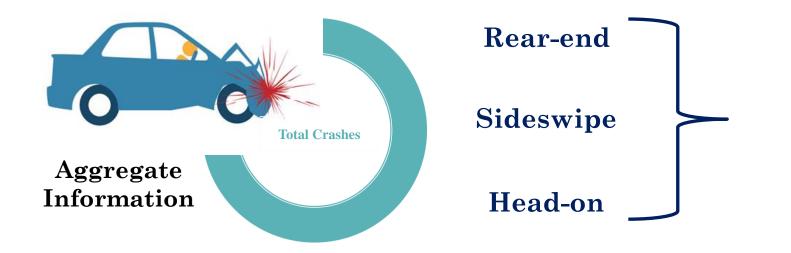
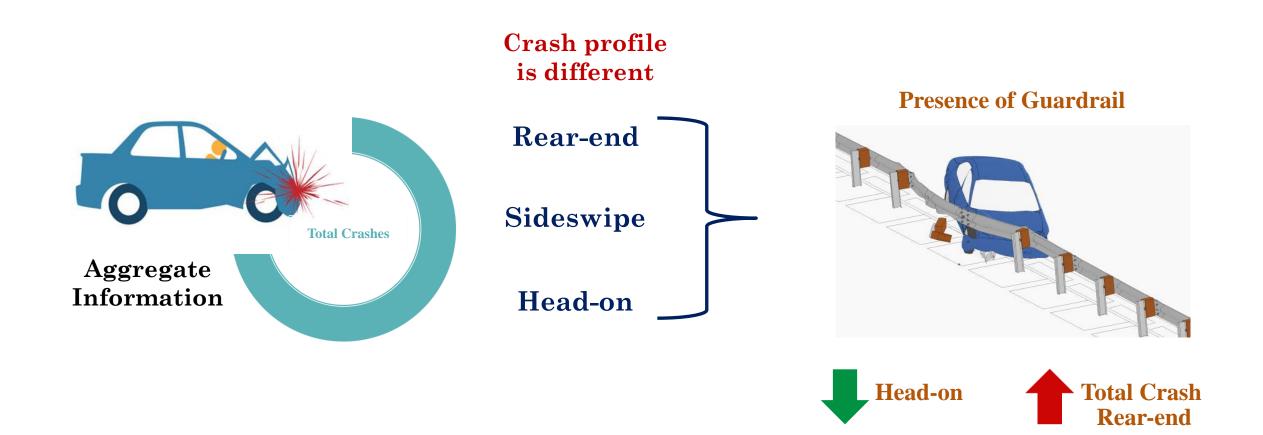
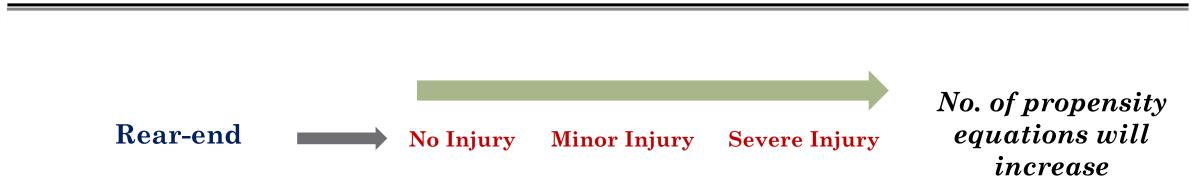
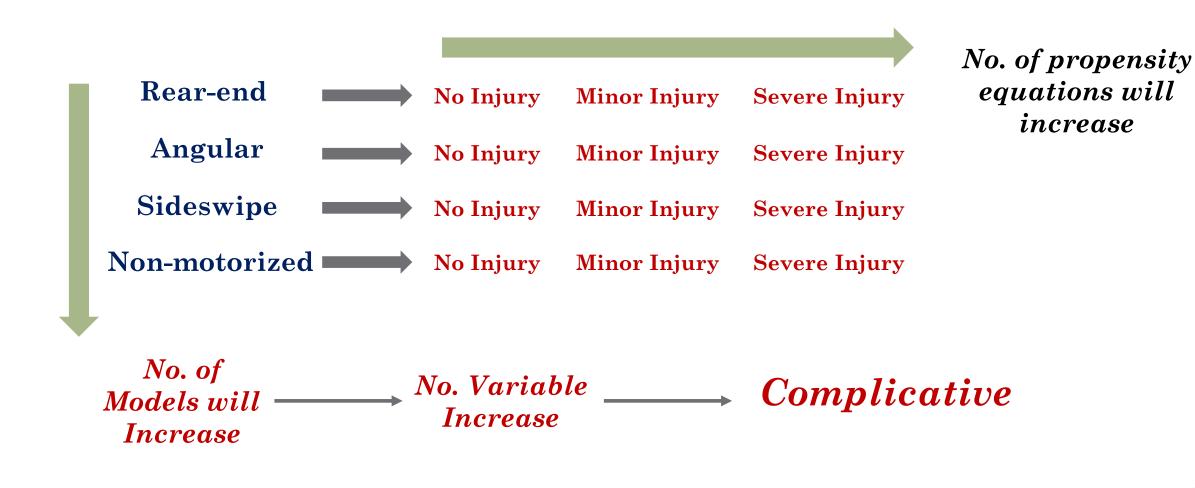
A New Econometric Approach for Modeling Several Count Variables: A Case Study of Crash Frequency Analysis by Crash Type and Severity

