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ABSTRACT 

Count regression models have been applied to model expected crash frequency at individual roadway 

locations. Random parameters have been increasingly integrated into these models to account for 

unobserved heterogeneity. However, the introduction of random parameters might also mask issues in the 

model specification, leading to inaccurate relationships and model interpretation. Two of these 

specification-related issues are: 1) not considering the appropriate functional form of explanatory variables; 

and, 2) ignoring the best set of significant explanatory variables. To better examine the need for careful 

model specification, this study uses synthetic data to demonstrate that the consideration of random 

parameters does not address the two model specification issues identified. The results from the simulation 

study illustrate that (a) model specification issues cannot be circumvented by random parameters alone and 

(b) random parameter models including the exhaustive set of explanatory variables available offer 

significant model improvements.  

Keywords 

Random Parameter Negative Binomial Regression; Model specification; Unobserved heterogeneity; 

Synthetic Data; Simulation-based statistical analysis 
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1. Introduction 

In the road safety literature, count data models are typically used to model crash frequency on individual 

roadway facilities (roadway segments, intersections, and interchanges) during a specific interval of time. 

Such models assume a functional form for how traffic volume and roadway, or roadside features relate to 

crash frequency. While the model specifications identify the important factors, the crash process is 

substantially complex and thus several factors affecting crash frequency typically remain unknown to an 

analyst. Drawing on burgeoning work in econometric model development, researchers have proposed 

frameworks that allow for flexible parameter distributions across individual observations by integrating 

random parameters into the model (Anastasopoulos and Mannering 2009, Park 2013, Mannering et al. 2016, 

Qin et al. 2018, Wali et al. 2018, Mannering et al. 2020, Alnawmasi and Mannering 2022, Feknssa et al. 

2023). Similar to random parameter models, latent class (semi-parametric) models have also been applied 

which take the unobserved heterogeneity into account by classifying observations into a set of X different 

classes (Greene and Hensher, 2003, Vij et al., 2013, Mannering and Bhat, 2014, Mannering et al., 2016, 

Mahmud et al., 2023). The approaches directly tackle the unobserved heterogeneity present in the data by 

assuming correlation exists between observed parameters and the unobserved features that cannot be 

captured. In particular, the emergence and widespread adoption of random parameters has enhanced the 

safety modeling literature.  

In recent years, there has been a significant surge in the application of random parameters to crash frequency 

models. The surge can be attributed to widespread availability of econometric model tools in open source 

and proprietary software. However, in some cases, there is growing emphasis on including random 

parameters in the models without carefully evaluating the impact of independent variables available in the 

dataset. In some cases, the introduction of random parameters might actually be capturing misspecification 

of the crash frequency models. Thus, as a first step, it is critical to ensure that the model is properly specified 

before incorporating random parameters. For example, researchers have focused on examining the 

underlying form of crash frequency models and offered functional forms of crash exposure variables 

(usually annual average daily traffic (AADT)) such as traditional forms with linear formulation 

(Venkataraman et al. 2011, Gooch et al. 2016, Khattak et al. 2020), Hoerl forms (Hauer 2015, Wang et al. 

2020), and flexible linear forms (Gayah and Donnell 2021, Eluru and Gayah 2022). The reader would note 

that incorporating additional observed variables in the model will not account for unobserved heterogeneity. 

Additional steps – such as the introduction of random parameters, latent classes, or Markov switching 

processes – are needed. However, failure to properly specify the model with over-reliance on random 

parameters to circumvent misspecification issues is not the right solution.  

This paper serves as a cautionary tale to demonstrate the importance of proper model specification, and the 

appropriate role of random parameter models. A simulation-based framework is employed in which crash 

data are generated synthetically according to some known underlying process. This is done to ensure full 

control over the crash data generation process; use of empirical data would always be subject to omitted 

variable bias as there are countless factors that would influence crash frequency. Using this synthetic data,  

various model (mis)specifications are used to demonstrate conditions under which randomness in 

parameters might appear in the presence of misspecification. These misspecifications include: 1) not 

considering the appropriate functional form of explanatory variables; and 2) ignoring the best set of 

significant explanatory variables. The results confirm that analysis should first and foremost focus on model 

specification and not rely on random parameters as a “crutch” for proper model specification. In this way, 

the true power of random parameters can be better harnessed to capture unobserved heterogeneity that 

might be present.  
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The rest of this paper is organized as follows. The next section discusses the methods implemented 

in this study which include a) modeling methodology for the fixed parameter and random parameter 

negative binomial models and different functional forms b) procedure for generating synthetic data and c) 

experimental design of the study. The methods section is followed by the results and discussion section 

which discusses the key findings from the study followed by the conclusions. 

2. Methods 

This section describes the methods used in this paper. Section 2.1 “Models” include the description of the 

negative binomial and random parameter negative binomial model used to predict crash frequency. The 

different functional forms of the models considered as also described in Section 2.1 (see Section 2.1.3 

“Different functional forms in crash frequency models”). Section 2.2 “Synthetic Data Generation” describes 

the synthetic data generation process that is applied for this study. Finally, Section 2.3 “Experimental 

Design” presents the experimental design as well as discusses the procedure for comparing the values of 

true parameters with their corresponding recovered values for both the fixed parameter and random 

parameter negative binomial models with each of the three functional forms.  

2.1. Models 

2.1.1. Fixed parameter negative binomial model 

Considering the discrete and non-negative nature of crash frequency, Poisson or negative binomial 

regression can be applied to estimate the expected crash frequency on roadway segments. One of the key 

limitations of Poisson regression is that it is based on the assumption that the mean and variance are equal. 

