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• Introduction to Smart City Technologies, their impact on 
Transportation Introduction

• Background on Data Collection Approaches

• Stated Preference Design and application
Stated Preference Module

• Binary logit, multinomial logit, ordered logit, and count 
models
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Choice Models

• Nested logit, mixed logit, maximum simulated likelihood 
estimation, regret minimization, discrete continuous models

Advanced Discrete 
Choice Models

• Current state of the art and recent advancesTransportation Planning 
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IN THIS MODULE

I will build on the basic choice 
modeling approaches for data 
analysis and introduce Nested 
Logit models, GEV models, 
Mixed Logit model, latent class 
models, discrete-continuous 
models and multiple discrete 
extreme value models

3
GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
4

▪ MNL - Pin = 
exp(𝑉𝑖)

σ∀𝑗 exp(𝑉𝑗)

▪ Independent errors
▪ Consider mode choice model, with 3 alternatives car, bus and metro. A 

person whose personality prefers transit modes will assign a higher 
value to both bus and metro. Neglecting this might have implications for 
what we are trying to do
▪ Vin + εin

▪ There is a “stickiness” associated to a set of alternatives i.e. the 
behavior of the alternatives in the “set” is different from the 
alternatives not in the set

▪ Within a set however, the behavior is again similar to that in 
MNL
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Car Air Bus Rail Car

Air Bus Rail

Car

Air

Bus Rail

Car Air Bus RailAir

First three can be 

accommodated in the 

Nested Logit

framework

cannot be 

accommodated
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▪ Consider the 4 alternatives: Car, Air, Bus Rail

▪ UC = VC + εCar

▪ UA = VA + εA + εcc

▪ UB = VB + εB + εcc

▪ UR = VR + εR + εcc
▪ where εcc represents the common error term for the common carriers

▪ Overall error is still identical i.e. εAir = εA + εcc, εBus = εB + εcc, εRail = εR + εcc

▪ εCar, εAir, εBus, and εRail are distributed G(0,1)

▪ Now lets say εA, εB, and εR are Gumbel G(0,θ) 
▪ (0< θ≤1)

Car

Air Bus Rail
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▪Assuming each pair of the error terms in εAir, εBus, and εRail 

are independent we can compute Var(εcc) as 

▪
Π2

6
-
Π2𝜃2

6

▪Correlation (UA,UB) = Correlation (UA,UR) = Correlation 
(UB,UR)

▪Correlation(a,b) = 
covariance(a,b)

[var(a)∗var(b)]½
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▪ In our case, covariance(UA,UB) = Var(εcc) ; 

▪ Var(UA) = Var(UB)= Var(UR) = 
Π2

6

▪ So Correlation (UA,UB) = Correlation (UA,UR) = Correlation 
(UB,UR) 
▪ = { 

Π2

6
-
Π2𝜃2

6
} / 

Π2

6
= (1- 𝜃2)

▪ Correlation is (1- 𝜃2)

▪ Hence when we test our hypothesis (which is to see if 
correlation exists), we do not test if 𝜃 is different from 0, but if 𝜃
is different from 1
▪ Null hypothesis is 𝜃=1
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▪ Now how do we generate the probability expressions

▪ Now lets consider the nest

▪ Pair|cc = 
exp(

𝑉
𝐴

𝜃
)

exp
𝑉
𝐴

𝜃
+exp

𝑉
𝐵

𝜃
+exp(

𝑉
𝑅

𝜃
)

▪ Now when we need to generate the 
probability for the car or cc we 
somehow need to compute a 
net utility for the cc

▪ Now the choice between car and cc is determined as Ucar > Max(UA,UB,UR)

▪ For a gumbel distribution G(V1,θ), G(V2,θ), G(V3,θ)

▪ Max (V1, V2, V3) = G[θln(exp
𝑉
1

𝜃
+ exp

𝑉
2

𝜃
+ exp(

𝑉
3

𝜃
)), θ)

Car

Air Bus Rail
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▪ In our case

▪ Max (U1, U2, U3) 

▪ = θ{ ln(exp
𝑉
𝐴

𝜃
+ exp

𝑉
𝐵

𝜃
+ exp(

𝑉
𝑅

𝜃
))} + ε*

▪This is effectively the composite nest utility

▪ Γ = { ln(exp
𝑉
𝐴

𝜃
+ exp

𝑉
𝐵

𝜃
+ exp(

𝑉
𝑅

𝜃
))}

▪ PCar = Prob [ Uc > Max (UA, UB, UR)]

▪ = Prob [ Vc +εCar> Max (UA, UB, UR)]

▪ = Prob [ Vc +εCar> θΓ+ ε*+ εcc]
G(0,1)
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▪PCar = 
exp 𝑉𝐶

exp 𝑉𝐶 +exp 𝜃Γ

▪Pcc = 
exp 𝜃Γ

exp 𝑉𝐶 +exp 𝜃Γ

▪ 𝜃 − log−sum parameter

▪ Γ – log-sum variable

▪Pair|cc = 
exp(

𝑉
𝐴

𝜃
)

exp
𝑉
𝐴

𝜃
+exp

𝑉
𝐵

𝜃
+exp(

𝑉
𝑅

𝜃
)

