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• Introduction to Smart City Technologies, their impact on 
Transportation Introduction

• Background on Data Collection Approaches

• Stated Preference Design and application
Stated Preference Module

• Binary logit, multinomial logit, ordered logit, and count 
models

Traditional Discrete 
Choice Models

• Nested logit, mixed logit, maximum simulated likelihood 
estimation, regret minimization, discrete continuous models

Advanced Discrete 
Choice Models

• Current state of the art and recent advancesTransportation Planning 
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IN THIS MODULE

I will introduce choice 
modeling approaches for data 
analysis including binary logit, 
multinomial logit, ordered logit 
and count models
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▪Yesterday we learned
▪ Choice theory

▪ Binary logit models

▪ Probit/logit

▪ Ran models with R codes for BL model using sample datasets

▪Today we will
▪ Build on this with MNL model

▪ OL model

▪ Count models
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▪When we have only two alternatives
▪ Individual n, alternatives i and j

▪ Probability of i is: Pn(i) = Pr(Uin≥Ujn)

▪ Probability of j is : Pn(j) = 1 - Pn(i) 

▪ Uin= Vin + εin ; Ujn = Vjn + εjn

▪ Pn(i) = Pr(Uin≥Ujn)

▪ Pn(i) = Pr(Vin + εin ≥ Vjn + εjn)

▪ Pn(i) = Pr(εjn - εin ≤ Vin -Vjn)

▪ Making the assumption on the error terms as gumbel we arrive at 
the binary logit. 

▪ Now we will explore cases with more than two alternatives
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▪ For a choice context with J alternatives, the alternative i is 
chosen if Uin ≥ Ujn; 
▪ where Uin= Vin + εin

▪ Ujn = Vjn + εjn for all alternatives except i

▪ Now the probability of choosing i is given by

▪ Pin = Pr (Uin ≥ Ujn) = Pr(Vin + εin ≥ Vjn + εjn) for all j (≠i)

▪ Pin = Pr(εjn ≤Vin-Vjn + εin) for all j (≠i)

▪ i.e., we want εjn to be less than Vin-Vjn + εin for all j (≠i)

▪ i.e., it’s a multivariate cumulative distribution of J-1 dimensions 
(from -∞,Vin−Vjn+ εin)
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▪ To compute Pr(εjn ≤ Vin-Vjn + εin) lets assume εin is known

▪ In this case the probability is nothing but the cdf function 
𝑓(ε1𝑛, ε2𝑛… . ε𝐽𝑛) for j = 1,2…J and ≠ i.

▪ ׬
−∞,𝑗≠𝑖

Vin−Vjn+ εin𝑓(ε1𝑛, ε2𝑛… . ε𝐽𝑛) 𝑑ε1𝑛, 𝑑ε2𝑛… 𝑑ε𝐽𝑛
▪ Note 𝑓(ε1𝑛, ε2𝑛… . ε𝐽𝑛) and 𝑑ε1𝑛, 𝑑ε2𝑛… 𝑑ε𝐽𝑛 does not have ε𝑖𝑛

▪ Now εin varies from -∞ to +∞, so add integral for that

▪ Pr(εjn ≤ Vin-Vjn + εin) = 

∞−׬
∞

׬
−∞,𝑗≠𝑖

Vin−Vjn+ εin𝑓 ε1𝑛, ε2𝑛… . ε𝐽𝑛 𝑑ε1𝑛, 𝑑ε2𝑛… 𝑑ε𝐽𝑛 𝑓(ε𝑖𝑛)𝑑ε𝑖𝑛
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▪ Lets assume the error terms are independent

▪ Then the joint probability is nothing but product of marginal probabilities

▪ ∞−׬
∞

׬
−∞,𝑗≠𝑖

Vin−Vjn+εin𝑓(ε1𝑛, ε2𝑛… . ε𝐽𝑛) 𝑑ε1𝑛, 𝑑ε2𝑛… 𝑑ε𝐽𝑛 𝑑ε𝑖𝑛

▪ ∞−׬ =
∞

𝑓(ε𝑖𝑛)𝑑ε𝑖𝑛 ς𝑗≠𝑖
∞−׬

Vin−Vjn+εin𝑓(ε𝑗𝑛) 𝑑ε𝑗𝑛

▪ ∞−׬ =
∞

𝑓(ε𝑖𝑛)𝑑ε𝑖𝑛 ς𝑗≠𝑖
𝐹(Vin− Vjn+εin)

▪ F represents cumulative gumbel probability

▪ Now when we integrate this we get

▪ Pin = 
exp(𝑉𝑖)

σ∀𝑗 exp(𝑉𝑗)
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▪ ∞−׬
∞

𝑓(ε𝑖𝑛)𝑑ε𝑖𝑛 ς𝑗≠𝑖
𝐹(Vin−Vjn+εin)

▪ Using Gumbel cdf

▪ ς
𝑗≠𝑖

𝐹(Vin−Vjn+εin) = ς
𝑗≠𝑖

𝑒−𝑒
− Vin−Vjn+εin

▪ Using Gumbel pdf 

▪ 𝑓(ε𝑖𝑛) = 𝑒−𝑒
− εin *𝑒− εin

▪ ∞−׬=
∞

ς
𝑗≠𝑖

𝑒−𝑒
− Vin−Vjn+εin

𝑒−𝑒
− εin *𝑒− εin 𝑑ε𝑖𝑛

▪ ∞−׬=
∞

ς
𝑗≠𝑖

𝑒−𝑒
− Vin−Vjn+εin

𝑒−𝑒
− εin *𝑒− εin 𝑑ε𝑖𝑛

▪ ∞−׬=
∞

ς𝑗 𝑒
−𝑒

− Vin−Vjn+εin
∗ 𝑒− εin 𝑑ε𝑖𝑛

▪ We can do this because Vin – Vin =0;
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▪ ∞−׬=
∞