The negative binomial regression model relaxes the abovementioned assumption by allowing the variance 

to exceed the mean (Var (𝑌𝑖) > E(Y)). For the negative binomial regression model, the general functional 

form can be given below: 

ln⁡(𝜆𝑖) = 𝛽𝑋𝑖 + 𝜀𝑖 ,            (1) 

where 𝜆𝑖 indicates the expected crash frequency on a particular road segment 𝑖 during a specific interval of 

time; 𝛽 indicates a vector of estimable parameters of key independent variables 𝑋𝑖 associated with crash 

frequency; and 𝜀𝑖 indicates an error term assumed to follow a gamma distribution. For the negative binomial 

model, the mean-variance relationship can be given below: 

Var⁡(𝑦𝑖) = 𝐸(𝑦𝑖) + 𝜑𝐸(𝑦𝑖)
2⁡,           (2) 

where 𝑦𝑖 refers to the observed crash frequency occurred on a particular roadway segment 𝑖; 𝜆𝑖 refers to 

the expected crash frequency on a particular roadway segment 𝑖, and 𝜑 refers to the overdispersion 

parameter that comes from the negative binomial model. In the negative binomial model, the assumed 

probability distribution can be given below: 

f⁡(𝑦𝑖) =
𝛤(𝜑+𝑦𝑖)

𝛤(𝜑)𝑦𝑖!
⁡(

𝜆𝑖

𝜑+𝜆𝑖
)
𝑦𝑖
(

𝜑

𝜑+𝜆𝑖
)
𝜑

,          (3) 

where 𝛤 and 𝜑 refer to the gamma function and overdispersion parameter, respectively. Following the 

maximum likelihood estimation method, both coefficients (𝛽) and the overdispersion parameter (𝜑) can 

be estimated using the likelihood function as given below: 

𝐿𝑖 = ∏ 𝑃(𝑁
𝑖=1 𝑦𝑖)⁡,            (4) 
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where Equation (4) shows the likelihood that the observed crash frequency can be observed conditional that 

the expected crash frequency is estimated using parameters 𝛽𝑗and 𝜑𝑗 obtained from the model. It should be 

noted that values for the two parameters need to be selected in a way that the likelihood is maximized and 

the model with the best fit to data is obtained. 

2.1.2. Random parameter negative binomial model 

According to the road safety literature, in addition to the observed factors, there could be some unobserved 

factors (which could be either available but not used in the model or could be missing in the data) that could 

have a significant influence on the crash frequency. Studies suggest using random parameter negative 

binomial regression to account for the effects of such unobserved factors on crash frequency on roadway 

segments (Dong et al. 2014, Wali et al. 2018, Tang et al. 2019, Huo et al. 2020). A general form for an 

RPNB model can be given below: 

𝛽𝑖,𝑗 = 𝛽𝑗̅ + 𝜑𝑖,𝑗           (5) 

where, 𝛽𝑖,𝑗 indicates a unique parameter estimated for the 𝑗𝑡ℎ independent variable for a segment 𝑖; 𝛽𝑗̅ 

refers to the mean parameter for a particular independent variable; whereas 𝜑𝑖,𝑗 represents the error terms 

related to the 𝑗𝑡ℎ parameter for observation 𝑖 with a random distribution. The expected crash frequency for 

the random parameter negative binomial model can be computed as below:  

𝜆𝑖|𝜑𝑖 = exp⁡(𝛽𝑋𝑖 + 𝜀𝑖)          (6) 

The log-likelihood function for a random parameter negative binomial model can be given as below: 

𝐿𝐿 = ∑ 𝑙𝑛∀𝑖 ∫ 𝑔(𝜑𝑖)
𝑖

𝜑𝑖
𝑃(𝑛𝑖|𝜑𝑖)𝑑𝜑𝑖         (7) 

where, 𝑔(. ) refers to the probability density function of 𝜑
𝑖
, 𝑃(𝑛𝑖|𝜑𝑖) indicates the Poisson probability of 

an observation “roadway segment” (𝑖) to have crashes (𝑛𝑖) conditioned on 𝜑
𝑖
. Given the computational 

complexity associated with the numerical integration of the random parameter negative binomial model 

with no closed-form expression, a simulation-based maximum likelihood method is used to maximize the 

log-likelihood function using Halton draws. 

 

2.1.3. Different functional forms in crash frequency models 

This section provides a description of three common potential functional forms that are considered in crash 

frequency models. These are used to demonstrate how failure to properly specify these relationships may 

manifest as randomness in the model. It should be noted that these three forms are just examples and not 

meant to serve as an exhaustive list, as these relationships may take numerous forms in practice. Thus, 

analysts should be prepared to test many forms when developing a crash frequency model. The three 

functional forms serve as the observed component of the modeling exercise and can be employed as fixed 

parameter models. At the same time, these functional forms can be overlaid with random parameters to 

accommodate unobserved heterogeneity. As the focus of our current research is on interplay the role of 

observed and unobserved parameters, we employ three functional forms to eliminate any specific functional 

form related bias toward observed or unobserved effects. The exact mathematical details of the functional 

forms follow.  
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2.1.3.1. Traditional functional form 

The Highway Safety Manual (Part 2010) and relevant studies (Fitzpatrick et al. 2010, Venkataraman et al. 

