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ABSTRACT 

In this study, we propose a novel integrated parametric framework for analyzing multivariate crash 

count data based on linking a univariate count model for the total count of motor vehicle crashes 

across all possible crash states with a discrete choice model for crash event state given a crash. In 

doing so, we are able to use information at the disaggregate crash-level from an unordered model 

structure in analyzing the aggregate level crash count. To our knowledge, this is the first such 

model proposed in the econometric literature. We apply this approach in a demonstration exercise 

to examine the number of motor vehicle crashes in Census Block Groups (CBGs) in Austin, Texas, 

considering four injury severity levels. At the disaggregate level, we incorporate several 

explanatory variables such as the characteristics of the most severely injured individual and at-

fault vehicle’s parties, crash time variables (time of day, weather), crash location variables, and 

CBG level variables. At the aggregate level, we consider CBG level variables, including road 

design factors, land-use variables, crash exposure factors, aggregate sociodemographic attributes, 

and crime and traffic violations related measures. Importantly, our results indicate a significant 

and positive linkage between the disaggregate crash event state dimensions and the total crash 

count. Through the use of elasticity measures, our results also clearly highlight the improved policy 

sensitivity of the integrated model framework. 

 

Keywords: Multivariate Crash Count, Injury Severity, Integrated Framework, Crash Analysis 
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1. INTRODUCTION 

Traffic crashes represent an enormous cost to society in terms of property damage, productivity 

loss, emotional trauma, injury, and even death. According to the National Highway Traffic Safety 

Administration (National Center for Statistics and Analysis, 2023), an estimated 42,939 

individuals died in roadway crashes in the U.S. in 2021, an increase of 11.1% over 2020 and the 

highest year-over-year increase since 2007. An additional 2.5 million individuals are estimated to 

have incurred serious injuries in 2021, underscoring the continued (and even rising) dangers 

associated with being a road user in the U.S. Thus, it continues to be critical to analyze the 

occurrence and the severity of crashes, so that appropriate geometric countermeasures and 

behavioral interventions may be designed to reduce both the number and the severity of injuries 

sustained if a crash occurs.  

In safety research, crash frequency analysis is typically undertaken by aggregating crashes 

over a certain spatial and temporal scale (such as the number of crashes per year at intersections, 

specific roadway segments, census tracts, or traffic analysis zones). Various attributes of the spatial 

unit of analysis are used as determinants of crash frequency, including land-use and built 

environment (BE) factors, vehicle volumes and vehicle-mix factors, roadway geometry, and traffic 

control type at the location. While many earlier safety studies focused on total crashes at the spatial 

location (Lord and Mannering, 2010, Savolainen et al., 2011, and Shin and Washington, 2012 

provide a good review), recent studies have increasingly recognized that the determinants of crash 

counts likely vary by crash type and severity, and that aggregating all crashes into a single “total 

crash” dependent variable invites the pitfalls of the classic ecological fallacy; that is, if the 

dependent variable represents total crashes, the implicit implication is that the effect of a particular 

variable is the same regardless of crash type. As a result, many studies have focused on the count 

of crashes of a specific type, such as based on road user type (for example, pedestrian crashes or 

bicyclist crashes), injury type (for example, fatal or serious injuries), impact type (head-on or rear-

end or angle), or vehicle number and type (single vehicle crashes or multiple vehicle crashes, and 

heavy trucks versus passenger vehicles (see, for example, Abdel-Aty et al., 2011, 

Narayanamoorthy et al., 2013, and Hosseinpour et al., 2014 for such studies). But most such 

studies still consider univariate count models, and, if they differentiate among different crash 

types, do so by estimating independent univariate count models.  
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The safety analysis field has long matured in the area of univariate count models, with 

many different approaches ranging the smorgasbord from the simple Poisson and negative 

binomial models to discrete distribution models with binomial/logarithmic distributions to zero-

inflated count models (see, for example, Musio et al., 2010) and hurdle-count models (see, for 

example, Bethell et al., 2010). More recently, though, there has been a literal explosion in the use 

of multivariate count models, which can arise in one or more of several ways in crash analysis: (1) 