𝑒𝑥𝑝 − σ𝑗 𝑒
− Vin−Vjn+εin ∗ 𝑒− εin 𝑑ε𝑖𝑛

▪ ∞−׬
∞

𝑒𝑥𝑝 −𝑒− εin σ𝑗 𝑒
− Vin−Vjn ∗ 𝑒− εin 𝑑ε𝑖𝑛

▪ Now let t = 𝑒− εin ; then dt = -𝑒− εin 𝑑ε𝑖𝑛
▪ We need to change limits; 

▪ εin = −∞ => t = ∞; εin = ∞ => t = 0

▪ ∞׬
0
𝑒𝑥𝑝 −𝑡 σ𝑗 𝑒

− Vin−Vjn ∗ (−𝑑𝑡)

▪ 0׬=
∞
𝑒𝑥𝑝 −𝑡 σ𝑗 𝑒

− Vin−Vjn ∗ 𝑑𝑡

▪

𝑒𝑥𝑝 −𝑡 σ𝑗 𝑒
− Vin−Vjn

− σ𝑗 𝑒
− Vin−Vjn

𝑡𝑜 𝑏𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑎𝑡 𝑡 = ∞ 𝑎𝑛𝑑 𝑡 = 0
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▪

𝑒𝑥𝑝 −𝑡 σ𝑗 𝑒
− Vin−Vjn

− σ𝑗 𝑒
− Vin−Vjn

𝑎𝑡 𝑡 = ∞

▪ = 0

▪

𝑒𝑥𝑝 −𝑡 σ𝑗 𝑒
− Vin−Vjn

− σ𝑗 𝑒
− Vin−Vjn

𝑎𝑡 𝑡 = 0

▪ =
1

− σ𝑗 𝑒
− Vin−Vjn

▪ Thus, the integral  = 
1

σ𝑗 𝑒
− Vin−Vjn

= 
𝑒Vin

σ𝑗 𝑒
Vjn



▪ Independent errors
▪ Consider mode choice model, with 4 alternatives car, shared ride, 

bus and metro. A person whose personality prefers transit modes 
will assign a higher value to both bus and metro… or a person who 
prefers car will assign higher utility to car and shared ride… So
neglecting this might have implications for what we are trying to do

▪ Vin + εin

GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
13

Remember ε affects the 

choice



▪Non-identical variances
▪ For auto alternatives the level of comfort for example are clear.. 

There is not as much variability. But depending on the transit line 
and no. of people travelling there is substantial variability in the 
level of comfort in public transportation modes. Hence.. The 
unobserved components have more variability… so assuming 
identical variances is incorrect!

▪Please note that the reason we do complex models is 
because they allow us to incorporate complex interactions 
into the choice modeling process
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▪Quickly recap our assumptions on error terms
▪ Independent and identically distributed for all individuals

▪Let us say we are considering different alternatives of 
mode choice
▪ Car, car pool, bus, train, metro, walk and bike

▪ Will the assumption hold?

▪ Isn’t it possible that car and car pool have errors coming from a 
distribution that is different from the distribution for other 
alternatives

▪ Be careful with the assumptions



▪ Strengths and Weaknesses of MNL

▪ The structure of the MNL lends itself to easy model estimation
▪ Probability computation is free from integration or simulation
▪ If you maintain linear utility specification irrespective of where we begin

we will reach the optimal solution (concave)
▪ Easy to interpret because of the utility structure 

▪ There has to be a catch right?

▪ Taste Variation
▪ Logit accommodates taste variation based on observed attributes 

(income or vehicle on mode choice)
▪ Logit cannot accommodate taste variation based on unobserved 

attributes (social nature influence on mode choice)

GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
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▪ IIA property
▪ MNL is saddled with “independence of irrelevant alternatives” property

▪ Consider the ratio of alternative probabilities for i and j.

▪ Pi / Pj = ൘
exp(𝑉𝑖)

σ∀𝑗 exp(𝑉𝑗)

exp(𝑉𝑗)

σ∀𝑗 exp(𝑉𝑗)
=

exp(𝑉𝑖)

exp(𝑉𝑗)
= exp(Vi-Vj)

▪ A function only of the alternatives i and j

▪ Consider that an individual has two options to get to work: (A) 
Auto and (R) Red Bus. Lets say the probability for choosing A 
and B are equal. Hence P(A) = P(R) = 0.5
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▪ Now, a new bus service is introduced. The only difference from 
the existing bus service is that it is a Blue bus. Now since it is the 
exact same bus P(R) / P(B) = 1.

▪ However, P(A)/P(R)=1 and P(A)+P(R)+P(B) =1

▪ Hence P(A) = P(R)=P(B)=1/3

▪ In reality, we expect P(A) to remain same and the other two bus 
alternatives share the probability. 

▪ It is not all bad – IIA has some advantages
▪ Because of IIA, we can estimate the model on only a subset of alternatives 

and yet get consistent results
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▪ 𝑃i𝑛 =
𝑒𝛽

′xin

σ
∀𝑗 𝑒

𝛽′xjn
; Q = σ

∀𝑗𝑒
𝛽′xjn

▪Let kth variable be altered

▪Self: 
𝜕𝑃

i𝑛

𝜕x𝑖𝑘
=
𝑄 ∗ 𝑒𝛽

′xTn∗𝛽 𝑇
,
𝑘−𝑒

𝛽′xTn∗ 𝑒𝛽
′xDn∗0 +𝑒𝛽′xTn∗𝛽 𝑇

,
𝑘

𝑄2

▪= 𝛽𝑘[𝑃𝑖𝑛] - 𝛽𝑘 [𝑃𝑖𝑛 ]2

▪= 𝛽𝑘[𝑃𝑖𝑛] [1 − 𝑃𝑖𝑛 ] 

▪Cross: 
𝜕𝑃j𝑛

𝜕x𝑖𝑘
= - 𝛽𝑘[𝑃i𝑛 ] [1 − 𝑃𝑖𝑛 ] 