2011, Bauer and Harwood 2013, Gooch et al. 2016, Gayah and Donnell 2021) have mostly applied the 

traditional (trad) functional form for the expected crash frequency: 

𝑁𝑡𝑟𝑎𝑑 = 𝑒𝛽0𝑥⁡𝐿𝛽1 ⁡𝑥⁡𝐴𝐴𝐷𝑇𝛽2𝑥⁡𝑒(𝛽3𝑋3+𝛽4𝑋4+⁡−−−⁡+⁡𝛽𝑛𝑋𝑛),      (8) 

where 𝑁𝑡𝑟𝑎𝑑 refers to the expected crash frequency computed via model with the traditional functional 

form, (𝛽0, 𝛽1, … , 𝛽𝑛) refers to a vector of estimable parameters, (𝑋3, 𝑋4, … , 𝑋𝑛) refers to a vector of the 

roadway or roadside features, 𝐿 refers to the segment length, and 𝐴𝐴𝐷𝑇 refers to the annual average daily 

traffic on a specific roadway segment. One of the key advantages of the traditional functional form is that 

𝛽2 provides a constant slope over the range of AADT values indicating that change in expected crash 

frequency due to a unit increase in AADT is constant. While using the traditional functional form could be 

simple and straightforward, studies suggest that this could not be a reasonable approach. For instance, the 

impact of a unit increase in the AADT on the expected crash frequency could be different in different ranges 

of AADT values (Shankar et al. 1998, Ulfarsson and Shankar 2003). Further, these approaches completely 

ignore the presence of unobserved heterogeneity.  

Studies have used the random parameter version of the traditional negative binomial model which 

allows the coefficient of AADT to vary across the individual roadway segments due to site-specific 

unobserved factors (Anastasopoulos and Mannering 2009, Venkataraman et al. 2011). Still, the elasticity 

of the crash frequency for the AADT (refers to the percent change in the predicted crash counts or frequency 

due to one percent change in AADT) is constant for the roadway segment as per the random parameter 

models. Furthermore, the random parameter models are simulation-based and could be extensive in terms 

of computation. Some studies have accounted for continuing change in the relation of expected crash 

frequency and AADT using sigmoid functions, but such methods were based on parametric techniques like 

neural networks which could have lower interpretability and could not suit the crash predictive models in 

the Highway Safety Manual appropriately (Kononov et al. 2011). To account for the varying relationships 

between the expected crash frequency and AADT, some studies have used the Hoerl form as discussed 

below.  

 

2.1.3.2. Hoerl functional form 

In the Hoerl form, the expected crash frequency is allowed to vary as a function of traffic volume which is 

accommodated by including an additional term in Eq. (8) that also treats AADT as a traditional variable in 

the model: 

𝑁𝐻𝑜𝑒𝑟𝑙 = 𝑒𝛽0𝑥⁡𝐿𝛽1 ⁡𝑥⁡𝐴𝐴𝐷𝑇𝛽2𝑥⁡𝑒(𝛽3𝐴𝐴𝐷𝑇+𝛽4𝑋4+⁡−−−⁡+⁡𝛽𝑛𝑋𝑛),      (9) 

While the Hoerl form can account for the varying relationship between the expected crash frequency and 

AADT, still a more flexible functional form is needed which is consistent with the traditional functional 

form and can have the potential to capture the varying relationships between the expected crash frequency 

and traffic volume that could exist in the different ranges of the traffic volume. To cope with the need for 

the functional form which is consistent with the traditional form but can account for varying relationships 

between the expected crash frequency and traffic volume, studies have introduced alternative functional 

forms with a flexible form of AADTs as discussed below. 
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2.1.3.3. Eluru and Gayah functional form 

Studies have proposed alternative functional forms which capture the relationship in the data in a better 

manner with a reasonable computational cost (Gayah and Donnell 2021, Eluru and Gayah 2022). While the 

two functional forms including Gayah and Donnell and Eluru and Gayah forms capture the relationships 

between the expected crash frequency and exposure in flexible ways, the latter better accommodates the 

addition of random parameters; more details are provided in (Eluru and Gayah 2022). Since this study 

focuses on estimating both fixed parameter and random parameter negative binomial models, the Eluru and 

Gayah functional form is used as a flexible version of the traditional functional form. The general form of 

the Eluru and Gayah negative binomial model can be given below (Eluru and Gayah 2022): 

𝑁𝐸𝐺 = 𝛽𝐴𝐴𝐷𝑇 ln(𝐴𝐴𝐷𝑇𝑖) + 𝛿1𝐴𝐴𝐷𝑇𝑖𝑛𝑐1 + 𝛿2𝐴𝐴𝐷𝑇𝑖𝑛𝑐2 + 𝛾𝑧𝑖 + 𝜀𝑖    (10) 

where 𝑁𝐸𝐺 refers to the expected crash frequency computed via the crash frequency model with the Eluru 

and Gayah functional form, 𝛽𝐴𝐴𝐷𝑇 indicates the parameter to be estimated for ln(𝐴𝐴𝐷𝑇𝑖) for roadway 

segment 𝑖, 𝛿1 and 𝛿2 refer to the parameters to be estimated for the newly created variables which capture 

the changes to the effects of the AADT variable “ln(𝐴𝐴𝐷𝑇𝑖)”; 𝛾 indicates a vector of parameters to be 

estimated for a set of other explanatory variables “𝑧𝑖" related to a roadway segment 𝑖, and 𝜀𝑖 refers to the 

error terms with a gamma distribution having a mean and variance of 1 and 𝛼, respectively. It should be 

noted that the independent variables which are newly added include 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐1 and 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐2 and are 

defined as below (Eluru and Gayah 2022): 

𝐴𝐴𝐷𝑇𝑖−𝑖𝑛𝑐1 = 𝑀𝑎𝑥[0, ln(𝐴𝐴𝐷𝑇𝑖) − ln⁡(𝑇1)]       (11) 