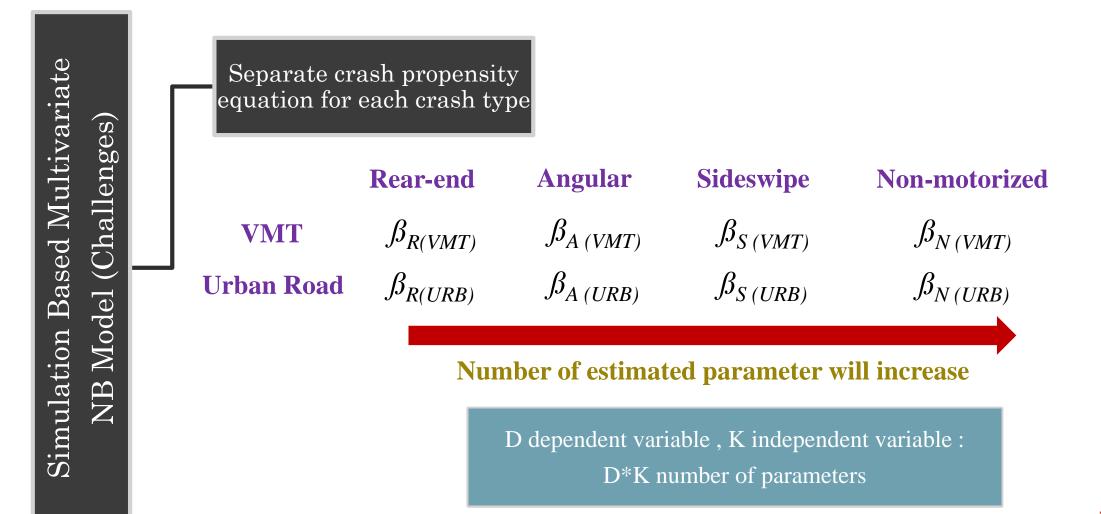

Naveen Eluru Professor, Department of Civil, Environmental and Construction Engineering University of Central Florida