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
20

▪ Slightly different definition that marginal effects

▪ Self elasticity : ൘
𝜕𝑃

i𝑛

P
i𝑛 𝜕x

𝑖𝑘

x
𝑖𝑘

= 
𝜕𝑃

i𝑛

𝜕x
𝑖𝑘

* 
x
𝑖𝑘

𝑃
i𝑛

▪ = 𝛽𝑘[𝑃i𝑛 ] [1 − 𝑃𝑖𝑛 ] * x𝑖𝑘
𝑃i𝑛

▪ = 𝛽𝑘[1-𝑃i𝑛 ] x𝑖𝑘

▪ Cross-elasticity: ൘
𝜕𝑃

j𝑛

P
j𝑛

𝜕x
𝑖𝑘

x
𝑖𝑘

= −𝛽𝑘[𝑃i𝑛 ] x𝑖𝑘

▪ Very similar to elasticity from binary logit models

▪ Cross and self exist only for variables that are related to alternative attributes

▪ For variables specific to individual we only have one effect
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▪ Consider income effect on three alternative case - Let income 
coefficient is 0 for alt 1(base)

▪ Consider prob for 2nd alternative

▪ P2n = 
𝑒𝛽

′x2n+𝛽incInc𝑛

𝑒𝛽
′x1n+𝑒𝛽

′x2n+𝛽incInc𝑛+𝑒𝛽
′x3n+𝛽incInc𝑛

▪ D - 𝑒𝛽
′x1n + 𝑒𝛽

′x2n+𝛽incInc𝑛 + 𝑒𝛽
′x3n+𝛽incInc𝑛

▪
𝜕𝑃

2𝑛

𝜕inc
= 𝐷∗𝛽inc ∗𝑒

𝛽′x2n+𝛽incInc𝑛− 𝑒𝛽
′x2n+𝛽incInc𝑛 ∗ σ𝑗≠1 𝛽inc(𝑒

𝛽′xjn+𝛽incInc𝑛)

𝐷2

▪ = P2n 𝛽inc−σ𝑗≠1𝑃𝑗𝑛𝛽inc

▪ In general

▪
𝜕𝑃

i𝑛

𝜕inc
= Pin 𝛽inc−σ𝑗≠1𝑃𝑗𝑛𝛽inc
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▪ When multiple alternatives exist – interpretation is less straight forward

▪ Example income variable in a 3 alternative case (alt 1 is base)
▪ Alt 2 Coeff = 0.25

▪ Alt 3 Coeff = 0.55

▪ What will happen if income increases?
▪ Alt 1 ?

▪ reduces

▪ Alt 3 ?
▪ increases

▪ Alt 2?
▪ Depends

▪ The extreme cases are easy to predict – the intermediate ones are not so 
easy – they need to be computed using elasticity
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A mode choice model including traveler characteristics

SOURCE: http://www.ce.utexas.edu/prof/bhat/REPORTS/4080_8_draft_Dec11_2006.pdf

http://www.ce.utexas.edu/prof/bhat/REPORTS/4080_8_draft_Dec11_2006.pdf
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Eluru, N., V. Chakour, and A. El-Geneidy (2012), "Travel Mode Choice and Transit Route Choice 

Behavior in Montreal: Insights from McGill University Members Commute Patterns," Public 

Transport: Planning and Operations Vol. 4, No. 2, pp. 129-149
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▪ We investigate individual’s decision framework to choose between transit and car 
mode of transportation for commuting to McGill University

▪ The sample consists of 1778 records

▪ Of these 1228 (69.1%) respondents commute using transit while 550 (30.9%) 
respondents commute by car

▪ We need to generate the LOS attributes for modes under consideration

▪ Car in-vehicle travel times for all individuals (irrespective of their choice) were 
generated using LOS matrices for postal code origin and destinations

▪ Google Maps were employed to generate the best transit alternative available to 
the individuals using car at the time of his/her departure to work

▪ For respondents choosing transit, the actual transit route alternative information 
compiled in the survey was employed to tag the chosen alternative
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Attributes Parameter t-stats
(Car alternative is the base)

Constant 9.1685 8.691

Age -0.2425 -6.062

Age squared 0.0022 5.453

Respondent status

Staff member 0.6073 3.915

Student 0.8001 2.913

Full time member of the community 0.3433 1.735

Driver license status -1.2406 -3.559

Household car ownership -1.0623 -11.582

In-vehicle Travel time -0.0594 -7.004

Transfers -0.8143 -9.145

Walk time -0.0145 -1.419

Initial Waiting Time -0.0244 -5.054

Log-likelihood at Convergence -685.7

Log-likelihood at constants -1099.8

McFadden rho-square 0.37
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▪ Age exerts a significantly negative influence on choosing the transit mode
▪ Younger individuals of the McGill community (students and younger employees) are 

more likely to use the public transportation mode compared to older members of the 
McGill community

▪ The adoption of transit is the highest among students followed by staff 
members compared to faculty members

▪ Full-time employees and students are more likely to commute by transit 
compared to part time employees and students
▪ The full-time members have a more definite work schedule, making it easier for them 

to commute to work by transit

▪ The license status of the individual affects the choice between transit and 
car
▪ Within the student community it is possible a number of individuals do not have 

driver licenses and are captive to the public transportation mode
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▪ Household car ownership also has a strong negative effect on the choice of 
transit  mode. Households with more cars are least likely to commute to work 
by transit

▪ LOS attributes including travel time, number of transfers, walking time, and 
initial wait time significantly influences the choice between auto and transit 
modes. 

▪ Increasing travel time reduces the likelihood of choosing the alternative

▪ The increase in the amount of walking within the transit alternative significantly 
reduces the likelihood of the respondent using transit for commuting. 