▪Pair = Pair|cc * Pcc

▪Similar to PBus, PRail

▪To get MNL from NL set 𝜃
= 1

▪Test it now
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▪ Pair= Pair|cc * Pcc

▪ θ = 1

▪ = 
exp(

𝑉
𝐴

𝜃
)

exp
𝑉
𝐴

𝜃
+exp

𝑉
𝐵

𝜃
+exp(

𝑉
𝑅

𝜃
)
* 

exp 𝜃Γ

exp 𝑉
𝐶
+exp 𝜃Γ

▪ = 
exp(𝑉

𝐴
)

exp 𝑉
𝐴
+exp 𝑉

𝐵
+exp(𝑉

𝑅
)
* 

exp { ln( exp 𝑉
𝐴
+exp 𝑉

𝐵
+exp(𝑉𝑅)}

exp 𝑉
𝐶
+exp { ln( exp 𝑉

𝐴

𝜃
+exp

𝑉
𝐵

𝜃
+exp(

𝑉
𝑅

𝜃
))}

▪ = 
exp(𝑉𝐴)

exp 𝑉
𝐶
+exp 𝑉

𝐴
+exp 𝑉

𝐵
+exp(𝑉𝑅)

->    MNL
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▪ MNL - Consider the ratio of alternative probabilities for i and j.

▪ Pi / Pj = ൘
exp(𝑉𝑖)

σ∀𝑗 exp(𝑉𝑗)

exp(𝑉𝑗)

σ∀𝑗 exp(𝑉𝑗)
=

exp(𝑉𝑖)

exp(𝑉𝑗)
= exp(Vi-Vj)

▪ NL - Consider the ratio of alternative probabilities for i and j

▪ PA/PR = [Pair|cc * Pcc] / [Prail|cc*Pcc]

▪ = [Pair|cc] / [Prail|cc] 
▪ Simplifies exactly like the MNL

▪ PA/PC = [Pair|cc * Pcc] / [Pcar]
▪ Does not simplify

▪ Alternatives within the nest still act as if
they are part of the MNL structure

▪ Alternatives outside the next exhibit 
different substitution patterns

Car

Air Bus Rail
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▪ Self-Elasticity
▪ For Non-nested alternatives 

(same as MNL)
▪ 𝛽𝑘[1-𝑃i𝑛 ] x𝑖𝑘

▪ For Nested alternatives

▪ 𝛽𝑘{[1-𝑃i𝑛] + 
1−𝜃

𝜃
(1- 𝑃i𝑛|N)} x𝑖𝑘

▪ Cross-Elasticity
▪ Effect on Non-nested alts for 

change in Non-nested alts
▪ −𝛽𝑘[𝑃i𝑛 ] x𝑖𝑘

▪ Effect on Non-nested alts for 
change in Nested alts
▪ −𝛽𝑘[𝑃i𝑛 ] x𝑖𝑘

▪ Effect on Nested alts for change 
in Non-nested alts
▪ −𝛽𝑘[𝑃i𝑛 ] x𝑖𝑘

▪ Effect on Nested alts for change 
in Nested alts

▪ -𝛽𝑘{[𝑃i𝑛] + 
1−𝜃

𝜃
(𝑃i𝑛|N)} x𝑖𝑘
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G(0,1)
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▪ εSR - G(0,θ)

▪ εB, εLR G(0,η)

▪ 0< η< θ <1

▪ Same approach as the previous case to generate the probabilities

▪ Read Section 8.3 of Bhat and Koppelman 2006 for exact probability 
expressions 
▪ Koppelman, F.S. and Bhat, C., 2006. A self instructing course in mode choice modeling: 

multinomial and nested logit models

Car

SR

Bus LR
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▪Multinomial logit model needs to be estimated first

▪Account for systematic effects

▪Then attempt to incorporate correlation

▪Estimate NL model and if 𝜃=1 it indicates MNL is good 
enough

▪ In case 𝜃 >1 then the formulation is not consistent with 
utility framework



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities

18



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
19

▪ Generalized Extreme Value class of models 

▪ GEV models constitute a class of models that accommodate 
different substitution patterns

▪ The common aspect of these models is the fact that the error 
terms of the utility equations are extreme value distributed

▪ There are a whole set of GEV models: 
▪ MNL, NL, Paired combinatorial logit (PCL), Cross-nested logit (CNL), 

generalized MNL (GenMNL), ordered GEV model, fuzzy nested logit
(FNL)

▪ Before we start the discussion of specific model structures there 
are some pre-defined properties that need to be adhered to 
generate different GEV models
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▪GEV family of models adhere to a set of rules