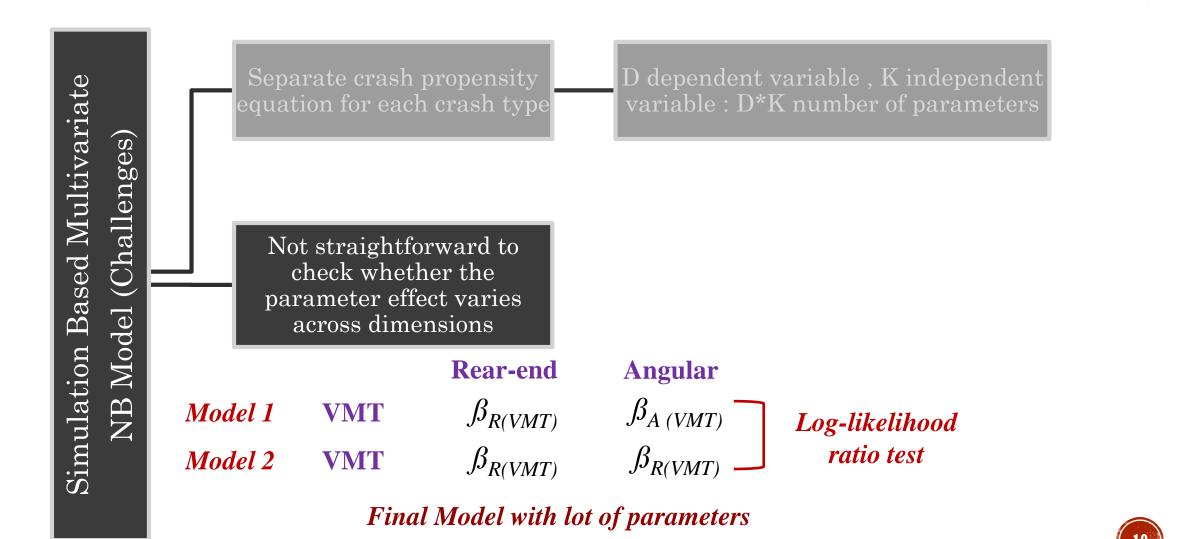

UNIVERSITY OF CENTRAL FLORIDA

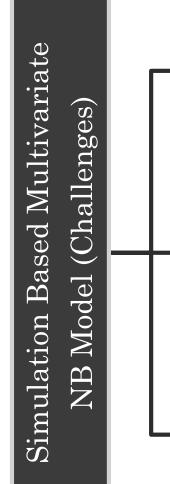


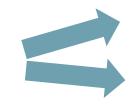
- We usually do not focus on all these dimensions
- Maximum: 3 crash types, 3 crash severities




No. of propensity equations will increase






Separate crash propensity equation for each crash type

Not straightforward to check whether the parameter effect varies across dimensions D dependent variable , K independent variable : D*K number of parameters

Need to perform log-likelihood ratio test for every parameter added

The final model associated with high number of parameters

Estimating unobserved factors requires simulation.

Number of Dimensions

Number of Unobserved Components

Traditional Count Approach

ID	TAZ	Rear-end	Angular	Sideswipe	Non-motorized	VMT
1	1	10	12	8	2	100

Proposed Count Approach

ID	TAZ	Crash Type	Crash	VMT
1	1	Rear-end	10	100
2	1	Angular	12	100
3	1	Sideswipe	8	100
4	1	Non-motorized	2	100

Traditional Approach

ID	TA	Z Rear-end	Ang	ular	Side	swipe	ľ	Non-motori	zed	VMT		
1	1	10	1	2		8		2		100		
Мо	del _{SW}	$\beta_{S0} + \beta_{sV}^*$	VMT									
Pro	Proposed Count Approach Dummy Interaction											
ID	TAZ	Crash Type	Crash	VMT	Α	S	NM	VMT*A	VMT*S	VMT*NM		
1	1	Rear-end	10	100	0	0	0	0	0	0		
2	1	Angular	12	100	1	0	0	100	0	0		
3	1	Sideswipe	8	100	0	1	0	0	100	0		
4	1	Non-motorized	2	100	0	0	1	0	0	100		
M	odel	$\beta_0 + \beta_1 * V$	$VMT + \beta_2$	$\beta_2 *A + \beta_3$	*S + f	B_4 *NM	+ $\beta_6 * Vl$	$MT^*S + \beta_5 * VI$	$MT^*A + \beta_7^*$	VMT*NM		

