COPULA APPROACHES

NAVEEN ELURU

Motivation

- Dependency across choice dimension
 - Household location and household vehicle mileage
 - Individuals willing to reside in neo-urbanist neighborhoods are more likely to bicycle and as a result drive less. On the other hand, individuals residing in conventional neighborhoods are more likely to drive more

Decision Maker: **Household** <u>Choices:</u> ≻Household Location ≻Daily VMT travelled

Motivation

- Current approach to the problem
- Lets say there are three choices that we are considering r_q , s_q and t_q
- The latent propensity for these equations is given by: $r_q^* = \beta' x_q + \varepsilon_q$ $s_q^* = \alpha' z_q + \eta_q$ $t_a^* = \gamma' w_a + \xi_a$
- The dependency across choice dimensions is obtained by correlating the error terms ε_q,η_q,ξ_q using
 Multivariate normal assumption on the error terms
 Simulation based approaches

Motivation

Problems with current approaches

o Inflexible

 Typically impose a bivariate (multivariate) normal structure to model dependencies

• No closed form solutions

- × Computationally challenging because they require simulation
- × Potentially inaccurate when we have high dimensionality

• Downright infeasible in some cases

The likelihood functions are of such high dimensionality we cannot mathematically compute them!

COPULA METHODOLOGY

COPULA APPROACH

- The copula approach has recently revived interest in a whole set of alternative couplings that can allow non-linear and asymmetric dependencies.
 - o Copula (Sklar, 1959): tie, bond, connect
- A copula is essentially a multivariate functional form for the joint distribution of random variables derived purely from pre-specified parametric marginal distributions of each random variable.
- Does not pre-impose a particular multivariate error structure
 - Allows different specifications for the univariate marginal distributions and the dependence structure
 - Empirically tests different multivariate dependence functions
 - Chooses the one that best fits the data

Copula Approach: Formulation

- The precise definition of a copula is that it is a multivariate distribution function defined over the unit cube linking uniformly distributed marginals
- Let C be a Q-dimensional copula of uniformly distributed random variables $U_1, U_2, U_3, ..., U_Q$ with support contained in $[0,1]^Q$
- $C_{\theta}(u_1, u_2, ..., u_q) = Pr(U_1 < u_1, U_2 < u_2, ..., U_Q < u_Q)$ where θ is a parameter vector of the copula commonly referred to as the dependence parameter vector

Copula Approach: Formulation

• Consider Q random variables V₁, V₂, V₃, ..., V₀

• Each with standard univariate continuous marginal distribution functions $F_q(v_q) = Pr(V_q < v_q)$, q =1, 2, 3, ..., Q

• By the integral transform result

$$F_q(v_q) = \Pr(V_q < v_q) = \Pr(F_q^{-1}(U_q) < v_q) = \Pr(U_q < F_q(v_q))$$

o Finally, by Sklar's (1973) theorem

$$F(v_1, v_2, ..., v_Q) = \Pr(V_1 < v_1, V_2 < v_2, ..., V_Q < v_Q) = \Pr(U_1 < F_1(v_1), U_2 < F_2(v_2), ..., U_Q < F_Q(v_Q))$$

= $C_{\theta} (u_1 = F_1(v_1), u_2 = F_2(v_2), ..., u_Q = F_Q(v_Q))$

Different Types of Copulas

- A rich set of bivariate copula types have been generated using the inversion and other methods
 - o Gaussian copula
 - o Farlie-Gumbel-Morgenstern (FGM) copula
 - Archimedean class of copulas
 - × Clayton
 - × Gumbel
 - × Frank
 - × Joe

Different Types of Copulas

- To better understand the generated dependence structures between the random variables (Y₁,Y₂) we define a scalar measure (The traditional dependence concept of correlation coefficient (*P*)) is limited *
 - Kendall's τ
 - Spearmans ρ_s

*For more details see Bhat and Eluru (2009)

COPULA APPROACH

- Modeling Household Location and household vehicle mileage
- Why?
 - Self-selection versus influence of built environment
 - Residential location is an important pre-cursor to activity-travel patterns
 - With increasing emphasis on green house gases (GHG) accurately modeling vehicle miles is very important