Repeated univariate count data from the same spatial unit, so that some unobserved factors relevant 

to the spatial unit may impact the univariate count observations across different observation 

periods (causing the entire set of count observations at the spatial unit to be correlated, thus 

resulting in a multivariate crash event), (2) Spatially-correlated univariate count data, so that 

observed and unobserved factors impacting the univariate count at one spatial unit also impact the 

univariate count at proximal locations (causing the entire set of count observations across different 

spatial units to become correlated, thus again resulting in a multivariate count set), (3) Explicit 

multivariate count data of different crash types at a spatial unit at a specific cross-section of time, 

because of common unobserved factors affecting multiple crash types simultaneously (causing 

multiple count dependent variables based on, for example, different road user types, injury severity 

levels, impact types, or vehicle types to become stochastically dependent). In this paper, the focus 

will be on the last type corresponding to explicit multivariate count data models. Readers may 

refer to  Castro et al., 2012, Narayanamoorthy et al., 2013, Cai et al., 2016, and Ziakopoulos and 

Yannis, 2020, for examples of the implicit multivariate count data arising from recognizing 

temporal and/or spatial correlation in univariate count data, though some of these methods have 

also been extended to multiple dependent variables; Cui and Xie (2021) provide a good overview 

of such implicit multivariate count data crash models.1  

  

1.1. Explicit Multivariate Count Data Models 

In the context of explicit multivariate count data, one may consider a simple Poisson or negative 

binomial discrete distribution, and develop multivariate versions of these discrete distributions to 

accommodate correlated counts (see Buck et al., 2009, and Bermúdez and Karlis, 2011 for 

 
1 In the literature, there does not appear to be adequate recognition of the fact that spatial/temporal stochasticity 

dependencies of univariate counts also lead to multivariate count models; the use of the term “multivariate counts” is 

usually reserved, based on our taxonomy in this study, for explicit multivariate count data models. 



3 

applications of these methods). While having the advantage of a closed form, these become 

cumbersome as the number of correlated counts increases and they also represent the undesirable 

property that they can only accommodate a positive correlation in the counts.  

Alternatively, one may use a discrete or continuous mixing structure, in which one or more 

random terms are introduced in the parameterization of the mean for the count in each crash event 

state (so that the mean is not only a function of exogenous variables, but also includes one or more 

random terms within the exponentiated mean function of the Poisson distribution; see, for example, 

Barua et al., 2014, Yasmin and Eluru, 2018, Bhowmik et al., 2021, and Pervaz et al., 2023 for 

extensive reviews). The most common form of such a mixture is to include normally distributed 

terms. If a multivariate distribution is assumed for these normal error terms across the different 

count event states, this leads to a multivariate count model. The advantage of this method is that it 

permits both positive and negative dependency between the counts, but the limitation is that the 

approach gets quickly cumbersome in the presence of several crash event states. Another related 

problem with these multivariate count models is that there are likely to be excess zeros in each 

crash event category. This necessitates the use of zero-inflated and hurdle-count techniques. 

Unfortunately, such techniques, while simple to implement in a univariate count setting, become 

extremely difficult, if not infeasible, in a multivariate setting (see Mannering et al., 2016 for a 

detailed discussion).2 Moreover, these multivariate count models are not able to capture crash-

specific variables. For example, when directly modeling the number of crashes by injury severity 

at an intersection using a multivariate crash model, the analyst is unable to consider the 

intoxication/sober state of a driver traveling through the intersection at a particular time. But we 

might expect that an inebriated driver at an intersection would be more prone to severe injury risk 

if in a crash, while also increasing crash risk at the intersection. Similarly, consider a driver not 

wearing their seat belt and traveling through an intersection at a particular time. This may lead to 

a higher crash risk at the intersection (because, in general, unbuckled drivers tend to be more 

aggressive drivers; see Eluru and Bhat, 2007) as well as result in a higher injury severity risk 

conditional on a crash. Again, the “buckled or not buckled” state of a driver at a specific crash 

 
2 An alternative approach to analyze crash rates (for example, number of crashes per 100 million vehicle miles of 

travel) by injury severity level in the presence of excess zeros is to translate the dependent variable vector from a 

multivariate count to a multivariate continuous variable. For example, to address the preponderance of zero values, 

Anastasopoulos and Mannering (2011) developed a multivariate Tobit-regression model to analyze crash rates by 

injury severity level. However, the likelihood estimation approach again becomes cumbersome and presents a 

computational challenge when there are many tobit regressions in the multivariate set-up. 
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(time) instance at the intersection cannot be considered in a multivariate crash model by injury 

severity.3 Fundamentally, multivariate count models are not able to adequately accommodate the 

effects of variables on crash counts through their effects on crash event state.  