 $\beta_{S0} = \beta_0 + \beta_3; \beta_{SV} = \beta_1 + \beta_6$

Pror	nosed S	Severity Appr	oach							
			oucii	Counts				Fractions		
ID	TAZ	Crash Type	Crash	PDO	Injury	Fatal	PDO	Injury	Fatal	
1	1	Rear-end	10	6	4	0	0.6	0.4	0	
2	1	Angular	12	6	5	1	0.5	0.42	0.08	
3	1	Sideswipe	8	5	2	1	0.63	0.25	0.12	
4	1	Non-motorized	4	0	3	1	0	0.75	0.25	

1

Proposed Approach

ID	TAZ	Crash Type	Crash	PDO	Injury	Fatal	PDO	Injury	Fatal
1	1	Rear-end	10	6	4	0	0.6	0.4	0
2	1	Angular	12	6	5	1	0.5	0.42	0.08
3	1	Sideswipe	8	5	2	1	0.63	0.25	0.12
4	1	Non-motorized	4	0	3	1	0	0.75	0.25
Count Part Panel NB Model		- -		x		Orde	oportion ered Frac Split Mod	tional	
		Crash Typ	e				С	rash Seve	erity

Crash Counts of Each Severities by Crash Types

Proposed Approach

ID	TAZ	Crash Type	Crash	PDO	Injury	Fatal	PDO	Injury	Fatal
1	1	Rear-end	10	6	4	0	0.6	0.4	0
2	1	Angular	12	6	5	1	0.5	0.42	0.08
3	1	Sideswipe	8	5	2	1	0.63	0.25	0.12
4	1	Non-motorized	4	0	3	1	0	0.75	0.25

Count Part Panel NB Model	Advantage	Proportion Part Ordered Fractional Split Model
Crash Type	 A single model system 2 components only Retain ordering nature Parsimonious Model set 	re of severities

MODELING FRAMEWORK

Methodology (Joint Panel NB-GOPFS Model)

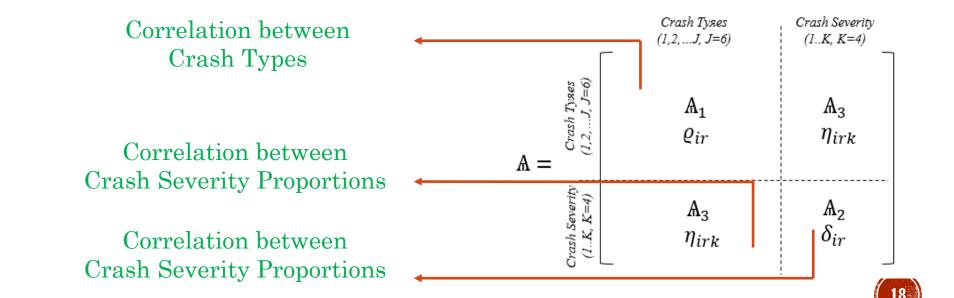
$$v_{ir} = E(y_{ir}|\mathbf{x}_{ir}) = exp\left(\left(\boldsymbol{\beta} + \boldsymbol{\theta}_i + \boldsymbol{\Phi}_{ir} \pm \eta_{irk}\right)\mathbf{x}_{ir} + \varepsilon_{ir}\right)$$

$$P(y_{ir}|v_{ir}, \lambda') = \frac{\Gamma\left(y_{ir} + \frac{1}{\lambda'}\right)}{\Gamma(y_{ir} + 1)\Gamma\left(\frac{1}{\lambda'}\right)} \left(\frac{1}{1 + \lambda'v_{ir}}\right)^{\frac{1}{\lambda'}} \left(1 - \frac{1}{1 + \lambda'v_{ir}}\right)^{y_{ir}}$$

NB Model

$$y_{irk}^{*} = (\alpha_{r} + \gamma_{irk} + \delta_{ir} \pm \eta_{irk})z_{ir} + \xi_{irk}$$

$$\psi_{rk} = \psi_{r,k-1} + exp((\beta_{rk} + \theta_{irk} + \varsigma_{ir} \pm \eta_{irk})s_{irk})$$