𝐴𝐴𝐷𝑇𝑖−𝑖𝑛𝑐2 = 𝑀𝑎𝑥[0, ln(𝐴𝐴𝐷𝑇𝑖) − ln⁡(𝑇2)]       (12) 

 

𝑇1 and 𝑇2 refers to the ln(𝐴𝐴𝐷𝑇𝑖) threshold points at which the slope is expected to vary. For a detailed 

discussion about the Eluru and Gayah functional form, please refer to (Eluru and Gayah 2022). To provide 

a general understanding of the Eluru and Gayah functional form, Equation (10) shows a general equation 

of the Eluru and Gayah functional form which includes two threshold points (𝑇1 and 𝑇2) at each of which 

the slope (effect of AADT on crash frequency) may start to change. To modify Equation (10) for the one 

threshold framework for the Eluru and Gayah form, the term (𝛿2𝐴𝐴𝐷𝑇𝑖𝑛𝑐2) should to be excluded. 

Furthermore, in the one threshold framework, Equation (11) alone serves the purpose where Equation (12) 

is no more relevant. 

 

2.2. Synthetic Data Generation 

Synthetic data are generated and used in this study to compare model performance under a variety of 

conditions. . While synthetic data cannot account for the complex nature of crash generation that occurs in 

reality, any empirical data would always be subject to some amount of unobserved heterogeneity as all 

safety-influencing features could never be fully obtained and captured in this model. Thus, the use of 

synthetic data is desirable in this case because it allows randomness to be introduced systematically and 

only when necessary to better compare the performance models without and with random parameters. Two 

data generation processes are used. The first is to generate independent variables in the model and the 

second to generate dependent variables (crash frequencies). Detailed discussion and examples about 

synthetic data generation can also be found in (Abowd and Lane 2004, Abowd and Woodcock 2004, Reiter 
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2005a, Drechsler and Reiter 2010, Kinney et al. 2011). One of the recent studies (Reiter 2005b) has 

proposed non-parametric methods to generate synthetic data using classification and regression tree 

methods. Some studies also suggest using alternative machine learning methods including support vector 

machine, random forest, and bagging for synthetic data generation (Caiola and Reiter 2010, Drechsler and 

Reiter 2011). 

 

2.2.1. Generation of independent variables in synthetic data 

For independent variables, the “synthpop” package in R software is used to create set of the independent 

variables . To generate a synthetic version of the roadway and traffic variables, the synthpop package is 

used to replicates observed data from two-lane rural roads in Engineering District 3 of Pennsylvania 

between 2005 and 2012. The “synthpop” method selects a given independent variable to be synthesized 

and randomly generates values using a random sampling method with replacement from the actual or 

observed data (Nowok et al. 2016). Next, a parametric or non-parametric method can be applied to generate 

the values of a second, third, fourth, etc. independent variable while using the first one, first two, and first 

three synthetic independent variables as predictors in the machine learning methods, respectively. In the 

present study, a non-parametric classification and regression tree method is applied to synthesize the 

variables where the type of the classification and regression tree method including regression and 

classification is decided based on the variable type continuous, binary, or categorical etc.  

The original data included various independent variables as given below: 

• Annual average daily traffic (AADT) 

• Segment length in mile (length_mi) 

• Density of access points “number of access points per mile” (acc_den) 

• Degree of horizontal curvature per mile (d_seg_mi) 

• Presence of rumble strips along outer shoulder (sh_rs) 

It should be noted that sh_rs is a binary variable while all other independent variables are continuous. Using 

the synthpop method, the variable “sh_rs” was first synthesized while randomly sampling its values from 

the actual data with replacement. Next, the synthpop was used to predict (synthesize) the d_seg_mi variable, 

using the sh_rs variable as the only predictor in the regression tree. The two variables including sh_rs and 

d_seg_mi are then used as predictor variables to predict the acc_den variable. Next, the values of the 

length_mi were predicted using the regression tree while using the aforementioned three variables (already 

synthesized) as predictor variables. Finally, all the pre-synthesized four variables are used to predict the 

values of AADT using the regression tree.  

 

2.2.2. Generation of dependent variables (crash frequencies) using equations with different functional 

forms in synthetic data 

After generating the set of independent variables used in the study, the next step is to generate the synthetic 

values for  the observed annual crash frequency for each observation. In this process, the expected crash 

frequency was generated via pre-described equations. Then, the negative binomial distribution was applied 

with random number generation to randomly assign a crash frequency to individual roadway segments.  
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Three different functional forms were considered, based on the forms described in the METHODS 

(Different functional forms in crash frequency models) section. The fixed parameter versions of these 

models are:  

 

𝑁𝑡𝑟𝑎𝑑 = 𝑒⁡−4.5𝑥⁡𝐴𝐴𝐷𝑇0.8⁡𝑥⁡𝑙𝑒𝑛𝑔𝑡ℎ_𝑚𝑖⁡𝑥⁡𝑒⁡(−0.8⁡𝑥⁡𝑠ℎ_𝑟𝑠⁡+⁡0.02⁡𝑥⁡𝑎𝑐𝑐_𝑑𝑒𝑛+0.004⁡𝑥⁡deg⁡ _𝑠𝑒𝑔_𝑚𝑖)⁡   (13) 