Another approach uses a strictly hierarchical combination of a count model to analyze total 

crashes and a discrete choice model or another count model that allocates the total count to 

different crash event states given a crash (see, for example, Kim et al., 2007, Milton et al., 2008, 

Yamamoto et al., 2008, Huang and Abdel-Aty, 2010, and Fu et al., 2023). Also, the many studies 

in the literature that focus solely on total crashes or solely on injury severity/crash type conditioned 

on a crash implicitly assume such a strictly hierarchical mechanism for predicting crashes by injury 

severity level/crash type. In this hierarchical setting, the probability of the observed counts in each 

injury severity level/crash type, given the total count, takes a multinomial distribution form (see 

Terza and Wilson, 1990). This structure, while easy to estimate and implement, may not be very 

appropriate for crash analysis. Thus, for example, consider the presence of wide inside shoulders 

or even physical barriers (between opposing directions of movement) at a rural highway segment 

site. Such wide shoulders/barriers are likely to reduce the number of head-on crashes and fatal 

injuries if there is a crash at the site (see, for example, Castro et al., 2012). But, in the pool of total 

crashes, the number of fatal injuries relative to the non-fatal injuries is small, and thus it is possible 

that, in a total count model, the effect of wide inside shoulders or a physical barrier does not turn 

out to be statistically significant.4 In such a case, because the total count does not turn out to be 

affected by wide inside shoulders/barriers (of course, incorrectly so), the net result in a strictly 

hierarchical model of crash count and injury severity would be a decrease in the count of fatal 

injuries, but a necessary increase in the count of non-fatal injuries. The latter result would not make 

much sense at all.  

An alternate and more appealing structure is one that explicitly links the event state discrete 

choice model with the total crash count model. A recent effort by Pervaz et al. (2023) attempts to 

do so by first estimating an injury severity ordered-response model at the event state level (that is, 

 
3 It may be argued that such effects could be considered in a multivariate count model by continually disaggregating 

outcomes, such as by analyzing crashes by injury severity by drunken state by seat belt use and so on. But the number 

of determinants of injury severity conditional on a crash can be quite a few, leading to a multivariate count model with 

too many crash event states. In addition to estimation problems as discussed earlier, this also has the effect of 

“thinning” the sample of non-zero crash counts within each of the very disaggregated crash event state. 
4 Such occurrences will be especially commonplace as the number of disaggregate event states (crash severity level 

and crash types) increases, since the number of crashes in each event state will be but a small fraction of total crashes.  
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a crash level), and then including the sum of the estimated underlying injury propensities across 

crashes within a joint model system of total count and a fractional split model to disaggregate the 

total counts into different injury severity types. But, as discussed later, their approach is applicable 

only for event type models that may be viewed as an ordered-response outcome; they also use a 

fractional split model for crash type rather than directly using a discrete outcome model at the 

crash level to partition the total count into its component crash types.  

 

2. THE CURRENT PAPER 

In the current paper, we consider a flexible unordered-response process as underlying the event 

state. The highest event state risk propensity from this event state model is then used as an 

explanatory variable in the total crash count model. In doing so, the factors in the unobserved 

portions of event state crash propensities must also influence the total crash count intensity just as 

the observed factors in the event state crash propensities do. This is essential to recognize the full 

econometric jointness between the event state (given a crash) and the total crash count, as does the 

model proposed in this paper. In doing so, we use a multinomial probit (MNP) model for the crash 

event state discrete model (conditional on a crash), rather than the traditional multinomial logit 

(MNL) or nested logit (NL) kernel used in earlier studies. The use of the MNP kernel allows a 

more flexible covariance structure for the event states relative to traditional GEV (Generalized 