▪ Increase in the number of transfers for travelling by transit reduces the 
likelihood of using transit substantially

▪ The initial waiting time for the transit alternative exerts a strong influence of car 
versus transit choice
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▪For 1228 respondents that 
commute using transit we 
studied their transit route 
choice alternatives

▪Sample statistics

Transit route choice dataset

Mean Travel Time 23.5

Mean Total Walking Time 17.0

Mean Total Waiting Time 3.7

Transit route alternatives 

comprising

Bus 69.0

Metro 49.5

Train 14.8

Average travel time by mode (min)

Bus 21.4

Metro 10.3

Train 24.3
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Attribute Parameter t-stats

Transit alternative has bus -0.2375 -1.066

Transit alternative has metro 0.6378 2.145

Transit alternative has train -1.5665 -2.142

The alternative with the earliest arrival time 0.2361 2.209

Travel time in bus -0.2690 -5.997

Travel time in metro -0.1616 -3.238

Travel time in train -0.1737 -3.420

Standard Deviation 0.0496 2.000
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Attribute Parameter t-stats

Total Walking time -0.3550 -7.806

Total Walking time squared 0.0013 1.441

Standard Deviation 0.1297 4.191

Number of transfers -2.4985 -8.101

Standard Deviation 0.9752 2.293

Waiting Time per transfer -0.0766 -2.341

Total travel time interactions with Socio-demographics

Female 0.0688 2.955

Age 0.0012 1.584

Faculty -0.0395 -1.465

Log-likelihood at Convergence -681.7

Log-likelihood at Equal shares -1207.4

McFadden rho-square 0.42
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▪The travel time coefficients clearly indicate the negative 
propensity towards travel for respondents. 

▪ In the model, we introduced travel time by mode. The 
coefficient on each of these modes provides the sensitivity 
to travel time for respondents by that mode. 

▪The results indicate that individuals find travel time on the 
bus mode the most onerous while the sensitivity to travel 
time on metro and train are quite similar on average
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▪ The influence of walking time is along expected lines. Specifically, transit 
route alternatives with smaller walk times are preferred. 
▪ The model results indicate the presence of a non-linear relationship (linear and 

square terms). 

▪ Further, the results indicate a substantial variation on the mean effect of the 
walking time variable. The result is quite intuitive, because, different 
individuals are likely to be differentially sensitive to walking time. 

▪ The best statistical and intuitive fit was obtained for the specification that 
includes the transfer variable as well as the waiting time per transfer 
variable. 
▪ As expected, alternatives with fewer transfers were preferred. 

▪ At the same time, individuals exhibited higher likelihood of choosing 
alternatives with smaller waiting time per transfer. 
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▪ In a route choice model, it is not possible to evaluate the effect of socio-
demographics directly. 

▪ In the model we consider interactions of gender, age, employment status 
with total travel time (sum of travel time by all modes in a route). 

▪ Travel time interacted with female gender results in a positive coefficient 
indicating that females are less sensitive to travel time compared to males. 
▪ To be sure, the overall sensitivity to travel time for females is still negative. However, 

it is lower than the sensitivity of travel time for males. 

▪ The results corresponding to the interaction variable involving age and 
total travel time indicate that with increasing age of the respondent, there is 
a marginal reduction in the sensitivity of travel time. 

▪ Faculty members are more sensitive to travel time compared to the students 
and staff members 
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Attribute Car Transit

Travel time by Transit reduced by 5 minutes -11.51 5.15

Travel time by Transit reduced by 10 minutes -21.68 9.71

Travel time by Car increased by 5 minutes -11.60 5.20

Travel time by Car increased by 10 minutes -22.49 10.07

Walking time to transit reduced by 5 minutes -2.88 1.29

Walking time to transit reduced by 10 minutes -5.53 2.48

Initial Waiting Time reduced by 5 minutes -3.66 1.64

Initial Waiting Time reduced by 10 minutes -5.74 2.57

No. of transfers (for transit) reduced by 1 -18.75 8.39

Household vehicle ownership reduced by 1 -35.39 15.85
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▪ In the discrete choice model framework we can estimate 
models for different segments

▪ Consider travel mode choice model: it is possible to estimate 
the models for different segments
▪ Males vs Females
▪ High income vs Low income

▪ Lets consider two segments. The pooled L can be shown to be = 
sum of L1 and L2.

▪ L1 +L2= σ𝑛=1
𝑁 σ∀𝑗 δjnσ𝑠 ∆𝑠𝑙𝑛𝑃𝑗𝑛

𝑠

▪ = σ𝑠 σ𝑛=1
𝑁 σ∀𝑗 δjn 𝑙𝑛𝑃𝑗𝑛

𝑠 =  L
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▪ Example: three modes D, W, T

▪ Specification

▪ We can check if the full specification is required by comparing the incremental coefficients 
in the pooled model

Case Alt UnoW UnoT IVTT
UnoW * 

Male

UnoT * 

Male

IVTT * 

Male

UnoW * 

Female

UnoT * 

Female

IVTT * 

Female

1 D 0 0 7

1 W 1 0 12

1 T 0 1 18

2 D 0 0 19

2 W 1 0 45

2 T 0 1 25
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▪ Market segmentation is usually good if you have segmentation 
on 1 or 2 variables

▪ Market segmentation allows us to estimate different coefficients 
for different segments – thus allowing for coefficients to vary 
across the population i.e. we don’t consider the entire 
population as one homogenous lump and allow for 
heterogenous variation

▪ How can we achieve this?