▪ If certain conditions are met then we can create a GEV 
model based on that with the probability expression as 
follows

▪Consider a function G that depends on Yj for all j where G = 
G(Y1, Y2,…YJ) and Yj = exp(Vj)

▪Gj represent the derivative of G w.r.t Yj (Gj = 
𝜕𝐺

𝜕𝑌
𝑗

)

▪Pj = 
𝑌
𝑗
𝐺
𝑗

𝐺
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▪Conditions to be met
▪ G ≥ 0  for all positive values of Yj

▪ G(ρY1, . . . , ρYJ ) = ρG(Y1, . . . , YJ )

▪ G →∞ as Yj →∞ for any j

▪ Odd order partial derivatives are non-negative & even order 
partial derivatives are non-positive (Gi ≥ 0, Gij ≤ 0 and so on)

▪There is little intuition behind this approach. However, it 
can be shown to work very well. Let us illustrate this
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▪ The only thing we can say is if you choose a G that satisfies the 4 conditions, 
you can generate the probability function from that.

▪ Let G = σ𝑙=1
𝐽

𝑌𝑙
▪ Now check the four conditions

▪ Is G positive for all values of Yj ---- YES 

▪ Is it a linear function --- YES

▪ G →∞ as Yj →∞ --- YES

▪ Partial derivatives: first derivative is 1 and all subsequent derivatives are 0, hence 
they satisfy the condition of Gi ≥ 0, Gij ≤ 0  --- YES

▪ Now what is the probability?
▪ Pj= 

𝑌
𝑗
𝐺
𝑗

𝐺
= 

𝑌
𝑗

σ
𝑙=1
𝐽

𝑌
𝑗

= 
𝑌
𝑗

σ
𝑙=1
𝐽

𝑌
𝑙

= 
exp(𝑉𝑗)

σ
𝑙=1
𝐽

exp(𝑉𝑙)

▪ So we have generated the MNL model using the GEV family
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▪Now let us try to generate the NL

▪G = σ𝑝=1
𝐾 (σ𝑙=1

𝐽
𝑌
𝑙

ൗ1 𝜆
𝑝 )𝜆𝑝

▪You can check all the four conditions
▪ G ≥ 0  for all positive values of Yj - Valid

▪ G(ρY1, . . . , ρYJ ) = ρG(Y1, . . . , YJ ) – adding ρ will let it come out of the 
function

▪ G →∞ as Yj →∞ for any j - Valid

▪ Odd order partial derivatives are non-negative & even order 
partial derivatives are non-positive – Will work
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▪ Gj = 𝑌𝑗
( ൗ1 𝜆

𝑗
−1)(σ𝑙=1

𝐽
𝑌𝑙

ൗ1 𝜆
𝑝 )𝜆𝑗−1

▪ Pj = 
𝑌
𝑗
𝑌
𝑗

ൗ1 𝜆
𝑗

−1( σ𝑙=1
𝐽

𝑌𝑙
ൗ1 𝜆

𝑝)𝜆𝑗
−1

σ𝑝=1
𝐾 ( σ𝑙=1

𝐽
𝑌𝑙

ൗ1 𝜆
𝑝)𝜆𝑝

= 
𝑌
𝑗

ൗ1 𝜆
𝑗( σ𝑙=1

𝐽
𝑌𝑙

ൗ1 𝜆
𝑝)𝜆𝑗

−1

σ𝑝=1
𝐾 ( σ𝑙=1

𝐽
𝑌𝑙

ൗ1 𝜆
𝑝)𝜆𝑝

=
𝑌
𝑗

ൗ1 𝜆
𝑗

( σ𝑙=1
𝐽

𝑌𝑙
ൗ1 𝜆

𝑝)𝜆𝑝

* 
( σ𝑙=1

𝐽
𝑌𝑙

ൗ1 𝜆
𝑝)𝜆𝑝

σ𝑝=1
𝐾 ( σ𝑙=1

𝐽
𝑌𝑙

ൗ1 𝜆
𝑝)𝜆𝑝

; replace Yj = exp(Vj)

First component is the within nest choice and second component the 
nest probability
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▪ Paired Combinatorial Logit

▪ G = σ𝑘=1
𝐽−1 σ𝑙=𝑘+1

𝐽
(𝑌𝑘

ൗ1 𝜆
𝑘𝑙 + 𝑌𝑙

ൗ1 𝜆
𝑘𝑙)𝜆𝑘𝑙

▪ Pi =

▪ Generalized Nested Logit

▪ G = σ𝑘=1
𝐾

σ𝑗𝜖𝐵𝑘(𝛼𝑗𝑘𝑌𝑗)
ൗ1 𝜆

𝑘

𝜆
𝑘

▪ Pi =
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▪ GEV models are advantageous when we expect correlation 
across alternatives

▪ However it is possible that individuals exhibit distinct choice 
behavior of their own for every attribute i.e. Taste variation

▪ For instance, individuals are negatively sensitive to travel time –
we have seen this

▪ Now in our models we assume that the sensitivity to travel time 
is same for every body in the population

▪ Is this truly valid?