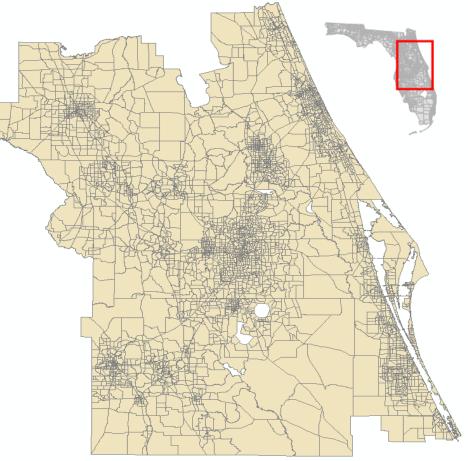

$$P_{irk} = G \left[(\psi_{rk} - \{(\alpha + \gamma_{i} + \delta_{irk} \pm \eta_{irk})z_{ir}\}\right] - G \left[(\psi_{r,k-1} - \{(\alpha + \gamma_{i} + \delta_{irk} \pm \eta_{irk})z_{ir}\}\right]$$

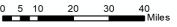
GOPFS
Model

MODELING FRAMEWORK

Methodology (Joint Panel NB-GOPFS Model)

$$L_{i} = \int_{\Omega} \prod_{r=1}^{R} \left[\left(P(c_{ir}) \right) \times \prod_{k=1}^{K} (P_{irk})^{\varpi_{ir}d_{irk}} \right] d\Omega \qquad \text{Joint Model Estimation}$$