Extreme Value) kernels. In addition, the model system allows random variations (or unobserved 

heterogeneity) in the sensitivity to exogenous factors in both the crash event state model as well 

as the total crash count components. The formulation also allows handling excess zeros in a 

straightforward manner (or excess counts of any value), which is a common characteristic of crash 

counts (see Lord, 2006). In contrast, a more recent group of multivariate crash count studies (see, 

for example, Yasmin and Eluru, 2018, Afghari et al., 2020, Bhowmik et al., 2021, Wang et al., 

2021, Pervaz et al., 2023) that use a fractional split approach (see Papke and Wooldridge, 1996, 

and Sivakumar and Bhat, 2002) for crash event state combined with a count model do not account 

for such excess crash count values. Besides, they also use a statistical stitching mechanism similar 

to the mixing approaches discussed earlier to generate stochastic jointness, and use a restrictive 

ordered-response mechanism to model event state (such as injury severity). The ordered-response 

mechanism, while potentially parsimonious, can lead to severe inconsistencies in model estimates 

if the rigid implied restrictions of the effects of exogenous variables on the multivariate counts do 
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not hold (Bhat and Pulugurta, 1998). Also, even if there may be some basis for considering certain 

event states (such as injury severity) as being ordered, many event states must be modeled as 

unordered responses anyway (for example, if user type or crash type are event states). In this paper, 

and for the first time that we are aware of, we develop a multivariate count data framework that is 

able to use information at the disaggregate crash-level from an unordered model structure, given a 

crash. Further, by explicit modeling of the event state outcome at the event state level, rather than 

aggregating these outcomes into fractions, we consider unobserved heterogeneity at the event state 

outcome level. Additionally, our linkage from the event state to the total count naturally arises as 

the maximum risk across all event states, lending conceptual and theoretical support to the 

methodology. The linkage captures the intuitive notion that variables that positively impact the 

highest risk injury severity level given a crash at a particular spatial unit at a particular instant will 

also positively impact the total crash risk at that spatial unit. 

Overall, we propose an integrated parametric framework for multivariate crash count data 

that is based on linking a univariate count model for the total count of crashes across all possible 

crash type states (that we will henceforth refer to as crash event states) with a discrete choice model 

for crash event state given a crash. The approach is applied in a demonstration exercise to examine 

the number of motor vehicle crashes in Census Block Groups (CBGs) in Austin, Texas by four 

injury severity levels. The data for the analysis is drawn from the Texas Department of 

Transportation crash incident files. Explanatory variables considered at the disaggregate level 

include the characteristics of the most severely injured individual and at-fault vehicle’s parties, 

crash time variables (time of day, weather), crash location variables, and CBG level variables.  At 

the aggregate level, we consider CBG-level variables, including road design factors, land-use 

variables, crash exposure factors, aggregate sociodemographic attributes, and crime and traffic 

violation-related measures. 

The rest of this paper is structured as follows. The next section presents the model structure 

and estimation procedure. Section 4 describes the study area for our analysis of crashes, the data 

source, and sample characteristics. Section 5 presents the empirical estimation results and their 

implications for safety analysis. Finally, Section 6 concludes the paper. 
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3. MODELING FRAMEWORK 

3.1. Model Formulation  

Let q ( 1,2,...,q Q= ) be an index to represent CBGs and let i ( 1,2,...,i I= ) be an index to represent 

crash event states (for example, combinations of crash types and injury severity levels). In the 

empirical demonstration exercise in this paper, there are four event states. The precise definitions 

of the event states, used in this study, are provided later in Section 4.  Let k  ( 0,1,2,..., )k =   be 

the index to represent total crash frequency and let 
qn  be the total number of crashes at CBG q 

over a certain period of interest ( qn  takes a specific value in the domain of k). Each count unit 

contribution to the total count 
qn  of crashes at CBG q corresponds to a crash instance in which one 

of the I  event states is manifested. Let tq be an index for crash instance, so that tq takes the values 

from 1 to qn  for CBG q.  As a result, the crash event discrete model takes the form of a panel 

discrete choice model, with 
qn  crash observations (tq =1,2,…,

qn ) from CBG q. The resulting data 

allows the estimation of CBG-specific unobserved factors that influence the intrinsic propensity 

risk of each crash event state as well as the effects of other exogenous variables. 