▪ Not necessarily
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▪ How can we account for such taste variations
▪ Segmentation approach we discussed – allows for people to be in 

different segments and hence have distinct taste variation profiles for 
each segment

▪ However, even in this approach, we restrict ourselves to 3-4 possible 
segments in the data

▪ Ideally, as data modellers we are interested in identifying the 
true parameter for every individual in the dataset. 

▪ This is quite tricky and infeasible (unless we collect multiple 
records for each person)

▪ So, now we will examine the approach that allows us to capture 
such to possibly generate individual level parameters



▪ Intuition
▪ In the MNL model we estimate a single parameter to determine the 

influence of an exogenous variable on the choice process
▪ For example, we claim that the influence of income is the same for the entire 

population. However, based on whether the respondent is lavish or conservative 
with money the influence varies. But, we cannot accommodate for such taste 
variations in the MNL

▪ In a MMNL model we allow the coefficients to vary across 
different individuals

▪ We accommodate for correlation across the error terms for 
different alternatives (relaxing the independence assumption)

▪ We incorporate different error variances (relaxing the identical 
assumption)
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▪ The MMNL model involves the integration of the MNL formulation 
over the unobserved parameters

▪ The MMNL model can be formulated from two unique but equivalent 
formulations:
▪ Error components
▪ Random coefficients
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▪Consider utility of person q for alternative i
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▪Consider utility of person q for alternative i
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▪Estimation

▪The probabilities are approximated through simulation

▪For any given value of σ (1,2,..K), draw a Sq (1,2,..K) and 
compute Pqi. Repeat this multiple times and average the Pqi.
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▪Log-likelihood function

▪Now that we have the LL function, we undertake Maximum 
Likelihood to get our estimates!
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▪ The approximation of integrals is undertaken using simulation 
techniques 

▪ They entail the evaluation of the integrand at a number of draws 
taken from the domain of integration and computing the 
average of the resulting integrand values across the different 
draws.

▪ The focus of simulation techniques is on generating N sets of S
univariate draws for each individual, where N is the number of 
draws and S is the dimensionality of integration

▪ Commonly used simulation methods
▪ Pseudo Monte-Carlo
▪ Quasi Monte-Carlo
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▪ Computes the average of the integrand over a sequence of 
“random” points over the domain of integration

▪ Pseudo-random sequences used in implementations

▪ Slow asymptotic convergence
▪ to increase the accuracy by 1 decimal we need to increase the no. of 

draws 100 fold!

▪ Applicable for a wide class of integrands

▪ Integration error can be easily determined

▪ These approaches are applicable to any number of dimensions
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▪The approach still entails evaluating different realizations of 
the integrand and averaging them

▪However, as opposed to using pseudo-random draws we 
use “cleverly” crafted sequences

▪Computes the average of the integrand over a non-random, 
more uniformly distributed, sequence of points over the 
domain of integration

▪These approaches has convergence rates of N-1

▪QMC sequences include Halton, Faure, and Sobol

37
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▪ Instead of randomly selecting the draws, in QMC we select 
draws based on the gaps left in the previous draws. 

▪ Thus we enable better coverage (it does not matter if they are 
random or not… as long as we cover the full domain well)

▪ Faster convergence than PMC methods

▪ Substantially fewer number of draws required

▪ Integration error cannot be easily determined

▪ Scrambling improves performance of standard Halton
sequences
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▪Bhat 2001 compared Halton and PMC in their ability to 
accurately and reliably recover model parameters in a 
mixed logit model

▪Halton sequence outperformed the PMC sequence by a 
substantial margin

▪He found that 125 Halton draws produced more accurate 
parameters than 2000 PMC draws in estimation

“A phenomenal development in the estimation of complex 
choice models”… David Hensher
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▪ Intercity mode choice between Montreal and Toronto

▪Alternatives Car, Train and Air

▪Bhat 1998 
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▪Small difference in the model
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▪Variables considered
▪ Socio-demographics

▪ Trip information (purpose, party size, origin and destination cities)

▪ LOS variables (frequency of service, total cost, in-vehicle time and 
out-of-vehicle time
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▪ As we discussed earlier, the OR models do not allow for alternative specific effects of 
various exogenous variables

▪ Lets consider the following example

▪ Non-motorist injury severity due to traffic collisions is reported as a five level ordinal 
variable 
▪ No injury

▪ Possible Injury

▪ Non-incapacitating injury

▪ Incapacitating injury 

▪ Fatal injury

▪ Now we estimated a model and found that 
▪ A motorist being intoxicated has a coefficient of 0.25 (+ive so increases probability of fatal injury)

▪ Coefficient for being hit head-on versus sideways is 0.25 

▪ Thresholds ψi = (-1.5, -0.25, 0.5, 1.25) 