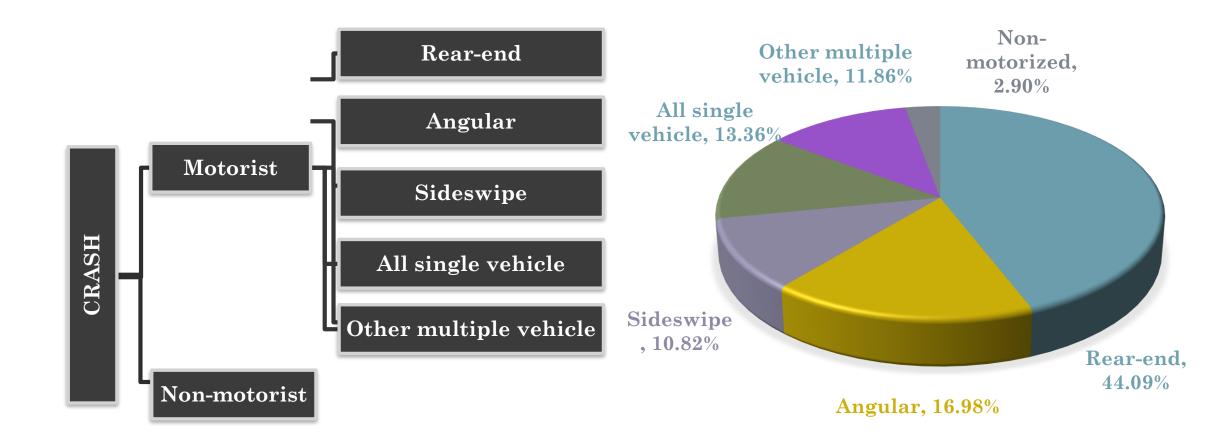


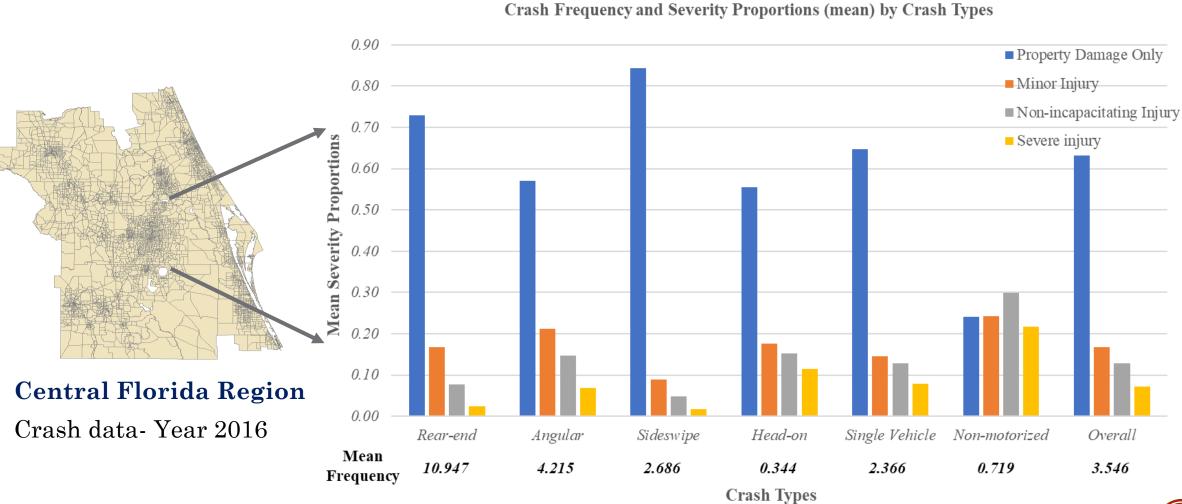


STUDY AREA

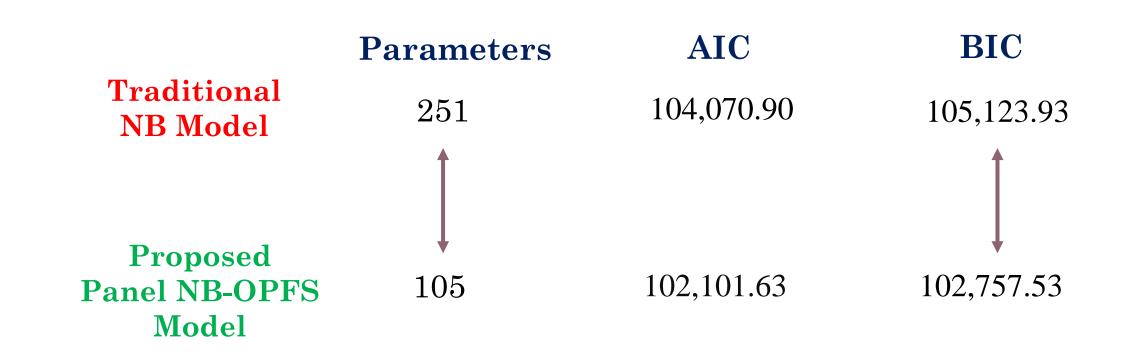
Central Florida Region

- ➤ Total 11 counties
- Crash data- Year 2016
- □ 117K crashes
- **4**,747 TAZs
 - > 3,815 TAZs Estimation Sample
 - > 932 TAZs Validation Se
- □ Data source: FDOT, CARS, S