In the rest of this paper, we will use the following notations: ),( ΣbRMVN  for the 

multivariate normal distribution of R dimensions with mean vector b and covariance matrix Σ , 

RIDEN  for an identity matrix of dimension R, R1  for a column vector of ones of dimension R, 

R0  for a column vector of zeros of dimension R, and RR1  for a matrix of ones of dimension R×R. 

 

3.1.1. Crash event state model 

Let the risk propensity of observing crash event state i at crash instance tq at CBG q be qt i
q

S  and 

write this propensity as a function of an exogenous variable vector qt i
q

x  that may include both 

crash-level variables (such as time-of-day, day-of-week, season-of-year, crash type, number and 

type of vehicles involved, crash location attributes, and weather conditions) contained in an 

1( 1)D  − vector qt i
q

z  as well as broader CBG-level exogenous variables (such as aggregated CBG 

road network and built-environment characteristics, and vehicle ownership trends) contained in 

another 2( 1)D  −vector 
qi . Thus, ,qt i qt i qi

q q

 
 =
 
 


 x z   is a ( 1)D − vector, where 1 2.D D D= + qt i

q
z  
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includes a constant for all event states except one, and may include interactions of crash-level and 

CBG-level attributes as they affect the risk propensities of the crash event states (for later use in 

forecasting, we will introduce variables in qt i
q

z  as categorical variables). We then write the 

following for qt i
q

S : 

* ; , ~ ( , )
q q qqt i q qt i qt i q q q D DS MVN= + = +β x ε β b β β 0 Ω ,  (1) 

 
 

where 
qβ  is a crash-specific (D×1)-column vector of corresponding coefficients. ( ), ,q qz q

 =β β β  

where 
qzβ  is the coefficient vector on qt i

q
z  and 

qβ  is the coefficient vector on  
qi . 

qβ  is assumed 

to be a realization from a multivariate normal density function with mean vector b  and covariance 

matrix Ω  (this specification allows heterogeneity in the effects of exogenous variables due to 

unobserved CBG and crash-level attributes). 
qqt iε is assumed to be an independently and identically 

distributed (across crash instances and across CBGs) error term, but having a general covariance 

structure across crash categories at each crash instance. Thus, consider the )1( I -vector 

1 2 3( , , , , )
q q q q qqt qt qt qt qt I    = ε  and assume that ~ ( , )

qqt I IMVNε 0 Θ . Define 

1 2( , ,..., )
q q q qqt qt qt qt IS S S =S  (I×1 vector), and 1 2( x , x ,..., x )

q q q qqt qt qt qt I
=x  (I×D matrix). Then, we 

can write:
 
 

.
q q q q qqt qt q qt qt qt= + = +S x β ε V ε  (2) 

Next, let the crash event type observed at the tth crash instance at CBG q be 
qqtc  ( 1,2,...,

qqtc I ). 

Define 
qqtM  as a [( 1) ]I I−   matrix, corresponding to an )1( −I  identity matrix with an extra 

column of 1−  values added as the th

qqtc  column. In the propensity differential form (where the 

propensity differentials are taken with respect to the observed crash event state qtc  at each crash 

instance), we may write the risk propensities of Equation (2) in differenced form (differenced from 

the risk propensity of the actually observed crash event observed at the tq
th crash instance at CBG 

q as: 

( )*

, , .

q q q q q q q q q q

q q q q q q q q q q

*

qt qt qt qt qt q qt qt qt q qt qt

qt qt qt qt qt q qt qt qt qt qt

= = + = +

+ = = =

s M S M x β ε M x β M ε

V ε V M x β M V ε M ε=
   (3)   
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Next, we obtain the following result: 

*

( 1)| ( , ),  where .
q q q q q qqt q I qt qt qt qt qtMVN −

=s β V Θ Θ M ΘM    (4) 

The likelihood of observing the sequence of observations across the qn  crash instances at CBG q, 

conditional on the coefficient vector qβ , may be written as:  

( )* * * 1 * 1 1

, ( 1)

1

( ) ; , where and ,
q

q q q qt q q qt q qtq q q

q

n

q crash event state q I qt qt qt qt qt qt

t

L − − −

−

=

=  − = = Θ Θ ΘΘ β V Θ V ω V Θ ω Θ ω   (5) 

where ( )* *

( 1) ;
q qI qt qt− −V Θ  represents the standard multivariate normal cumulative distribution 