▪ Let us assume these are the only variables affecting injury severity



GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
49

▪ Now consider two crashes
▪ involving a drunk motorist and sideways crash
▪ Involving a sober motorist and head-on crash

▪ Based on our OL model
▪ Latent propensity for both crashes is 0.25

▪ So the probability will be (for standard logistic)
▪ No injury (0.15)
▪ Possible injury (0.23)
▪ Non-incapacitating injury (0.18) 
▪ Incapacitating injury (0.17) 
▪ Fatal injury (0.27). 
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Source: Eluru, N., C.R. Bhat, and D.A. Hensher (2008), "A Mixed Generalized Ordered 

Response Model for Examining Pedestrian and Bicyclist Injury Severity Level in Traffic 

Crashes ," Accident Analysis and Prevention, Vol. 40, No. 3, pp. 1033-1054



▪Standard ordered response model

▪ K represents the alternatives

▪ yq corresponds to the latent propensity for DM q

▪ xq is an (L x 1)-column vector of attributes (excluding a constant) 
associated with the DM q

▪ β is a corresponding (L x 1)-column vector of variable effects

▪ ψk corresponds to thresholds (ψ0 = -∞ and ψK = + ∞)

▪ εq represents the idiosyncratic error term distributed as a logistic
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▪ In the MGORL model we allow the thresholds to vary across 
DMs based on the variables

▪𝑦𝑞
∗ = (𝜷 + 𝜶𝑞)𝑿𝑞 + 𝜀𝑞
▪ 𝜏𝑞,𝑘 = 𝜏𝑞,𝑘−1 + 𝑒𝑥𝑝[(𝜹𝒋 + 𝜸𝒒,𝑘) 𝒁𝑞,𝑘]

▪𝑃𝑟 𝑦𝑞 = 𝑘 𝜶𝑞 , 𝜸𝑞𝑘 = 𝛬[(𝜹𝒌 + 𝜸𝒒,𝑘) 𝒁𝒒,𝑘 − 𝜷 + 𝜶𝑞 𝑿𝒒] −
𝛬[(𝜹𝒌−1 + 𝜸𝑞,𝑘−1) 𝒁𝒒,𝑘 − 𝜷 + 𝜶𝒒 𝑿𝒒]

▪𝑃𝑞𝑘 = 𝜶𝒒,𝜸𝒒𝑘
[𝑃𝑟 𝑦𝑞 = 𝑘 𝜶𝒒, 𝜸𝒒𝒌 ] ∗ 𝒅𝑭 𝜶𝒒, 𝜸𝒒𝑘 𝒅(𝜶𝒒, 𝜸𝒒𝒌)

▪ Simulation approach is same as the MMNL
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▪Eluru, N., C.R. Bhat, and D.A. Hensher (2008), “A Mixed 
Generalized Ordered Response Model for Examining 
Pedestrian and Bicyclist Injury Severity Level in Traffic 
Crashes”, Accident Analysis and Prevention, Vol. 40, No.3, 
pp. 1033-1054

▪Listed in the Top 50 papers published in Accident Analysis 
Prevention - Zou, X., Vu, H.L. and Huang, H., 2020. Fifty years 
of Accident Analysis & Prevention: a bibliometric and 
scientometric overview. Accident Analysis & 
Prevention, 144, p.105568.
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▪ Increased personal vehicle dependency in the US leads to
▪ Increasing traffic congestion

▪ Air quality problems

▪ Metropolitan organizations encourage non-motorized travel
▪ Walking and bicycling for short distance trips

▪ Safety of non-motorists (pedestrians and bicyclists) in the US
▪ Worse record in the US compared to other developed countries

▪ Controlling for exposure in terms of miles traveled, US pedestrians are 3 times likely 
to get killed compared to German pedestrians, and over 6 times more likely 
compared to Dutch pedestrians (the corresponding numbers for cyclists are 2 and 3)
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▪ In terms of absolute numbers, in 2005

▪ 4881pedestrian and 784 bicyclist fatalities

▪ 110,000 non-motorists are injured

▪ To put these numbers into perspective

▪ A non-motorist is killed every 93 minutes and one is injured every 5 minutes in 
traffic accidents in the US 

▪ High risk of non-motorists has attracted a lot of attention in the past decade

▪ Researchers examined the crashes involving non-motorists to:

▪ Improve motorized vehicle and roadway design, 

▪ Enhance control strategies at conflict locations

▪ Design good bicycle and pedestrian facilities

▪ Formulate driver and non-motorized user education programs 
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▪ The host of factors that could potentially influence non-motorist injury severity 
include

▪ Pedestrian/bicyclist characteristics (such as age, gender, helmet use, alcohol 
consumption)

▪ Motorized vehicle driver characteristics (such as state of soberness and age)

▪ Motorized vehicle attributes (such as vehicle type and speed)

▪ Roadway characteristics (such as speed limit and whether the highway is 
divided or not)

