 

0.546 

(0.088) 

Shoulder Width: 8 ft Base Level 

<2 ft 0.167 

(0.329) 

0.610 

(0.155) 

0.381 

(0.076) 

0.240 

(0.093) 

0.349 

(0.071) 

0.818 

(0.365) 

0.334 

(0.159) 

0.266 

(0.093) 

0.189 

(0.095) 

0.246 

(0.076) 

>=2 ft < 4 ft 0.361 

(0.092) 

0.497 

(0.077) 

0.360 

(0.051) 

0.292 

(0.050) 

0.383 

(0.043) 

0.781 

(0.373) 

0.471 

(0.076) 

0.249 

(0.061) 

0.341 

(0.051) 

0.329 

(0.118) 

>=4 ft < 6 ft 0.144 

(0.083) 

0.446 

(0.083) 

0.277 

(0.048) 

0.257 

  ( 0.051) 

0.243 

(0.042) 

0.361 

(0.095) 

0.410 

(0.083) 

0.218 

(0.058) 

0.307 

(0.051) 

0.351 

(0.094) 

>=6 ft < 8 ft 0.168 

(0.096) 

0.479 

(0.089) 

0.137 

(0.058) 

0.246 

(0.059) 

0.217 

(0.048) 

0.117* 

 (0.136) 

0.332 

(0.088) 

0.126 

(0.070) 

0.177 

(0.060) 

0.287 

(0.044) 

Lane Width: 12 ft Base Level 

9 ft or less - 0.932 

(1.071) 

0.326 

(0.196) 

0.5047 

(0.129) 

0.415 

(0.112) 

- 0.599* 

(1.088) 

0.566 

(0.232) 

0.403 

(0.130) 

0.235 

(0.117) 

9.5 ft -10.5 ft 0.210* 

(0.208) 

0.252 

(0.143) 

0.125 

(0.089) 

0.256 

(0.094) 

0.289 

(0.081) 

-0.151* 

(0.285) 

0.255 

(0.142) 

0.184 

(0.111) 

0.268 

(0.093) 

0.152 

(0.084) 

11ft - 11.5 ft 0.008* 

(0.101) 

0.116 

(0.086) 

0.183 

(0.051) 

0.091 

(0.052) 

0.141 

(0.043) 

0.047* 

(0.142) 

0.374 

(0.083) 

0.102* 

(0.064) 

0.152 

(0.051) 

0.210 

(0.043) 

Speed Limit: 45 mph Base Level 

25 mph 0.475 

(0.062) 

0.140 

(0.188) 

0.439 

(0.116) 

0.041 

(0.030) 

0.606 

(0.102) 

0.291 

(0.125) 

0.429 

(0.174) 

0.519* 

(0.140) 

0.244 

(0.139) 

0.483 

(0.098) 

30 mph 0.171* 

(0.242) 

0.428 

(0.244) 

0.210 

(0.136) 

0.041 

(0.035) 

0.349 

(0.110) 

0.313 

(0.173) 

0.385* 

(0.241) 

-0.059* 

  (0.184) 

0.234 

(0.139) 

0.035* 

(0.111) 

35 mph -0.840* 

(0.271) 

-0.701 

(0.306) 

-0.271 

(0.174) 

-0.295 

(0.143) 

0.069* 

(0.109) 

0.268* 

(0.343) 

-0.045* 

(0.253) 

-0.567 

0.237 

-0.222 

(0.150) 

-0.336 

(0.112) 

40 mph -0.956 

(0.252) 

-0.824 

(0.197) 

-0.822 

(0.114) 

-1.109 

(0.119) 

-0.655 

(0.099) 

-0.879 

(0.319) 

-0.992 

(0.216) 

-0.916* 

0.144 

-0.969 

(0.123) 

-1.021 

(0.103) 

50 mph 0.120* 

(0.233) 

0.095 

(0.172) 

-0.163 

(0.122) 

0.003* 

(0.119) 

-0.087 

(0.124) 

-0.425* 

(0.367) 

-0.036 

(0.178) 

0.117* 

0.139 

-0.057 

(0.130) 

-0.115 

(0.116) 

55 mph -0.280* -0.332 -0.254 -0.329 -0.011* -0.196 -0.066 -0.226 -0.125 -0.270 
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(0.132) (0.118) (0.072) (0.071) (0.067) (0.180) (0.115) (0.089) (0.074) (0.064) 

Presence of 

Lighting 

-0.341 

(0.184) 

-0.603 

(0.151) 

-0.523 

(0.151) 

-0.531 

(0.101) 

-0.412 

(0.085) 

-0.300 

(0.259) 

-0.334 

(0.026) 

-0.658 

(0.122) 

-0.306 

(0.098) 

-0.431 

(0.085) 

Presence of 

Horizontal 

Curve 

0.549* 

(0.239) 

0.294* 

(0.205) 

0.078* 

(0.116) 

 

0.186 

(0.112) 

0.264 

(0.088) 

 

0.269* 

(0.244) 

0.407 

(0.036) 

0.652 

(0.111) 

0.168* 

(0.112) 

0.365 

(0.085) 

Overdispersion 0.257 0.463 0.344 0.199 0.375 0.725 0.271 0.447 0.216 0.307 

AIC 3417.6 5603.7 11292 9304.8 17328 2980.1 8947.1 4638.1 9028.3 15389 

Log-likelihood -1690.3 -2772.84 -5616.7 -4623.4 -8634.9 -1462.0 -4444.5 -2290.0 -4485.1 -7665.6 

*Variables insignificant at 90% significant level, a = Parameter estimate, b = Standard error 

 

TABLE 5: Revised Wald Test Statistics on Model Parameter Estimates (relative to Dataset 10)  

