Global Initiative of Academic Networks (GIAN)

Module 5

Naveen Eluru, University of Central Florida

COURSE MODULES

Introduction	 Introduction to Smart City Technologies, their impact on Transportation 	
Stated Preference Module	 Background on Data Collection Approaches Stated Preference Design and application 	
Traditional Discrete Choice Models	• Binary logit, multinomial logit, ordered logit, and count models	
Advanced Discrete Choice Models	 Nested logit, mixed logit, maximum simulated likelihood estimation, regret minimization, discrete continuous models 	
Transportation Planning	• Current state of the art and recent advances	

GIAN 191027A01: Choice Models for Transportation Modeling in Smart Cities

I will briefly highlight the current state of practice in travel demand models and highlight potential changes in planning models with smart cities

STATE OF THE PRACTICE

TRANSPORTATION

PLANNING

CGN6655: Regional Planning, Des and Dev

4

OVERVIEW OF THE STATE-OF-THE-PRACTICE TRAVEL-FORECASTING PROCEDURE

>How do we represent the study region?

>How do we represent the transportation system?

>How do we measure travel-demand?

>What is the analytical method for forecasting travel-demand?

REPRESENTATION OF THE AMATAN

- Define the study area
- Divide the study area into "internal" zones (called Traffic Analysis Zones or TAZs)
- Divide the region outside the study area into "external" zones
- Identify the activity centriods of all the internal zones
- Assume that the activity centroid represents the zone for all further analysis

Source: Page 71, Stopher, P.R. and Meyburg, A.H. (1975)

ISSUES IN DEVELOPING & ZONING SYSTEM

Size

- Modeling needs
- Homogenous composition
- Boundaries
 - Physical geography
 - Census geography
- Hierarchical / Nested structure

REPRESENTATION OF THE TRANSPORTATION SYSTEM

- Highway Network
 - System of links and nodes
 - Link is a homogenous stretch of roadway between two nodes characterized by length, capacity, free-flow speed, ...
 - Node is junction between two or more links
 - Often local roads are not represented
 - Centroids are treated as special types of nodes: "loading" nodes
 - Centroids are connected to the roadway network through one/more links called centroid connectors

Source: Page 79, Stopher, P.R. and Meyburg, A.H. (1975)

REFERENCES

- Inside the black box making transportation models work for livable communities <u>http://www4.uwm.edu/cuts/blackbox/blackbox.pdf</u>
- The four step model <u>http://www.its.uci.edu/its/publications/papers/CASA/UCI-ITS-AS-WP-07-2.pdf</u>

 Travel Demand Forecasting: Parameters and Techniques <u>http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_716.pd</u> <u>f</u>

Trip-based measurement of travel demand

 A Trip is a (one-way) movement from one location (address) to another

- Trips are characterized by:
 - Origin & destination locations (TAZs)
 - Mode of travel
 - Route
 - Start and End Times
 - Purpose

Characterizing Trips: Example 1

Characterizing Trips: Example 2

Characterizing Trips: Example 3

- How many trips are made for what purposes? \rightarrow frequency
- What are the origin and destination locations (TAZs) of each trip?
- What is the mode for each trip?
- What is the route for each trip?
- When is each trip made (time-of-day)?
- Aggregate all the trips to get the traffic flows by each mode, for each timeof-day, between each origin-destination pair, on each route (and link) of the transportation network.
 - Recognizes that individual vehicles on the road are an aggregation of decisions (of individuals, households, firms) across the urban region

NOTE

- The measurement unit of travel demand keeps evolving
- For example, vehicle emissions were not part of the transportation planning process until recently
- Now, more subjective and/or quantitative metrics such as accessibility to opportunities, happiness and well being are being incorporated into the planning process
- While some of these measures have been considered in the planning process – some of these ideas are being studied and debated in academia

Trip Generation

- How much travel (How many trips) to and from each zone for each purpose?
- Estimate the number of trip ends generated in each zone.
- Or, predict the total trip flows into and out of each zone (does not predict where these flows are coming from or going to)

Trip Distribution

- How many trips between each OD pair?
- Prediction of Origin-Destination (OD) flows between all zonal pairs
- Link the trip ends to form trip flows or interchanges

Mode Split

- What travel modes are used for trips between each OD pair?
- Predict the percentage of trips by different modes

Traffic Assignment

- What routes are used for travel between each OD pair?
- Load all trips on the transportation network

Trip Generation

Total number of trips generated by zone *i*

= f [characteristics of people in zone *i*, land-use of zone *i*]

 P_i = Number of trips "produced" in zone i = f[characteristics of people in zone i]

 A_i = Number of trips "attracted" to zone i = f [socioeconomics and land-use in zone i]

Trip Distribution

Fraction of trips produced in zone *i* & attracted to zone *j*

= f [

total number of trips attracted to zone *j*,

characteristics of the transportation system between zones *i* & *j*, &

other "special" linkages between zones *i* & *j*]

Mode Split

Fraction of trips produced in zone *i* & attracted to zone *j* made by mode *m*

= *f* [

Availability of different modes Characteristics of alternate modes]

Note – assume HOV on average has 2 occupants

Network Assignment

(1) Highway Assignment

Highway Demand Matrix:

	1	2	3	4
1	0	Cars ₁₂	Cars ₁₃	Cars ₁₄
2	Cars ₂₁	0	Cars ₂₃	Cars ₂₄
3	Cars ₃₁	Cars ₃₂	0	Cars ₃₄
4	Cars ₄₁	Cars ₄₂	Cars ₄₃	0

 $cars_{ij}$ = number of car trips originating in zone i and destined to zone j

+

Highway System Characteristics

Link volumes, speeds, toll revenue, ...

(2) Transit Assignment

Transit Demand Matrix:

	1	2	3	4
1	0	TR ₁₂	TR ₁₃	0
2	TR ₂₁	0	TR ₂₃	0
3	TR ₃₁	TR ₃₂	0	0
4	0	0	0	0

 $TR_{\scriptscriptstyle ij}$ = number of transit riders originating in zone i and destined to zone j

Zone 4 has no transit service

+

Transit System Characteristics

Ridership by route, revenue,

6/10/2023

THE FOUR-STEP PROCESS: SUMMARY

- <u>Trip generation</u> step involves the estimation of the number of home-based and non-home based person-trips produced from, and attracted to, each zone in the study area.
- <u>Trip distribution</u> determines the tripinterchanges (*i.e.*, number of trips from each zone to each other zone).
- <u>Mode choice</u>, step splits the person-trips between each pair of zones by travel mode.
- <u>Traffic assignment</u>, step assigns the vehicle trips to the roadway network to obtain linklevel vehicle volumes and travel times.

REFERENCES

 Ortuzar, J. D. and L. G. Willumsen (2011). Modelling transport, Wiley. 4th ed.