▪ We segment based on gender (2) and income (4) – total 8 
segmented models
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▪ Now if I decide to consider the effect of location (downtown, urban 
and suburban)

▪ Now this will add 8*3 = 24 segments

▪ As you can see addition of one more variable will make it more 
cumbersome – further there are very few records in each of the 
segments – thus making the estimation process hard
▪ You are trying to estimate a coefficient with very few records

▪ So the approach referred to as exogenous (deterministic) 
segmentation
▪ The approach is mutually exhaustive segmentation 
▪ is feasible only for segmentation based on 2-3 variables
▪ Results in a loss of efficiency
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▪ So there are alternative ways of achieving segmentation : Endogenous segmentation approach

▪ In this approach, we allow decision makers to be part of different segments probabilistically

▪ To explain this, lets say there are two segments in the population; within each segment the population is 
assumed to be homogenous and we estimate the choice model for each segment

▪ There are two steps:

▪ 1) segmentation

▪ 2) discrete choice model for each segment

▪ We know how to do step 2. If we know how to do 1 and combine 1 and 2 we can develop latent 
segmentation model

▪ The question is how do we decide the segments

▪ We do a probability model

▪ So assign utility for decision makers to be part of a segment – we get a probability for each DM for every segment

▪ So for individual p1 and p2 are probabilities of being part of segment 1 and segment 2 (p1+p2=1)
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▪ Lets examine the mathematical structure

▪ Step 2

▪ Given an individual is part of segment s, the probability to choose alternative i is

▪ Pni(S) = 
exp(𝑉𝑖)

σ∀𝑗 exp(𝑉𝑗)

▪ However, we need to determine the probability to be part of segment S.

▪ Now P(S) = 
exp(𝑍𝑠)

σ∀𝑠 exp(𝑍𝑡)
is also a logit probability where Zs represents individual utility for being part of segment 1

▪ The unconditional probability is obtained as σ𝑠𝑃 𝑆 ∗ 𝑃𝑛𝑖(𝑆)

▪ For a two segment case:
▪ Probability for ith alternative is given by [𝑃 1 ∗ 𝑃𝑛𝑖(1) + (1 − 𝑃 1 ) ∗ 𝑃𝑛𝑖(2)]

▪ How do we decide on no. of segments?
▪ We start with 2 segments and add segments until we improve the data fit; when additional segments do not add value to data 

fit we stop

▪ Approach allows us to determine segments based on a host of variables



Bhat, C.R., 1997. An endogenous segmentation mode choice model with an 

application to intercity travel. Transportation Science 31 (1), 34-48.
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▪ Intercity travel mode choice behavior. 

▪ The data used in the current empirical analysis was assembled 
by VIA Rail in 1989 to develop travel demand models to forecast 
future intercity travel in the Toronto-Montreal corridor

▪ The data includes socio-demographic and general trip-making 
characteristics of the traveler, and detailed information on the 
current trip (purpose, party size, origin and destination cities, 
etc.). 

▪ The universal choice set included car, air, train and bus). 

▪ Level of service data were generated for each available mode 
and each trip based on the origin/destination information of the 
trip
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Mode
Frequency 

(departures/day)
Total cost 

(in Canadian $)
In-vehicle time 

(in mins.)
Out-of-vehicle time 

(in mins.)

Train 4.21   (2.3) 58.58 (17.7) 244.50 (115.0) 86.32 (22.0)

Air 25.24 (14.0) 157.33 (21.7) 57.72  (19.2) 106.74 (24.9)

Car not applicable 70.56 (32.7) 249.60 (107.5) 0.00  (0.0)
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▪ Segmentation Model
▪ The variables are: income, sex (female or male), travel group size 

(traveling alone or traveling in a group), day of travel (weekend travel or 
weekday travel), and (one-way) trip distance. 

▪ The segmentation variables were introduced as alternative-specific 
variables in the logit model with the last segment being the base. 

▪ Mode choice Model
▪ The level-of-service variables used to model choice of mode included 

modal level-of-service measures (frequency of service, total cost, in-
vehicle travel time and out-of-vehicle travel time) and a large city 
indicator which identified whether a trip originated, terminated, or 
originated and terminated in a large city. 
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Variable

Segment 1 Segment 2 Segment 3

Parameter t-statistic Parameter t-statistic Parameter t-statistic

Constant
4.4227 7.62 1.5366 2.56

Base Segment

Income
-0.0293 -5.73 -0.0447 -8.60

Female
-0.7614 -3.46 0.9703 4.05

Traveling Alone
-0.1657 -1.70 -0.7226 -4.07

Weekend Travel
0.2423 0.65 1.5326 4.71

Trip Distance
-0.0047 -5.91 -0.0030 -3.79

Sample Share
0.4866 0.1220 0.3914
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Variable Segment 1 Segment 2 Segment 3
Overall 

Market

Income (x 103 Can$) 52.16 44.09 60.28 54.36

Female 0.13 0.48 0.20 0.20

Traveling Alone 0.69 0.57 0.77 0.70

Weekend Travel 0.20 0.62 0.19 0.25

Trip Distance (km) 311.80 373.37 444.76 371.35
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Variable
Segment 1 Segment 2 Segment 3

Parameter t-statistic Parameter t-statistic Parameter t-statistic

Mode Constants 

Train -3.0617 -2.54 4.7763 2.12 1.1737 0.60

Air -1.0516 -1.82 -1.3691 -1.01 4.3404 3.36

Large City Indicator

Train 1.9273 2.20 0.2146 0.32 -0.0840 -0.12

Air 2.2240 3.46 -1.3691 -1.01 2.6892 2.37

Frequency of Service 

(deps./day) 0.1615 6.38 0.5784 3.49 0.1790 3.92

Travel Cost (Canadian $) -0.0591 -4.53 -0.1728 -3.27 -0.0166 -0.54

Travel Time (minutes)

In-Vehicle -0.0254 -3.25 -0.0030 -1.20 -0.0657 -5.21

Out-of-Vehicle -0.0436 -2.91 -0.0239 -1.84 -0.1627 -5.01
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▪Estimating these models is not easy – very unstable LL 
function

▪Starting values are very critical

▪EM algorithm is two stage model used to make the process 
easy



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities

51



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
52

▪We can use the multinomial logit model to study joint 
choices
▪ Mode and departure time choice (2 distinct choices)

▪ When people leave and how people leave are connected
▪ Car – off peak, transit – peak etc.