 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 

Ln_Length 2.536 0.263 1.517 0.235 0.623 1.874 0.395 0.330 0.592 

Ln AADT 1.407 0.819 0.022 1.027 0.792 1.046 0.132 0.875 0.163 

Shoulder Width: 0 ft 0.233 2.108 1.256 0.049 0.990 1.534 0.499 0.166 0.468 

2 ft 0.213 1.192 0.241 0.288 0.429 1.155 1.011 0.602 0.093 

4 ft 1.650 0.757 0.701 0.878 1.048 0.074 0.470 1.204 0.411 

6 ft 1.126 1.933 2.060 0.557 1.075 1.189 0.457 1.947 1.478 

Lane Width: 9 ft 2.008 0.646 0.398 1.544 1.111 2.008 0.332 1.273 0.960 

10 ft 0.258 0.602 0.220 0.825 1.174 1.019 0.624 0.229 0.925 

11 ft 0.199 0.977 0.404 1.763 1.134 1.098 1.754 1.400 0.869 

Speed Limit: 25 mph 0.042 1.617 0.289 2.714 0.869 0.782 0.270 0.210 1.405 

30 mph 0.510 1.466 0.996 0.034 2.009 0.123 1.319 0.437 1.118 

35 mph 1.718 1.120 0.314 0.225 2.591 1.673 1.051 0.881 0.608 

40 mph 0.238 0.886 1.295 0.559 2.561 0.423 0.121 0.593 0.324 

50 mph 0.902 1.012 0.285 0.710 0.164 0.805 0.371 1.281 0.332 

55 mph 0.068 0.461 0.166 0.617 3.033 0.387 1.550 0.401 1.482 

Presence of Lighting 0.907 0.992 0.530 0.757 0.158 0.480 1.091 1.526 0.963 

Presence of Horizontal Curve 0.725 0.319 1.995 1.273 0.825 0.371 0.455 2.052 1.401 
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Figures 2-4 show the boxplot summary of the test statistics variation for parameter estimates across the 

dataset. The figures clearly reveal that the range of the test statistics across all the parameters is quite narrow 

and does not exceed the 90% confidence value of 1.65 from the parameters discussed above. In Figure 2, 

segment length and shoulder width (6 ft) have majority of its t-statistics fall above the upper quartile (right 

skewed) but still reasonably within the test of 90% significance which supports the discussion above, the 

parameter estimate of the other datasets relative dataset 10 is not statistically different. The plot in Figure 

3 shows the  t-statistics all fall below the lower quartile (left skewed) and within the test of 90% confidence 

value . Figure 4 shows the variability among the various category level of speed limit, the test statistics all 

fall below the lower quartile asides for speed limit (55 mph). Overall, there was variability across the 

different variables, but they all reasonably fall within the chosen confidence value. 

 

 
Figure 2: Test Statistics for parameter estimates across datasets for Segment Length, AADT and 

Shoulder Width  
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Figure 3: Test Statistics for parameter estimates across datasets for Lane Width, Presence of 

Lighting and Presence of Horizontal Curve 

 

 
Figure 4: Test Statistics for parameter estimates across datasets for Speed Limit  
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DISCUSSION 

The parameter coefficients estimated using data from the tool are comparable with the estimates reached in 

previous studies for the variables included in this paper. For example, a study (30) quantified the safety 

performance of horizontal curves on two-way two-lane rural roads and estimated an AADT coefficients for 

total crashes as 0.697. Other studies (22, 31)  estimated 0.622, 0.656 respectively, these estimates were 

comparable with the range of AADT estimates from this study. Segment length had estimates of 

0.889,0.801, 0.459 respectively (28,30,32) while the presence of horizontal curve estimate had estimates of 

0.053, 0.050 (25,30). Overall, these estimates compared to ours show that the data from the tool can produce 

comparable results as those from the traditional data. 

 

 

PRATICAL IMPLICATIONS 

The results from this paper can have a significant implication on highway safety research for the 

development of information that can be used to make roads safer and crashes less severe. Since the data 

generation process in the tool is completely known it will allow objective evaluation and validation of  

various safety analysis methods used to verify various assumption related to safety performance and in turn 

lead to providing effective countermeasures to address crashes. The RAD can also be helpful to generate 

large data sets with consistent condition in cases where we cannot go back many years due to changes in 

road characteristics or drivers, this makes it easier to estimate models for unusual and rare events like minor 

crashes. In addition to this, the tool can help determine sample sizes by determining the number of data that 

is necessary to produce convincing results. 

 

CONCLUSIONS 

The current research uses datasets generated from the RAD tool with the objective of assessing the stability 

of the resulting estimated parameters across the varying datasets and random seeds. Revised Wald test 

statistics were carried out to check if the variation across the different datasets is within a statistically 

acceptable level using dataset ten as the benchmark. The result clearly highlights the stability in various 

parameter estimates across the datasets.  

The resulting stability found across the datasets indicates that the parameter estimates using RAD 

will be consistent regardless of the miles of segment related data generated using the tool. Having this 

knowledge of stability, the dataset from the RAD tool can be used for other possible purposes like 

estimating different prediction models, comparing the performance of varied safety analysis methods, and 

also help determine the adequate sample size to get convincing results especially for fatal crashes with low 

realizations. This  study contributes to safety research by providing data that can be used by researchers 

who have no knowledge of the cause–effect structure and who would apply the method they wish to assess. 

The degree to which they succeed would then be evident by having the entity who owns the RAD generator 

by comparing the estimated parameters to the known relationships embedded in the data. In the future, other 

statistical models that have been employed by researchers like Poisson regression, Poisson lognormal, 

random parameters and multivariate modelling will be used on the RAD dataset for all roadway facility 

types including segments and intersections specifically roadway included in the highway safety manual. 
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