𝑁𝐻𝑜𝑒𝑟𝑙 =

𝑒⁡−4.95⁡𝑥⁡𝐴𝐴𝐷𝑇0.9⁡𝑥⁡𝑙𝑒𝑛𝑔𝑡ℎ_𝑚𝑖⁡𝑥⁡𝑒⁡(−0.0001𝑥𝐴𝐴𝐷𝑇−0.8⁡𝑥⁡𝑠ℎ_𝑟𝑠⁡+⁡0.02⁡𝑥⁡𝑎𝑐𝑐_𝑑𝑒𝑛⁡+0.004𝑥⁡deg⁡ _𝑠𝑒𝑔_𝑚𝑖)⁡   (14) 

𝑁𝐸𝐺 = 𝑒⁡−5.25⁡𝑥⁡𝐴𝐴𝐷𝑇1⁡𝑥⁡𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑖⁡𝑥 

𝑒⁡(−0.8⁡𝑥⁡𝑠ℎ_𝑟𝑠+⁡0.02⁡𝑥⁡𝑎𝑐𝑐_𝑑𝑒𝑛+0.004⁡𝑥⁡𝑑_𝑠𝑒𝑔_𝑚𝑖+2.1⁡𝑥(𝐴𝐴𝐷𝑇>1900)−0.5𝑥(𝐴𝐴𝐷𝑇>1900)⁡𝑥⁡𝑙𝑛(𝐴𝐴𝐷𝑇))      (15) 

This provides three synthetic crash frequencies associated with each observation in the synthetic dataset.  

Random parameter versions of these models are also considered to account for when unobserved 

heterogeneity is present and significant. In this case, specific parameter coefficients in Equations (13-

15) are also randomly generated following a given distribution when estimating the expected crash 

frequency associated with a segment. This is then applied to the random crash frequency generation 

process. In this way, models are able to be estimated in cases when unobserved heterogeneity is not 

present (or not significant) and when it is.  

 

2.3. Experimental Design 

The experimental design of the study is shown in Figure 1 and can be briefly summarized below: 

1. A total of 100,000 (100K) unique observations were generated using the proposed data generation 

approach.  

2. A total of 50 synthetic samples, each including 10,000 (10K) observations, are randomly selected 

from the synthetic data of 100K observations. To compute the expected crash frequencies for each 

observation in a given specific random sample, the following two methods are used: 

a. Fixed parameter models using Equations (13-15) which consider no randomness in the 

data.  

b. Random parameter models using Equations (13-15) where one or more of the coefficients 

in the models are assumed to be drawn from some known distribution for each observation.  

i. For simplicity, only two independent variables are treated as potentially having 

random parameters: AADT and sh_rs.  
ii. Various values of randomness (standard deviations associated with 5%, 8%, 12%, 

and 17% of the mean coefficient values) are considered. A normal distribution was 

assumed and used for the distribution of random parameters in this data generation 

process.  

3. No randomness and one-time randomness (standard deviation associated with 12% of the 

coefficient values) for the AADT variable are considered. The key motivation behind this part of 

the analysis is to understand the impact of independent variables on the performance of random 

parameter negative binomial models.  

4. Using each of the expected crash frequencies estimated above, annual crash frequencies for each 

observation are randomly determined using the negative binomial distribution.  

5. Fixed parameter and random parameter models are then estimated using the synthetically generated 

independent variables and annual crash frequencies for each observation. Models are estimated 
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considering both that all relevant independent variables are included in the model and that one or 

more independent variables are excluded and with and without the proper functional form 

considered.  

As shown in Figure 1, a total of 150 fixed parameter negative binomial models (50 data sets x 3 functional 

forms for each) and 150 random parameter negative binomial models are estimated. Corresponding models 

of a given functional form are compared based on their BIC values. When randomness is incorporated into 

the dependent variable generation (Step 2b (ii) above), each model is generated 8 times (2 potential random 

variables x 4 levels of randomness in each) leading to a total of 1200 fixed parameter negative binomial 

models (50 data sets x 8 x 3 functional forms for each) and 1200 random parameter negative binomial 

models. Referring to Step 3 above, five models are generated per dataset including five different 

combinations of independent variables (but not using all of the five independent variables at a time) leading 

to 250 fixed parameter negative binomial models (50 data sets x 5 combinations of independent variables) 

and 250 random parameter negative binomial models for each functional form (total of 750 fixed parameter 

and 750 random parameter negative binomial models for the three functional forms). 

 

RP, SD, and IVs refer to the random parameter, standard deviation (for random parameter), and 

independent variables respectively. 

Figure 1. Experimental Framework 

The parameter retrieval capability of the models is assessed by comparing the mean values of parameters 

for the independent variables in the models with their corresponding true parameters. The true parameter 

of a specific independent variable refers to its value used in Eq.13/Eq.14/Eq.15 that was used to compute 

the expected crash frequency. The key motivation behind comparing the mean parameter with true 

parameter for the independent variables was to see how credible the estimation results for the models are 

based on the synthetic data sets. One of the most recent studies provides detailed guidance about the 

retrieval of parameters in the models estimated using simulated data (Bhowmik et al. 2021). Since a specific 

model is estimated numerous times using multiple data sets (as shown in Figure 1), the mean parameter 

value is computed for a specific independent variable which is then compared with its true value used to 
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compute the crash frequency. The difference between the two values can be presented in terms of absolute 

percentage bias which can be computed below:  

Absolute⁡percentage⁡bias =
(true⁡parameter−mean⁡estimate)

true⁡parameter
∗ 100    (17) 

 

3. Results and Discussions 

3.1. Actual versus Synthetic Data 

As previously mentioned, crash data (N = 22,488) from 2005 to 2012 for engineering district 3 in 

Pennsylvania were used to generate a synthetic dataset with 100,000 observations. A comparison of the 

distribution of the key independent variables in the actual and synthetic datasets is provided in Figure 2. As 

shown, the distribution of all the independent variables in the synthetic data seems reasonable compared to 

the actual (observed) data.  