▪ Environmental factors (such as time of day, day of week, and weather conditions)

▪ Crash characteristics (such as the direction of impact and motorist/non-motorist 
maneuver type at impact). 
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▪A vastly researched area in the recent decade

▪Research classified into two categories
▪ Descriptive analyses at an aggregate level 

▪ A common association across the entire sample is arrived at through frequency 
analysis or cross-tabulation

▪ Multivariate analyses at individual level of accidents

▪ A host of factors influencing non-motorist injury severity are examined

▪Remarks on earlier studies
▪ The more recent studies have employed multivariate analyses

▪ In cases where a binary dependent variable is employed (fatal vs non-fatal) 
logistic regression methods are predominant
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▪Remarks on earlier studies
▪ In cases with ordered injury categories (such as property damage 

only, no visible injury but pain, non-incapacitating injury, 
incapacitating injury, and fatal injury) an ordered response model 
is employed 

▪ Studies have examined pedestrian or bicyclist injury severity 
separately
▪ It is important from a policy perspective to compare the similarities and differences 

in the factors, and the magnitude of the impact of factors, affecting injury 
severity between the two non-motorist user groups 

▪ Earlier studies have very often, failed to recognize the need to 
consider motorist vehicle characteristics in the analysis
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▪ Important findings
▪ Pedestrians

▪ Male, intoxicated, very young and elderly are prone to severe injuries

▪ Alcohol-intoxicated driver, non-sedan and high speed vehicles cause severe 
injuries

▪ Bicyclists

▪ Similar to pedestrians

▪ Accidents at high speed limit, low traffic volume and curved/non-flat roadway 
locations 

▪ Conditions of darkness with no lighting, in inclement weather (fog, rain and 
snow) and accidents in the morning peak period lead to severe injuries
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▪Current research in perspective
▪ Employ a generalized version of the ordered logit model

▪ Undertake the analysis for pedestrians and bicyclists

▪ Consider the factors from all the six categories identified earlier

▪ Allow for the presence of unobserved attributes to influence injury 
severity
▪ For instance, the slower reaction time of being intoxicated may be 

exacerbated by the use of a walkman. But accident reports may not record or 
may miss information on walkman use and so walkman use may be 
unobserved

▪ To summarize, develop a generalized model with a comprehensive 
set of variable to examine injury severity determinants
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▪ Standard ordered response model

K represents the number of injury categories

yq corresponds to the latent injury risk propensity for non-motorist q
in the crash she or he was involved in 

xq is an (L x 1)-column vector of attributes (excluding a constant) 
associated with the non-motorist, driver, vehicle, roadway, 
environment, and crash characteristics of the crash involving 
individual q

β is a corresponding (L x 1)-column vector of variable effects

ψk corresponds to thresholds (ψ0 = -∞ and ψK = + ∞)

εq represents the idiosyncratic error term distributed as a logistic
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▪ For K = 5 injury categories, ψ0 = -∞ ψ1 = -1.5, ψ2 = -0.25, ψ3 = 0.5, 
ψ4 = 1.25 and ψK = + ∞

▪ Propensity (β’x) = 0.25

▪ Probability of injury 

severity in a particular

category is the area

under the curve between

the corresponding thresholds     

▪ Potential limitations of ORL model
▪ The thresholds remain constant across individual accidents
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▪ In the MGORL model we allow the thresholds to vary across 
individual accidents based on the variables
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▪ 2004 General Estimates System (GES) 
▪ National Highway Traffic Safety Administration’s National Center for 

Statistics and Analysis 

▪ Data compiled from a sample of police-reported accidents 

▪ The injury severity is collected on a five point ordinal scale: (1) No injury, 
(2) Possible injury, (3) Non-incapacitating injury, (4) Incapacitating injury, 
and (5) Fatal injury

▪ Categories 1 and 2 are collapsed into a single category

▪ Sample preparation
▪ Accidents involving pedestrians and bicyclists

▪ Accidents involving a single vehicle and single non-motorist are chosen
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Injury severity category Pedestrian Bicyclist
All

Non-motorists

No injury 135    (7.8%) 89     (7.3%) 224     (7.6%)

Non-incapacitating injury 951  (55.3%) 863   (70.6%) 1814   (61.6%)

Incapacitating injury 541  (31.4%) 250   (20.4%) 791   (26.9%)

Fatal injury 94    (5.5%) 21     (1.7%) 115     (3.9%)

Total 1223 (100.0%) 1721 (100.0%) 2944 (100.0%)
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▪Sample characteristics

▪Distribution of non-motorist injury severity 
by non-motorist type
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Injury severity category

Non-motorist was alcohol 

intoxicated? All

Non-motorists
No Yes

No injury 217    (8.0%) 7     (2.8%) 224     (7.6%)

Non-incapacitating injury 1688   (62.6%) 126   (51.2%) 1814   (61.6%)