▪ We can generate joint alternatives by creating combinations of 
choice 1 and choice 2

▪ Let us say we have 3 (n) mode combinations (D, T, W) and 2 (k) 
departure time combinations (Peak and Offpeak) – no. of posisble
joint combinations is given by 3*2 (n*k) = 6

▪ Alternatives: D-P, T-P, W-P, D-OP, T-OP, W-OP
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▪ Let us examine the specification of say Vehicle ownership 
variable (#V) (D-P is base alternative)

▪ We can estimate (n*k-1) coefficients

Case #VT-P #VW-P #VD-OP #VT-OP #VW-OP

D-P 0 0 0 0 0

T-P #V 0 0 0 0

W-P 0 #V 0 0 0

D-OP 0 0 #V 0 0

T-OP 0 0 0 #V 0

W-OP 0 0 0 0 #V
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▪ It is possible that we might have reason to believe #V only affects 
mode choice and not time choice

▪ How do we 
accommodate that?

▪ In this case we 
estimate 2 coefficients

▪ In cases where n and k
are high (>5) – we start 
estimating across the 
dimensions i.e n-1 and k-1 are estimated and very important 
interactions are considered

▪ So instead of estimating (n*k-1) we end up estimating (n+k-2) 
parameters

Case D T W

VD-P 0 0 0

VT-P 0 #V 0

VW-P 0 0 #V

VD-OP 0 0 0

VT-OP 0 #V 0

VW-OP 0 0 #V



Anowar S., N. Eluru, L. Miranda-Moreno, and M. Lee-Gosselin (2015), "A Joint Econometric Analysis of Temporal And Spatial
Flexibility Of Activities, Vehicle Type Choice And Primary Driver Selection" Transportation Research Record Vol. 2495, Jan 2015,
pp. 32-41
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▪Quebec City Travel and Activity Panel Survey (QCTAPS)
▪ Investigates how households and individuals organize their 

activities in space and time

▪ Comprised of three waves, about one year apart

▪Carried out from 2003-2006
▪ Region: Quebec City, Canada

▪ Number of households: 250

▪ Retention rate: 67%
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▪ Perceived temporal flexibility
▪ Routine
▪ Planned
▪ Impulsive

▪ Perceived spatial flexibility
▪ Routine
▪ Planned
▪ Impulsive

▪ Vehicle type
▪ Compact sedan
▪ Large sedan
▪ Van and minivan
▪ Sports Utility Vehicle (SUV)
▪ Pick-up and truck
▪ Other vehicles (walk, bike, transit)

▪ Primary driver
▪ As many drivers as many adults 

(Maximum of 4)

▪ Total discrete alternatives 216 
(3*3*6*4)
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▪A total of 46,730 activities 
▪ Out-of-home activities: 14,579

▪The final sample
▪ Out-of-home activities: 8,098

▪Households: 234

▪ Individuals: 378
▪ More than 90 percent owned at least one vehicle



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
59



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
60

▪A MNL base structure is used

▪ In the paper a more advanced model is developed – Mixed 
MNL (to be discussed later)
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▪The variable effects are considered across dimensions
▪ Fairly parsimonious model specification

▪Exogenous variable categories
▪ Individual and household socio-demographics

▪ Household residential location characteristics

▪ Activity attributes

▪ Contextual variables
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▪ Individual socio-demographics
▪ Females are less likely to drive sedans and vans/minivans and 

more likely to be the primary driver

▪ Young individuals tend to undertake impulsive activities while 
being less inclined to use compact sedans or vans/minivans

▪ Seniors are indifferent towards activity flexibility indicators and 
have a lower preference for compact sedans and SUVs

▪ University degree holders prefer vans/minivans
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▪Household socio-demographics
▪ Individuals from medium and high income households tend to 

perform routinized activities

▪ Members from medium income households are more likely to opt 
for large sedans and vans/minivans

▪ Vans/minivans and SUVs are the preferred vehicle type for 
individuals from affluent households 

▪ Individuals with kids are disinclined towards pursuing activities 
planned in a short period of time and tend to use vans/minivans
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▪Household residential location attributes
▪ Residential location categories created using k-means cluster 

analysis using population density, land use mix and transit 
accessibility

▪ Categories considered

▪ Peripheral areas (lowest values of all 3 indices)

▪ Old suburbs (medium land use mix and population density and served by 
main transit lines)

▪ New suburbs (low to medium values of the 3 indices)

▪ Central Business District (downtown cores with the highest population density, 
land use mix and transit accessibility)
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▪Household residential location attributes
▪ Individuals living in peripheral areas have a higher propensity of 

getting involved in impulsive activities (temporal and spatial)

▪ These individuals prefer large sedans, vans/minivans, and SUVs for 
activity participation

▪ CBD residents also tend to engage in impulsive activities while 
choosing not to use sedans and SUVs for travel

▪ Overall preference for non-auto oriented travel



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
69

▪Contextual variables
▪ Walking/biking/taking transit is preferred in summer

▪ People are disinclined to undertake temporally impulsive activities 
in winter 

▪ In winter vans/minivans are less likely to be used

▪ Increased heating leading to increased gas cost

▪ Snow cleaning and parking difficulty

▪ Pre-planned and impulsive activities are pursued in weekends

▪ Sedans and vans/minivans are preferred vehicle type choice
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▪Activity attributes
▪ Temporally impulsive activities are more likely to be pursued both 

in peripheral and Central Business Districts (CBD)

▪ Contrasting vehicle type choices between

▪ Larger vehicles preferred in peripheral areas; walk/bike/transit in CBDs

▪ CBDs have diverse land use mix, increased number of easily accessible 
activity centres, pedestrian oriented urban form and parking restrictions
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▪Activity attributes
▪ Activities involving basic needs are either routine or impulsive in 

time while the location is more likely to be pre-planned or selected 
impulsively