The correlations between the independent variables in the synthetic data were also computed and then 

compared with the corresponding values in the actual data; see Table 1. Again, similar correlations between 

the variables in the two datasets can be noticed which justifies that the synthetic dataset is reasonable 

compared to the actual data. 
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Figure 2. Percentage-wise Distribution of Variables in Observed (Actual) Versus Synthetic Data 
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Table 1. Descriptive Statistics of Independent Variables in Actual Data versus Synthetic Data 

Correlation between Actual Independent Variables (N = 22,488)  
AADT length_mi sh_rs acc_den d_seg_mi 

AADT 1 --- --- --- --- 

length_mi -0.100 1 --- --- --- 

sh_rs 0.233 -0.002 1 --- --- 

acc_den 0.318 -0.202 -0.043 1 --- 

d_seg_mi -0.195 -0.071 -0.044 -0.006 1       

Correlation between Synthetic Independent Variables (N = 100k)  
AADT length_mi sh_rs acc_den d_seg_mi 

AADT 1 --- --- --- --- 

length_mi -0.093 1 --- --- --- 

sh_rs 0.242 -0.004 1 --- --- 

acc_den 0.315 -0.204 -0.044 1 
 

d_seg_mi -0.199 -0.078 -0.046 -0.007 1 

 

Table 2 provides comparisons between the actual crash frequency and  the synthetic crash frequencies 

considering different functional forms and random parameters with various standard deviations for the two 

independent variables (AADT and presence of should rumble strips). It can be noticed that both mean and 

standard deviations of the actual crashes are a bit off from the synthetic crash frequencies computed under 

different scenarios; however, it was expected as the predicted crashes were computed assuming parameters 

in the respective models and were not based on models estimated using the actual data. 
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Table 2. Comparison of Actual versus Synthetic Crash Frequencies 

Distribution of Synthetic Crash Frequency Using Different Functional 

Forms and Standard Deviations of Random Parameters 

Crash Frequency Mean  SD Minimum Maximum 

Actual Data 0.481 0.866 0 16 

Fixed Parameter Models 

Synthetic Data Mean  SD Minimum Maximum 

Traditional 3.842 5.998 0 150 

Hoerl 3.630 4.836 0 150 

Eluru and Gayah 8.034 16.131 0 150 

Random Parameter Models 

AADT as Random Parameter with 5% Standard Deviation 

Traditional 3.854 6.008 0 150 

Hoerl 3.641 4.868 0 150 

Eluru and Gayah 8.052 16.194 0 150 

AADT as Random Parameter with 8% Standard Deviation 

Traditional 3.944 6.235 0 150 

Hoerl 3.728 5.145 0 150 

Eluru and Gayah 8.230 16.797 0 150 

AADT as Random Parameter with 12% Standard Deviation 

Traditional 4.152 6.996 0 150 

Hoerl 3.934 5.700 0 150 

Eluru and Gayah 8.595 17.994 0 150 

AADT as Random Parameter with 17% Standard Deviation 

Traditional 4.493 8.246 0 150 

Hoerl 4.236 6.678 0 150 

Eluru and Gayah 9.147 19.741 0 150 

Shoulder Rumble Strip as Random Parameter with 5% Standard 

Deviation 

Traditional 3.890 6.152 0 150 

Hoerl 3.665 4.917 0 150 

Eluru and Gayah 8.128 16.434 0 150 

Shoulder Rumble Strip as Random Parameter with 8% Standard 

Deviation 

Traditional 3.910 6.243 0 150 

Hoerl 3.683 5.005 0 150 

Eluru and Gayah 8.169 16.581 0 150 

Shoulder Rumble Strip as Random Parameter with 12% Standard 

Deviation 

Traditional 3.929 6.386 0 150 

Hoerl 3.710 5.203 0 150 

Eluru and Gayah 8.230 16.829 0 150 
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3.2. Modeling Results 

This section compares model results obtained when using fixed parameter and random parameter models 

under various conditions. As discussed in the methodology section, prior to comparing the results, the study 

first assessed the parameter retrieval capabilities for both fixed parameter and random parameter negative 

binomial with the three functional forms. To conserve space, we are restricting ourselves from providing 

the parameter retrieval results for data generated with AADT random parameter for 5% standard deviation 

only. However, the results were quite consistent across all the synthetic datasets including synthetic crash 

frequencies computed with different values of standard deviation for the AADT. The values presented in 

Table 3 clearly illustrate that the proposed model system recovers the parameters extremely well as 

indicated by the smaller absolute percentage bias values.  
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Table 3. True Parameter versus Mean Parameters in Fixed Parameter and Random Parameter 

Negative Binomial Models 

Model Variables 
 

Independent Model RP Model 

TP MP PB (%) MP PB (%) 