Incapacitating injury 699   (25.9%) 92   (37.4%) 791   (26.9%)

Fatal injury 94     (3.5%) 21     (8.5%) 115     (3.9%)

Total 2698 (100.0%) 246 (100.0%) 2944 (100.0%)
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▪Distribution of Non-Motorist Injury Severity 
by Non-Motorist Alcohol Intoxication 
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▪Results based on the estimation of the MGORL model for 
variables from all the six categories of variables identified 
earlier

▪Non-motorist characteristics
▪ Age is an important consideration. Non-motorists >60 years are 

prone to severe (even fatal) injuries

▪ Gender effect is marginal

▪ Alcohol intoxication increases likelihood of injury

▪ Pedestrians are more likely to be severely injured
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▪Motorist characteristics
▪ Alcohol intoxication leads to higher loading of severe injuries

▪Motorized vehicle attributes
▪ Non-sedan vehicle increases potential injury to non-motorist

▪Roadway characteristics
▪ Crashes on roads with high speed limits result in severe crashes

▪ Signalized intersection reduce the severity of a crash for non-
motorist

GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities
69



▪Environment factors
▪ Crashes occurring between 6PM – 12AM result in more severe 

injuries

▪ Interestingly, presence of snow reduces the probability of fatality

▪Crash characteristics
▪ Direction of crash impacts the injury severity

▪ Frontal impacts result in more severe crashes
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Variables Latent Propensity

Threshold between 

Non-incapacitating 

and Incapacitating 

injury

Threshold between 

Incapacitating and 

Fatal injury

Constant 1.846 (12.94) 1.305 (36.26) 1.645 (11.49)

Non-motorist Characteristics

Pedestrian (Bicyclist is the base) --- -0.103 (-2.67) ---

Male 0.159 (1.85) --- ---

Age Variables (age ≤ 60 years is base)

> 60 years 0.667 (5.26) --- -0.536 (-4.61)

Under the influence of alcohol 0.455 (3.47) --- ---

Motorized Vehicle Driver Characteristics

Under the influence of alcohol 0.837 (2.14) 0.271 (2.87) -0.250 (-1.53)

Motorized Vehicle Attributes

Sports utility vehicle 0.364 (3.15) --- ---

Pick-up truck --- -0.070 (-2.18) -0.197 (-1.98)

Van --- --- -0.237 (-1.70)
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Variables Latent Propensity

Threshold between Non-

incapacitating and 

Incapacitating injury

Threshold between Incapacitating 

and Fatal injury

Roadway Design Characteristics

Speed Limit

25-50mph 0.218 (1.97) --- -0.225  (-2.01)

>50 mph 0.605 (3.06) --- -0.679  (-3.93)

Speed limit > 25mph * 

pedestrian
--- -0.117 (-2.61) ---

Accident Location 

Signalized Intersection -0.300 (-3.32) --- 0.387 (3.43)

Environmental Factors

6pm - 12am 0.297 (3.43) --- -0.352 (-3.82)

12am - 6am --- -0.304 (-4.66) -0.365 (-2.59)

Snow --- --- 0.538 (1.60)

Crash Characteristics

Direction of Impact (sideways 

impact is the base)

Frontal Impact 0.447 (3.20) 0.072 (1.64) -0.226 (-2.38)

Other directions of impact -0.734 (-2.91) --- -0.603 (-2.23)
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▪Comparing 
the 
proposed 
(MGORL) 
model vs 
standard 
(ORL) 
model

73
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Injury Categories/ 

Measures of fit

Pedestrians Bicyclists

Actual 

shares

ORL 

predictions

MGORL 

predictions

Actual 

shares

ORL 

predictions

MGORL 

predictions

No injury 7.84 6.04 7.44 7.28 9.89 7.93

Non-incapacitating injury 55.26 57.70 55.55 70.56 65.90 70.07

Incapacitating injury 31.44 31.38 31.73 20.44 21.59 20.28

Fatal injury 5.46 4.94 5.29 1.72 2.62 1.72

Number of observations 1721 1721 1721 1223 1223 1223

Root mean square error 

(RMSE)
--- 1.54 0.30 --- 2.77 0.42

Mean absolute 

percentage error (MAPE)
--- 9.28 2.46 --- 25.14 2.62



▪ Education and training 

▪ The results reinforce the need to educate non-motorists and motorists of the risks of driving 
under influence. It is necessary to underscore that alcohol combined with night driving is 
deadly

▪ Encouraging non-motorists to wear “reflector” gear to improve visibility 

▪ Traffic regulation and control

▪ Signs need to be posted to communicate to non-motorists information regarding heavy traffic 
on roadways

▪ Restricting speed limits to < 25 mph on roadways with heavy pedestrian and bicycle traffic

▪ Good street lighting and illumination, and additional traffic signal installation might alleviate 
non-motorist injury severity