▪ Temporal and spatial rigidity of work/school is confirmed

▪ Both shopping and social/recreational activities are more likely to 
be impulsively undertaken

▪ Individuals are disinclined to use sedans for shopping –
presumably due to the grouped nature of the activity
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▪ We examined choice scenarios that involved discrete variables that were 
unrelated

▪ In this class, we will examine a different paradigm of modelling for discrete 
variables that have an inherent ordering within them

▪ Let’s begin with the binary models

▪ We examined binary models from the utility maximization

▪ Lets say we have alternatives i and j
▪ Uin= Vin + εin ; Ujn = Vjn + εjn

▪ Uin- Uin = Vin - Vjn + (εin - εjn)

▪ Now alternative i is chosen if Vin - Vjn + (εin - εjn) ≤ 0 and j is chosen if Vin - Vjn
+ (εin - εjn) > 0 

▪ This is same as selecting alternative with maximum utility
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▪ In the ordered response we achieve this in a different 
fashion

▪We use the index function formulation

▪ i.e. we assume there is a uni-dimensional index function 
(latent propensity) that determines the choice process

▪The propensity is measured for the choice context

▪However, there is no way to evaluate the propensity in the 
population -> so we connect propensity to an observed 
ordered variable
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▪ Let us say we have two alternatives 0 and 1 [like a yes/no 
choice]

▪ There is a latent propensity for individual to choose either 0 or 1

▪ We can hypothesize that if the propensity value is >0 the 
individual chooses 1 and if the propensity is ≤ 0 the individual 
chooses 0

▪ It is similar to the utility being higher for the binary case

▪ The approaches becomes different when we have more than 
two alternatives
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▪Let us consider the following propensity for the individual’s 
choice (y = 0 or 1)

▪y* = α + βx + ε
▪ y* >  0 => y=1; 

▪ y* ≤  0 => y=0;

▪ where y* is the latent propensity and y is the observed choice

▪Now the probability that y* > 0 is given by

▪Prob(α + βx + ε > 0) = Prob(ε > -(α + βx))

= 1 – Prob (ε < (-(α + βx))); 
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▪So it follows that Prob(α + βx + ε ≤  0) = Prob (ε < (-(α + 
βx)))

▪Let us say ε is standard normally distributed then 
probability of choosing 1 is 1-Φ(-(α + βx))  and probability 
of choosing 0 is Φ(-(α + βx))

▪This yields the binary probit model (the same one we 
derived with maximum utility approach)

▪ Instead of the normal assumption we can assume a 
standard logistic error assumption to generate the binary 
logit model
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▪ We can visualize the OR models as a horizontal partitioning scheme that 
divides the real line into components (for 0 and 1)

▪ Now what if we have more categories 
▪ (y = 0, 1, 2..K)

▪ The approach is the same, we have one index variable y* = α + βx + ε

▪ y = 0 if y* < 0

▪ y = 1 if 0 < y* < ψ1

▪ y = 2 if ψ1 < y* < ψ2

▪ ….

▪ y = K if ψK-2 < y*

▪ The ψi represent thresholds to be estimated
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▪ The probability expressions are slightly complicated

▪ P(y=0) = CDF[-(α + βx)]

▪ P(y=1) = CDF[ψ1 -(α + βx)] -CDF[-(α + βx)]

▪ P(y=2) = CDF[ψ2 -(α + βx)] -CDF[ψ1 -(α + βx)]

▪ …

▪ P(y=K) = 1 -CDF[ψK-2 -(α + βx)]

▪ CDF could be normal or logistic based on your assumption

▪ The LL function setup and model estimation is exactly same as the MNL models

▪ L(β,ψ) =σ𝑛=1
𝑁 σ∀𝑗 δjn𝑙𝑛𝑃𝑗

▪ We just have a different Pj term evaluation

▪ Important aspect to note, we can either estimate a constant or set the first threshold to 0. We cannot do both
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▪ Important aspect to note, we cannot estimate alternative 
specific coefficients in the OR regime

▪ We only have variables that are generic for all variables
▪ i.e. a variable either increases the propensity or reduces the propensity

▪ Lets illustrate this through a figure

▪ Consider a propensity function (y* = α + βx + ε)

▪ If ε is normally distributed  y* will also be normally 
distributed

▪ Now if β is positive then the whole curve will move to the right 
and vice-versa
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▪ MNL and OR models yield identical results for binary models

▪ For more than 2 alternatives they are different

▪ The utility maximization is in a way multidimensional partitioning scheme

▪ The MNL allows for effect of regressors to vary across the different 
alternatives

▪ Again, in OR scheme we only have one equation to represent behavior, 
whereas in the MNL scheme we have K-1 equations for utility

▪ So MNL might offer more as a model

▪ At the same time OR models are quite parsimonious and easy to estimate 
and understand

82
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▪ The approach is similar to the multinomial logit models

▪ Since no alternative specific variables can be estimated no self and cross 
effects

▪ Marginal effect (change in probability of alternative i for a change in x) =
𝜕𝑃

i

𝜕x
𝑘

▪ For ordered probit - alternative 1
▪
𝜕𝑃

0

𝜕x
𝑘

= 
𝜕(Φ[−(α+ βx)])

𝜕x𝑛
= ϕ[−(α + βx)] * βk

▪ where Φ is the CDF function and ϕ is the pdf function of the standard normal distribution

▪ Similarly marginal effects for other alternatives can be computed

▪ Elasticity effects - ൘
𝜕𝑃

i

P
i 𝜕x

𝑘

x
𝑘

- for computing the elasticity effects
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▪ In the event of measuring
▪ Travel trips

▪ Traffic flows

▪ Bicycle flows at intersections

▪ No. of hospital visits in a year

▪ Recreational travel visits in a year

▪ Potential approaches from our class we discussed so far?
▪ Linear regression

▪ Ordered response models

▪ Issues?
▪ Regression assumes a continuous distribution which is not the case in count events

▪ Ordered response models are suited only for groupings or bins rather than for every 
possible number
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▪ Now we have count data (i.e. dependent variable is counts)

▪ Our objective is to understand the relation between counts and the various 
variables related to the dependent variable

▪ For example
▪ If we want to model bicycle flows at an intersection – we will try the impact of bicycle 

facility, proximity to downtown, land-use and transit access etc. as measures that 
affect the flows

▪ Now, the objective of this exercise is to be able to replicate the observed flows 
through our model

▪ How do we do that?