Traditional NB constant -4.500 -4.550 1.117 -4.558 1.297 

Traditional NB ln(AADT) 0.800 0.808 0.977 0.809 1.094 

Traditional NB sh_rs -0.800 -0.806 0.708 -0.805 0.586 

Traditional NB d_seg_mi 4.00E-03 3.81E-03 4.746 3.95E-03 1.326 

Traditional NB acc_den 2.00E-02 1.99E-02 0.663 1.96E-02 2.181 

Traditional NB Overdispersion Parameter 0.500 0.498 0.323 0.498 0.400 

Hoerl NB constant -4.950 -4.882 1.376 -4.873 1.552 

Hoerl NB ln(AADT) 0.900 0.889 1.201 0.888 1.339 

Hoerl NB sh_rs -0.800 -0.829 3.639 -0.792 0.942 

Hoerl NB d_seg_mi 4.00E-03 3.76E-03 5.882 3.92E-03 1.953 

Hoerl NB acc_den 2.00E-02 2.04E-02 2.034 2.02E-02 0.790 

Hoerl NB AADT -1.00E-04 -9.58E-05 4.235 -1.95E-04 95.126 

Hoerl NB Overdispersion Parameter 0.400 0.402 0.512 0.389 2.800 

EGNB constant -5.250 -5.216 0.652 -5.153 1.857 

EGNB ln(AADT) 1.000 0.998 0.175 0.991 0.877 

EGNB sh_rs -0.800 -0.794 0.736 -0.800 0.033 

EGNB d_seg_mi 4.00E-03 3.75E-03 6.266 3.75E-03 6.229 

EGNB acc_den 0.020 0.019 2.956 0.019 3.784 

EGNB  (AADT>1900) 2.100 2.159 2.826 2.037 2.991 

EGNB ln(AADT)*(AADT>1900) -0.500 -0.511 2.194 -0.495 1.041 

EGNB Overdispersion Parameter 1.000 0.988 1.163 0.993 0.675 

TP, MP, and PB refers to the true parameter, mean parameter, and percentage bias, respectively. 

 

3.2.1. Comparison of Fixed Parameter versus Random Parameter Negative Binomial Models: Crash 

frequency computed with Fixed Parameter Negative Binomial Models 

Figure 3 provides results that compare the fixed parameter and random parameter negative binomial models 

that were obtained when fixed parameter negative binomial models were used to compute the expected 

crash frequency for each observation. Values along the Y-axis show the difference in the mean values of 

BIC for the random parameter and fixed parameter negative binomial models in the corresponding figures 

for each of the three cases (traditional, Hoerl, and Eluru and Gayah functional forms). A positive difference 

in the mean BIC values along the Y-axis indicates that the random parameter negative binomial models 

perform better compared to their fixed parameter counterparts and vice versa (this applies to all relevant 

figures Figure 5-8). The different colors in Figure 3 refer to the situation when a constant or other specific 

independent variable is considered as the random parameter in the random parameter negative binomial 

models. The findings indicate that if there is no randomness (no random parameter is added to the equation 

of the fixed parameter model), the fixed parameter negative binomial models perform better compared to 
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their random parameter counterparts based on the mean BIC values for all three functional forms. This is 

as expected since applying the random parameter models adds additional complexity and increases the 

number of parameters when estimated, but there is no additional benefit due to the lack of unobserved 

heterogeneity. 

 

 

RP, NB, and EG refer to random parameter, negative binomial, and Eluru and Gayah, respectively. 

Figure 3. Comparison of Random Parameter versus Fixed Parameter (Independent) Models based 

on Data with No Randomness 

 

Figure 4 plots the number of times random parameters are statistically significant in a model even when no 

unobserved heterogeneity exists in the data. The results are plotted as a function of the number of 

independent variables considered in the random parameter model. Note that when there are few independent 

variables in the model, unobserved heterogeneity exists since relevant explanatory variables are not 

included. In this case, the random parameters are often significant and help account for this unobserved 

heterogeneity introduced by omitting an available and critical parameter. However, even when all six 

independent variables are considered in the random parameter models, random parameters are statistically 

significant in the random parameter models a considerable number of times. Specifically, random 

parameters are significant 12, 13, and 18 times (out of 50 times) for the models with traditional, Hoerl, and 

flexible forms respectively. However, in terms of the mean BIC values, the random parameter models do 

not outperform the fixed parameter despite the presence of statistically significant random parameter in the 

re-estimated random parameter models. These results suggest that random parameters might sometimes 

show up as significant in a model even when no unobserved heterogeneity exists.  
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TRD, HFL, and EG refer to traditional, Hoerl, and Eluru and Gayah functional forms respectively. 

 Figure 4. Random Parameter versus Fixed Parameter Models based on Subset of Independent 

Variables 

 

 

3.2.2. Comparison of Fixed Parameter versus Random Parameter Negative Binomial Models: Crash 

frequencies computed with Random Parameter Negative Binomial Models 

Figure 5 and Figure 6, respectively, compare the fixed parameter and random parameter negative binomial 

models that were obtained when random parameter models with different values of randomness (standard 

deviation based on the values/distribution of a specific random parameter) for the AADT and sh_rs 
variables were used to compute the expected crash frequency for each observation. The different colors in 

the two figures refer to different values of standard deviation for AADT and sh_rs used when these variables 

are added to the equations of fixed parameter models to compute the expected crash frequencies.  

The findings indicate that when randomness actual exists in the crash generation process, the 

random parameter negative binomial models show superior performance based on the mean BIC values 

compared to the fixed parameter counterparts for all the three functional forms. These findings make sense: 

if randomness (unobserved heterogeneity) in the data exists and is taken into account via estimating random 

parameter negative binomial models, the random parameter models perform better compared to their fixed 

parameter counterparts. 
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RP, SD, NB, and EG refer to random parameter, standard deviation, negative binomial, and Eluru and 

Gayah, respectively. 