• Location categorized as:

Neo-urbanist > High population density > High bicycle lane and roadway street density > Good land-use mix > Efficient transit > Non-motorized mode accessibility/facilities Conventional > Low population density > Low bicycle lane and roadway street density > Primarily single use residential land use > Auto-dependent urban design

Household vehicle mileage
 Logarithm of vehicle miles travelled

2000 San Francisco Bay Area Household Travel Survey (BATS)

• Endogenous switching system

 $r_q^* = \beta' x_q + \varepsilon_q, \quad r_q = 1 \text{ if } r_q^* > 0, \quad r_q = 0 \text{ if } r_q^* \le 0, \text{ Binary Choice}$ $m_{q0}^* = \alpha' z_q + \eta_q, \quad m_{q0} = 1[r_q = 0]m_{q0}^* \quad \text{Neo-urbanist}$ $m_{q1}^* = \gamma' w_q + \xi_q, \quad m_{q1} = 1[r_q = 1]m_{q1}^* \quad \text{Conventional}$

- The correlated pairs are (ε_q, η_q) (ε_q, ξ_q)
- The log-likelihood function is given by

$$L = \prod_{q=1}^{Q} \left[\left\{ \Pr[m_{q0} \mid r_q^* \le 0] \times \Pr[r_q^* \le 0] \right\}^{1-r_q} \times \left\{ \Pr[m_{q1} \mid r_q^* > 0] \times \Pr[r_q^* > 0] \right\}^{r_q} \right]$$

• Computing the previous expression

$$\begin{split} L &= \prod_{q=1}^{Q} \left[\frac{1}{\sigma_{\eta}} \cdot f_{\eta} \left(\frac{m_{q0} - \alpha' z_{q}}{\sigma_{\eta}} \right) \cdot \frac{\partial}{\partial u_{q2}^{0}} C_{\theta_{0}} \left(u_{q1}^{0}, u_{q2}^{0} \right) \right]^{1-r_{q}} \times \\ & \left[\frac{1}{\sigma_{\xi}} \cdot f_{\xi} \left(\frac{m_{q1} - \gamma' w_{q}}{\sigma_{\xi}} \right) \right] \left\{ 1 - \frac{\partial}{\partial u_{q2}^{1}} C_{\theta_{1}} \left(u_{q1}^{1}, u_{q2}^{1} \right) \right\} \right]^{r_{q}}, \\ & \text{where} \quad u_{q1}^{0} = F_{\varepsilon} (-\beta' x_{q}), \qquad u_{q2}^{0} = F_{\eta} \left(\frac{m_{q0} - \alpha' z_{q}}{\sigma_{\eta}} \right), \\ & u_{q1}^{1} = u_{q1}^{0}, \qquad u_{q2}^{1} = F_{\xi} \left(\frac{m_{q1} - \gamma' w_{q}}{\sigma_{\xi}} \right) \end{split}$$

Any copula possible
 In fact C_{θ0}, C_{θ1} need not be same!

Empirical application

- Variables considered
 - × Household demographics and employment characteristics
 - × Neighborhood characteristics including
 - Population density
 - Employment density
 - Accessibility measures
 - Population by ethnicity in the neighborhood
 - Presence/number of schools and physically active centers
 - Density of bicycle lanes and street blocks

Estimation results

- Total number of models estimated
 - 6 models with the same copula dependency structure
 - 24 models with different combinations of the six copula dependency structures
 - A model that assumed independence for comparison

 Five best copula dependency structure combinations (based on the BIC)

- Frank-Frank (-6842.2)
- o Frank-Joe (-6844.2)
- FGM-Joe (-6851.0)
- o Independent-Joe (-6863.7) and
- o FGM-Gumbel (-6866.2)
- The value at convergence for Gaussian-Gaussian copula is -6877.9
- This is simply an artifact of the normal dependency structure
 - indicative of the kind of incorrect results that can be obtained by placing restrictive distributional assumptions