DATA DESCRIPTION



DATA DESCRIPTION

MODEL FIT

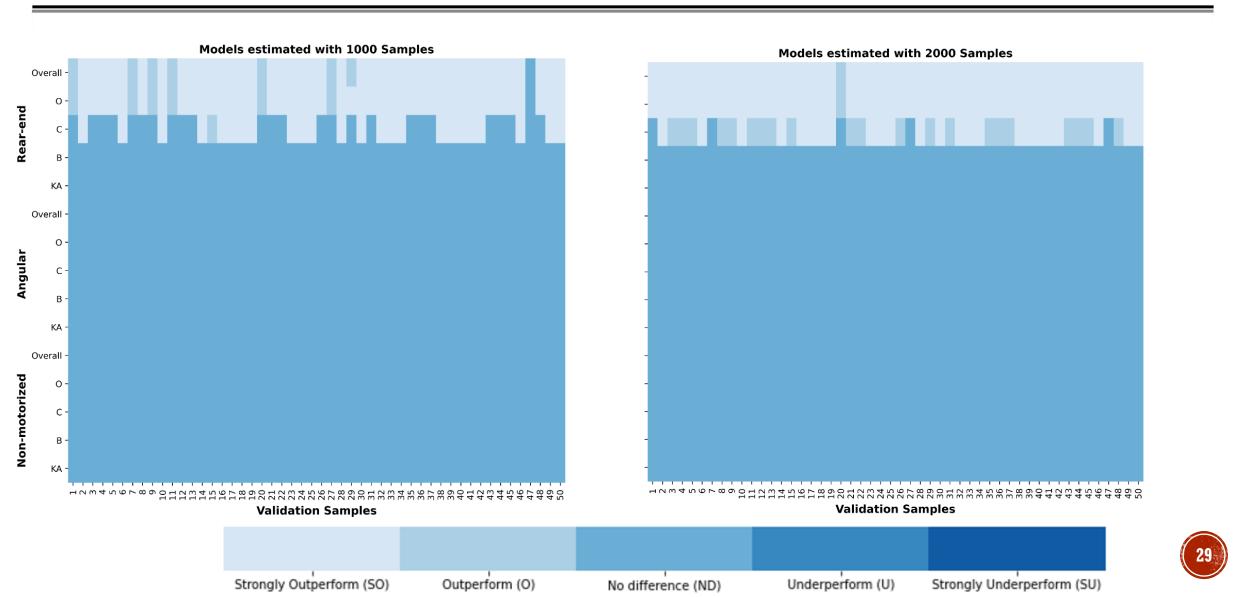
	Overall		Deviations						
Variable	Crash Risk	Rear-end (1)	Angular (2)	Sideswipe (3)	Head-on (4)	Single Vehicle (5)	Non- motorized (6)		
				Deviation, Ove	erall) - N/I = Nerconstants	o Impact			
Roadway Characteristic									
Proportion of arterial roads	▲ (1,2,5,6)			N/I	N/I	▼,▼			
Number of intersections	▲ (2,4,6)	N/I		N/I		N/I			
Signal Intensity	▲ (1,3,5,6)		N/I	▼,▼	N/I	▼,▼			
Road length over 55mph	▲ (1-6)		▼,▼		▼,▼	▲,▲	▼,▼		
Variance of speed limit	▲ (1-3)			▲,▲	N/I	N/I	N/I		
Road with median	▲ (1-4)				▼,▼	N/I	N/I		
Width of outside shoulder	▼ (1-5)		▼,▼	▼,▼		▲,▼	N/I		
Average sidewalk width	▼ (6)	N/I	N/I	N/I	N/I	N/I	▼		
Land Use Characteristic	-								
Urban area	▲ (1-4,6)			▼,▲	▼,▲	N/I	▼,▲		
Office area	▲ (1,3,6)		N/I		N/I	N/I	▼,▲		
Residential area	▼ (3,4)	N/I	N/I			N/I	N/I		

	Overall		Deviations						
Variable	Crash Risk	Rear-end (1)	Angular (2)	Sideswipe (3)	Head-on (4)	Single Vehicle (5)	Non- motorized (6)		
				Deviation, Ove	erall) - N/I = N	o Impact			
Land Use Characteristic									
Urban Area	▲ (1-4,6)			▼,▲	▼,▲	N/I	▼,▲		
Positive Impact	Crash types	Similar Effect	Imj		Still sitive	No Imj	pact		

24

	Overall		Deviations							
Variable	Crash Risk	Rear-end (1)	Angular (2)	Sideswipe (3)	Head-on (4)	Single Vehicle (5)	Non- motorized (6)			
				(Deviation, Ov	erall) – N/I = N	o Impact				
Built Environment Characteris	tic									
No. of restaurants	▲ (13,6)		N/I	▼,▲	N/I	N/I	▼,▲			
No. of shopping centers	▲ (1,3)		N/I		N/I	N/I	N/I			
Traffic Characteristic										
VMT	▲ (2-4,6)	N/I		▲,▲	▲ , ▲	N/I	▼,▲			
Truck VMT	▲ (1,5)		N/I	N/I	N/I	▲,▲	N/I			
Socio-demographic Characteri	stic	•								
Non-motorist commuters	▲ (1-3,6)		▲,▲	▲,▲	N/I	N/I				
Transit Users	▲ (1,6)		N/I	N/I	N/I	N/I				
Random Parameters				•						
Road with speed over 55mph	– Angular Cras	sh								