▪ Lets say for example we observed – 212 bicycle flows at an intersection

▪ The bicycle flows at an intersection can vary from 0 – 500 i.e. there is 
probability that 501 events could occur



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
87

▪ We will try to maximize the probability for the chosen 
alternative (or the alternative we observed)

▪ So, we employ Maximum Likelihood such that Pr(212) is 
maximized

▪ Please note that because of the huge number of potential events 
the discrete approaches we used so far are not likely to be 
easily employed
▪ Imagine using MNL for the 501 events for instance

▪ Hence we move to a different class of models often referred to 
as count models
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▪ Poisson distribution
▪ Pr[Y=y] = ൗ𝑒−𝜇𝜇𝑦

𝑦! , y = 0, 1, 2, …,

▪ 𝜇 is the intensity or rate parameter
▪ 𝜇 represents the Mean and Variance of the distribution

▪ The expression allows us to model probability of each count for 
individual record

▪ Now how do incorporate the exogenous variables

▪ We do that by parameterizing  𝜇 (intensity or rate parameter)

▪ 𝜇 = exp(βx)

▪ Now the probability expression can be substituted with 𝜇.
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▪ The log-likelihood expression is given as 

▪ L = Ln(Pr[Y=y] ) = ln( ൗ𝑒−𝜇𝜇𝑦

𝑦! ) 

▪ = ln(𝑒−𝜇𝜇𝑦) – ln(𝑦!) = - 𝜇 + 𝑦 ln(𝜇)-ln(𝑦!)

▪ substitute 𝜇 = exp(βx) => = -exp(βx) +yβx - ln(𝑦!)

▪ When we are trying to Maximize the function ln(𝑦!) is a constant for every 
individual and hence can be dropped from the Log-likelihood for estimation 
purposes is:

▪ L  = yβx -exp(βx)

▪ Readily available in most statistical software

▪ Same iterative process

▪ LL is used to determine whether the variables are significant or not (similar to 
discrete choice models)
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▪ Model interpretations

▪ Quite simple to understand: we set the mean to be a function of 
regressors (𝜇 = exp(βx)) and estimate the model 

▪ To look at elasticity of mean

▪
𝜕𝜇

𝜕𝑥
𝑗

= 𝛽𝑗exp(𝛽𝑥)

▪ So if the parameter coefficient is +ive it has a positive effect on 
the mean

▪ This relationship implies that say for 2 variables 𝛽1 and 𝛽2 and 
say 𝛽1/𝛽2 = 4 then effect of 𝛽1 on 𝜇 will be 4 times that of 𝛽2
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▪There is an implicit assumption within the assumption of 
employing the Poisson model
▪ Mean and Variance of the distribution are same

▪ This is often violated in the data

▪When the variance > mean then data set is referred to have 
over-dispersion

▪When variance < mean, the data has under-dispersion

▪ In both these cases the implicit assumption in Poisson 
model is violated and hence does not suit our needs
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▪ If the distribution under examination does not have the same mean and variance 
then an approach to modelling such counts is Negative Binomial Model

▪ In this model, in addition to the 𝜇 we will also estimate another parameter

▪ The mean = 𝜇; variance  = 𝜇(1+ α𝜇)

▪ Even in this model 𝜇 = exp(βx) is used to examine the effect of various exogenous 
parameters

▪ In this model the variance has a quadratic term 𝜇+ α𝜇2

▪ This is referred to as NB2 model - most commonly used model

▪ The pdf function for [Y=y] =

▪ LL will be written based on the above pdf
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▪ One approach to handle the problem with Poisson models is to 
account for too many 0s

▪ If your data has too many 0s, it is very unlikely that mean and 
variance are same

▪ Hence, we will try to model this scenario using different forms of 
Poisson models
▪ Hurdle models
▪ Zero-inflated models

▪ The hurdle models consider that the behavior behind the 0s and non 
0s is quite different and needs to be explicitly considered

▪ The Zero-inflated model accommodates the same thing in a slightly 
different way
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▪ Zeros are determined by f1(.) and non-zeros through f2(.)

▪ Pr[Y=0] = f1(0)

▪ Pr[Y>0] = f2(Y|Y>0) = f2(Y) / (1-f2(0))

▪ To make sure the probabilities sum to 1 we also multiply Pr[Y>0] with (1-f1(0))

▪ To summarize

▪ g(Y) = 
𝑓1 0 𝑖𝑓 𝑌 = 0

1−𝑓1 0

1−𝑓2 0
𝑓2 𝑌 𝑖𝑓 𝑌 > 0

▪ Now we set 𝜇1 = exp(β1x) and 𝜇2 = exp(β2x)

▪ Write the new LL - Two terms
▪ term for Y=0 and term for Y>0

▪ In the example we are discussing we are considering f to be Poisson or NB 
distribution, the models we examined will work any other distribution also
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▪This model takes a slightly different approach to the 
modeling 0s
▪ Binary process f1(.) (logit model)

▪ Count process f2(.)  (poisson/NB model)

▪g(Y) = 
𝑓1 0 + 1 − 𝑓1 0 𝑓2(0) 𝑖𝑓 𝑌 = 0

1 − 𝑓1 0 𝑓2 𝑌 𝑖𝑓 𝑌 > 0

▪This process involves two terms in the LL
▪ Similar to the hurdle models
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