Estimation results – Binary Component

Variables	Independence- Independence Copula		Frank-Frank Copula	
	Parameter	t-stat	Parameter	t-stat
Propensity to choose conventional neighborhood				
Constant	0.201	4.15	0.275	5.72
Age of householder < 35 years	-0.131	-2.35	-0.143	-2.75
Number of children (of age < 16 years) in the household	0.164	4.62	0.161	4.59
Household lives in a single family dwelling unit	0.382	6.79	0.337	6.28
Own household	0.597	10.37	0.497	8.81

Estimation results – Log(VMT) Neo

Variables	Independence- Independence Copula		Frank-Frank Copula	
	Parameter	t-stat	Parameter	t-stat
Log of vehicle miles of travel in a neo-urbanist neighborhood				
Constant	-0.017	-0.16	-0.638	-5.48
Household vehicle ownership				
Household Vehicles = 1	2.617	21.50	2.744	24.26
Household Vehicles ≥ 2	3.525	25.44	3.518	27.40
Number of full-time students in the household	0.183	2.13	0.112	1.41
Copula dependency parameter (θ)			-2.472	-6.98
Scale parameter of the continuous component	1.301	40.62	1.348	34.31

Estimation results – Log(VMT) Conv

Variables	Independence- Independence Copula		Frank-Frank Copula	
	Parameter	t-stat	Parameter	t-stat
Log of vehicle miles of travel in a conventional neighborhood				
Constant	0.379	2.28	0.163	1.08
Household vehicle ownership				
Household Vehicles = 1	3.172	21.77	3.257	25.43
Household Vehicles = 2	3.705	25.32	3.854	29.92
Household Vehicles ≥ 3	3.931	25.92	4.102	30.41
Number of employed individuals in the household	0.229	7.24	0.208	6.66
Number of full-time students in the household	0.104	5.06	0.131	6.27
Density of bicycle lanes	-0.023	-3.08	-0.024	-3.24
Accessibility to shopping (Hansen measure)	-0.024	-7.34	-0.027	-8.19
Copula dependency parameter (<i>θ</i>)			3.604	7.22
Scale parameter of the continuous component	0.891	75.78	0.920	63.59

Treatment Effects

- You would note that for each household we have either the mileage in neo-urbanist zone or conventional zone
- However, using the switching model, we would like to assess the impact of the neighborhood on VMT
- In the social science terminology, we would like to evaluate the expected gains (*i.e.*, VMT increase) from the receipt of treatment (*i.e.*, residing in a conventional neighborhood)
- Typical measures
 - Average Treatment Effect (ATE)
 - Effect of Treatment on the Treated (TT)

Treatment Effects

- ATE expected VMT increase for a random household if it were to reside in a conventional neighborhood as opposed to a neo-urbanist neighborhood.
- TT- average impact of treatment on the treated
- TNT average impact of treatment on the non-treated
- TTNT average impact of treatment on the (currently) treated and (currently) non-treated

Treatment Effects

Copulas	Independence- Independence Copula (I-I)	FGM-Joe Copula (FGM-J)	Frank-Joe Copula (F-J)	Frank-Frank Copula (F-F)
АТЕ	0.49 (1.75)	10.75 (1.03)	19.99 (4.42)	21.37 (5.21)
TT	3.04 (1.49)	31.04 (3.30)	42.45 (7.46)	41.76 (8.16)
TNT	-8.38 (1.38)	-31.55 (10.06)	-33.66 (10.82)	-30.74 (9.55)
TTNT	0.49 (1.75)	17.07 (0.88)	25.46 (3.03)	25.59 (4.75)

Summary

 A copula based approach to model residential neighborhood choice and daily household vehicle miles of travel (VMT)

• A variety of copula-based models are estimated

- Results indicate that using a bivariate normal dependency structure suggests the absence of residential self-selection effects.
- However, other copula structures reveal a high and statistically significant level of residential self-selection
- Frank-Frank copula yields the best results
- The Treatment measures clearly provide the influence of self-selection
 - 83% due to built environment and 17% due to self-selection
 - If we could redesign the urban region as a neo-urban neighborhood it will reduce overall mileage by 43%

Summary

- Copula approach offers flexibility in modeling joint choices
- For other examples involving copula based methodology check my website