MODEL RESULTS (GOPFS PART)


	Overall Severity Risk	Deviations							
Variable		Rear-end (1)	Angular (2)	Sideswipe (3)	Head-on (4)	Single Vehicle (5)	Non- motorized (6)		
				(Deviation, Ove	erall) – N/I = No	o Impact			
Roadway Characteristic									
Proportion of arterial roads	▲ (1,2,5)		▲,▲	N/I	N/I		N/I		
Possible and NIC injury		V	N/I	N/I	N/I	N/I	N/I		
Local Roads	▼ (4,6)	N/I	N/I	N/I		N/I			
Number of intersections	▼ (4,5)	N/I	N/I	N/I			N/I		
Signal Intensity	▼ (2-4)	N/I				N/I	N/I		
Width of inside shoulder	▼ (3)	N/I	N/I		N/I	N/I	N/I		
Width of outside shoulder	V (1)		N/I	N/I	N/I	N/I	N/I		
Road length over 55mph	▲ (1,2,4-6)			N/I	▲,▲				
NIC and Severe injury		▼	N/I	N/I	N/I	N/I	N/I		
Poor Pavement Condition	▲ (3)	N/I	N/I		N/I	N/I	N/I		
Land Use Characteristic									
Urban area	▲ (1-4,6)			▼,▲	▼,▲	N/I	▼,▲		
Office area	▲ (1,3,6)		N/I		N/I	N/I	▼,▲		
Residential area	▼ (3,4)	N/I	N/I			N/I	N/I		

26

	Overall		Deviations							
Variable	Severity Risk	Rear-end (1)	Angular (2)	Sideswipe (3)	Head-on (4)	Single Vehicle (5)	Non- motorized (6)			
				(Deviation, Ove	erall) - N/I = Nerall	o Impact				
Built Environment Characteri	Built Environment Characteristic									
No. of commercial centers	▼ (6)	N/I	N/I	N/I	N/I	N/I				
No. of recreational centers	▼ (1)		N/I	N/I	N/I	N/I	N/I			
No. of restaurants	▼ (5)	N/I	N/I	N/I	N/I		N/I			
NIC and Severe injury		N/I	N/I	N/I	N/I		N/I			
No. of shopping centers	▼ (2-4)	N/I				N/I	N/I			
Possible and NIC injury		N/I	N/I		N/I	N/I	N/I			
Traffic Characteristic		-	-	-						
Congested condition	▼ (1-2)			N/I	N/I	N/I	N/I			
NIC and Severe injury		N/I		N/I	N/I	N/I	N/I			
Truck VMT	▲ (3,4)	N/I	N/I			N/I	N/I			

Variable	Overall Severity Risk	Deviations					
		Rear-end (1)	Angular (2)	Sideswipe (3)	Head-on (4)	Single Vehicle (5)	Non- motorized (6)
		(Deviation, Overall) $- N/I = No$ Impact					
Socio-demographic Characteristic							
Employee	▼ (6)	N/I	N/I	N/I	N/I	N/I	
Motorcycle users	▲ (2)	N/I		N/I	N/I	N/I	N/I
Senior people (>65)	▼ (6)	N/I	N/I	N/I	N/I	N/I	
HH with no cars	▲ (6)	N/I	N/I	N/I	N/I	N/I	

MODEL VALIDATION

University of Central Florida

SUMMARY AND CONCLUSION

Current Research

A joint model for crash types and severities

Panel NB-GOPFS model

- Only need 2 propensity equations
- Less computational time

Advantage

- Parsimonious specification
- Can predict several dimensions

Findings

Good performance for both sample

PAPER

 Bhowmik T., S. Yasmin and N. Eluru (2021). "A New Econometric Approach for Modeling Several Count Variables: A Case Study of Crash Frequency Analysis by Crash Type and Severity", Transportation Research Part B Volume 153, November 2021, Pages 172-203