Figure 5. Comparison of Random Parameter versus Fixed Parameter Models based on Data with 

Randomness (due to AADT) 

 

RP, SD, NB, and EG refer to random parameter, standard deviation, negative binomial, and Eluru and 

Gayah, respectively. 
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Figure 6. Comparison of Random Parameter versus Fixed Parameter Models based on Data with 

Randomness (due to 𝐬𝐡_𝐫𝐬) 

The above results lead to several key insights: 1) in the absence of structural randomness in the data 

generation, the fixed parameter negative binomial models perform better compared to random parameter 

negative binomial models;2) if randomness in the data exists, taking it into account via random parameter 

negative binomial models make the random parameter negative binomial models superior to their fixed 

parameter counterparts based on the mean BIC values for all three functional forms; 3) failure to incorporate 

key variables in the model with fixed impacts can manifest as randomness in other variables, even when 

such randomness does not exist. The reader would note that it is not expected that real world data will be 

free of unobserved factors. However, the exercise is conducted to illustrate how random parameter models 

cannot address all the challenges with data and analysts need to exercise caution in their adoption. To assess 

the role of considering randomness in data and independent variables with fixed parameters in the 

performance of random parameter negative binomial, please see the subsequent section. 

 

3.2.3. Comparison of Fixed Parameter versus Random Parameter Negative Binomial Models: Contribution 

of independent variables and randomness 

Figure 7 illustrates the results which are used to compare the fixed parameter and random parameter 

negative binomial models obtained when random parameter models (with only 12% of standard deviation 

for AADT used as a random parameter) were applied to compute the expected crash frequency for each 

observation. The results indicate that if there is randomness in the data but the best combination of 

independent variables with fixed parameters was not used in estimating the random parameter negative 

binomial models, the fixed parameter negative binomial models may perform better compared to their 

random parameter counterparts based on the BIC value. This is critical finding highlights that missing 

important independent variables in the specification could significantly influence the performance of the 

random parameter negative binomial model. The result is particularly important to applied researchers. 

There is a focus on presenting models with large number of random parameters. The finding from our 

analysis should serve as a caution to any random parameter development. The consideration of random 

parameters should follow an exhaustive testing exercise with all relevant observed independent variables. 

The results suggest that it is better to develop models that have 6 fixed parameters (possibly with 6 

independent variables) and 2 random parameters as opposed to developing a model with 4 fixed parameters 

and 4 random parameters. Figure 8 illustrates similar findings after comparing fixed parameter and random 

parameter negative binomial models obtained when fixed parameter models were used to compute the 

expected crash frequency. 
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RP, NB, and EG refer to random parameter, negative binomial, and Eluru and Gayah, respectively. 

 

Figure 7. Comparison of Random Parameter versus Fixed Parameter Models based on 

Randomness and Subsets of Independent Variables 

 

 

 

RP, NB, and EG refer to random parameter, negative binomial, and Eluru and Gayah, respectively. 

Figure 8. Comparison of Random Parameter versus Fixed Parameter Models based on No 

Randomness and Subsets of Independent Variables 
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4. Conclusions and limitations 

This study applies a simulation-based statistical analysis to examine how proper model specification is 

critical for analysts to consider before applying random parameters to crash frequency models. A machine 

learning method is used to generate a synthetic dataset that matches closely to actual data observed in the 

field. Then, crash data is synthetically generated according to some known processes that the crash 

frequency models seek to recover, both ignoring and considering underlying unobserved heterogeneity via 

the introduction of random errors. Various fixed and random parameter models are estimated with improper 

and proper model specifications. The results suggest that failure to properly specify a model – either by 

omitting a critical variable or not incorporating the correct functional form – can cause parameters that may 

not necessarily be random to appear so. However, fixed parameters alone are not sufficient to account for 

systematic randomness that may exist in crash data, such as when unobserved heterogeneity is present. 

Since such unobserved heterogeneity is likely to always be present in real data, the implementation of 

random parameters is a critical and useful step in the development of crash frequency models, assuming 

that the model is first properly specified. The present study investigates the fixed parameter and random 

parameter negative binomial models from an estimation standpoint that relates to the role of model 

specification ignoring the significant fixed parameters in the random parameter model could lead to miss-

specification. One of the key insights from the analyses is whether the randomness in the data generation 

exists or not, if the best set of significant variables with fixed parameters is not selected, including 

significant random parameter(s) does not improve the mean BIC values of the random parameter models 

compared to their fixed parameter counterparts. The results highlight how the consideration of random 

parameters alone cannot serve as a solution to mis-specification issues in model development. Thus, the 

consideration of random parameters should be implemented in concert with a well-defined model 

specification process (defined by considering different functional forms and all observed variables in model 

development).  

While these findings provide useful insights, an interesting future research avenue is to check whether the 

misspecification could affect the out-of-sample prediction performance of the random parameter negative 

binomial models. Both the in-sample and out-of-sample predictions for the fixed parameter models are 

easily obtainable due to a consistent parameter estimates for all variables throughout observations. While 

obtaining the in-sample predictions for the random parameter models is still easier, it gets complicated 

when the aim is to obtain the out-of-sample predictions due to unavailability of observation-specific 

coefficients for random parameters in the random parameter negative binomial models. Most of the past 

studies have used the global mean approach to compute the out-of-sample predictions for the random 

parameter models (Wali et al. 2018, Tang et al. 2019). However, the out-of-sample predictions obtained via 

the global mean method could be flawed as it does not consider the variance due to observation-level 

coefficients. In this regard, some of the recent studies incorporate the mean and variance of the coefficients 

of random parameters when computing the out-of-sample predictions of the random parameter models (Hou 

et al. 2021, Xu et al. 2021, Hou et al. 2022). These studies reveal that if both mean and variance of the RPs 

are considered, the RP models can significantly outperform their fixed parameter counterparts. Considering 

the abovementioned points, the authors plan to extend their present analyses to understand how model 

specification relates to out-of-sample prediction performance of the random parameter negative binomial 

models as future research efforts. 
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