▪ Planning and design of pedestrian/bicyclist facilities 

▪ On roadways with high speed limits bicycle facility need to be separated from roadway. 
Further bicycle facilities need to be chosen based on roadway speed limits, vehicular mix and 
presence of lighting
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▪ The current study addresses the safety of non-motorists

▪ An advanced econometric framework to address the ordinal 
category of the reported injury severity is developed. The 
proposed model generalizes the standard ORL model

▪ The MGORL model developed is employed on 2004 General 
Estimates System (GES) database 

▪ The standard ORL model employed produces inconsistent 
estimates

▪ It is very interesting to note that the general pattern and relative 
magnitude of elasticity effects of injury severity determinants 
are similar for pedestrians and bicyclists 
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▪ Pedestrians are more likely to be injured in the event of a crash

▪ The most important variables influencing the injury severity 
are:
▪ Non-motorist age

▪ Speed limit of the roadway

▪ Location of the crash (if a signalized intersection or not)

▪ Time of day (evening time being more riskier)

▪ Important implications for education and training, traffic 
regulation and control, and planning of pedestrian/bicycle 
facilities 
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▪ What is Panel Data
▪ If we have multiple observations for a single decision maker in the data –

the data is considered panel data
▪ Also referred to as repeated observations, longitudinal data

▪ What impacts would this have on our modeling assumptions?
▪ First major impact, across multiple observations the error terms are 

unlikely to be independent
▪ To address this we consider mixed models that allow us to consider 

common unobserved factors
▪ Another difference is how the likelihood is to be considered
▪ In a simple discrete choice, we try to match the chosen alternative as well 

as possible; in a panel dataset for the same DM we have multiple 
observations – so we need to figure out how to match this
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▪ Consider a choice scenario with DM q, k alternatives and t repetitions

▪ 𝑈𝑞𝑘𝑡 = 𝑥𝑞𝑘𝑡 ∗ β𝑘 + 𝜀𝑞𝑘 + 𝜀𝑞𝑘𝑡
▪ So to account for this common error term we can adopt the error 

components approach we talked about

▪ Important to recognize that the same draw should be repeated for all 
observations for the individual
▪ So the halton draws are created an individual level and copied across multiple 

observations to obtain panel specific error terms

▪ It is not necessary that unobserved effects exist only at the DM level – we 
can have unobserved effects at the repetition level as well – in that case we 
have some parameters estimated at the DM level and the other at the 
repetition level; so halton draws have to be drawn separately for these 
cases
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▪ If we have one DM repetition the LL is computed as

▪ LL = Ln(Pchosen)

▪ Now in a panel case we have multiple instances – in this case our 
objective is not to match each individual instance but the match the 
string of instances i.e. for a DM with 3 instances the idea would be to 
match Pchosen1, Pchosen2, Pchosen3

▪ LL = Ln(Pchosen1 * Pchosen2 * Pchosen3) 
▪ Ensures that the number of observations are appropriately considered – in the 

panel case the number of observations to be counted for Standard Error 
computation is the same as number of DMs not number of total records; this will 
ensure correct parameter estimation – otherwise we over-estimate parameter 
significance (because we think LL is from lot more records)
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▪𝑦𝑞𝑖𝑡
∗ = (𝜷 + 𝜶𝑞𝑖)𝑿𝑞𝑖𝑡 + 𝜀𝑞𝑖𝑡,

▪𝑃𝑟 𝑦𝑞𝑖𝑡 = 𝑖 𝜶𝑞𝑖 = ൗ
exp((𝜷+𝜶𝒒𝒊)𝑿𝑖𝑡)

σ𝑗 exp( 𝜷+𝜶𝑞𝑗 𝑿𝑗𝑡)

▪𝜋𝑞𝑖𝑡 = 𝑃𝑟 𝑦𝑞𝑖𝑡 = 𝑖 𝜶𝑞𝑖

▪ Lq|𝜶𝑞𝑖 , = ς𝑡=1
𝑇 𝜋𝑞𝑖𝑡

▪ℒ = σ𝑞=1
𝑄

𝐿𝑞

▪ For other systems – the probability term will need to be 
appropriately changed.
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▪What does it mean?
▪ Vehicle choice (number and type) and residential location are tied

▪ We cannot really consider residential location as a simple 
exogenous variable 

▪ Unobserved factors that affect choice of residence will affect 
vehicle choices 

▪How to study this?
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▪ Combo Models (or combination packages)
▪ Lets say we have 3 choices in vehicle type and 5 residential location choices – we 

create 15 combo alternatives and study them

▪ Wont work for continuous variables

▪ Joint distribution
▪ One equation per choice and all are tied together as a multivariate distribution – for 

example bivariate normal distribution 

▪ Not all choice scenarios will have a closed form joint distribution

▪ Simultaneous equation
▪ One equation per choice and all are tied together using unobserved components

▪ This is an expansion of mixed model approach

▪ Self-selection or endogeneity 
▪ Similar to above but we also have one choice variable as an exogenous variable in 

the second choice
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