(MVNCD) function of dimension I–1, with the upper truncation points given by the vector *

qqt−V  

and the correlation matrix given by *

qqtΘ . 
qtq

Θω  is a diagonal matrix of standard deviations of  
qqtΘ  

(the equation above results because the event instance outcomes are stochastically independent 

conditional on 
qβ ). The parameters to be estimated include the b vector, and the elements of the 

covariance matrices Ω  and Θ .5 However, note that the parameters from the event state model 

also appear in the total count model, and hence we discuss the overall estimation procedure for the 

total count-event type model in Section 3.2 after first discussing the linking function and total 

count model formulation in the next couple of sections.6 

 

3.1.2. Linking function 

At each crash instance, a measure of the overall crash propensity may be obtained as the maximum 

of the value across the crash event state (type/injury severity level) risk propensities (because the 

highest risk state is what will get manifested as the crash event state at each instance). Next, to 

 
5 Due to identification considerations (see Bhat et al., 2013), not all parameters of Θ are estimable. To be precise, 

only the covariance matrix of the error differences (with respect to an alternative) are estimable, and even that after 

scaling the variance of one of the error term differences to zero.  Please see Section 5.2.5.  

6 Of course, if the analyst uses a simpler multinomial logit (MNL) model for the crash event state, then the crash event 

state likelihood expression, conditional on qβ , collapses to the following: 

( )

( )

1( )

,

1 1

1

exp
| ,

exp

qtq

q

q

q

q

i c

n I
q qt i

q crash event state q I
t i

q qt j

j

L

=

= =

=

 
 
 =
 

 
 




β x
β

β x

where 1( )
qqti c=  is a dummy variable taking the value 1 if 

alternative i is equal to 
qqtc  (that is, if alternative i is the event state alternative at crash occasion qt ), and 0 otherwise.   
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recognize the fact that different crash instances may have different values for the exogenous 

variables (including observed and unobserved individual-specific and crash-specific factors), one 

can compute the overall crash propensity at a specific location as the geometric mean over the 

maximum values of crash risk across all crash instances at a location, conditional on overall 

unobserved location-specific effects captured in 
qβ . This variable can then be included as an 

explanatory variable in the crash frequency model along with other variables that impact the 

overall number of crashes without impacting the severity of injury if a crash were to happen.  To 

develop this link, consider the expression for the crash risk propensity of crash event state i at 

crash instance qt  ( 1,2,..., )q qt =  at CBG q in Equation (1). Based on this expression at the crash 

event state level, we may write the aggregate risk of a crash occurrence due to the crash event 

state, given observed crash-level/CBG-level characteristics embedded in the vector 
qqtx  as well as 

the impact of these exogenous variables as captured in the CBG-specific effects vector 
qβ , as 

follows: 

* * * *

1 2| ( , ,..., | )= ( | ), 1,2,..., .
q q q q qqt q qt qt qt I q qt i q

i
Max S S S Max S i I = =β β β  (6) 

|
qqt q β  is, of course, distributed with a cumulative distribution function given by: 

( ) ( ) ( )* * *

1 2Prob( | ) Prob | , | ,..., | ; ,
q qqt q qt q qt q qtI q I I qtz S z S z S z F z    =    =

   
β β β β 1 V Θ , where 

IF  is the multivariate normal cumulative distribution function of dimension I with mean  
qqtV and 

covariance matrix Θ . Next, define ( )1 2| , ,...,
qq q q qn qMax   =δ β βq

, which is the aggregate crash 

risk at CBG q in a given time period (that is, over all the crash occurrences observed over the time 

period). This random variable has a cumulative distribution function as follows: 

( ) ( )1 2

1

Prob | Prob , ,..., ; ,
q

q q

q

n

q q q qn q I I qt q

t

z z z z F z  
=

 
   =    =      

 
δ β β 1 V Θ βq

        (7) 

Next, to control for the different number of crash occasions at each CBG q, we develop another 

constant risk variable that operates at the individual crash level at CBG q in such a way that the 

probability of the per-crash individual risk, when aggregated across all crash occasions, provides 

the same probability as the aggregate crash risk across all observed crash occasions at that CBG. 

Statistically speaking, the objective is to define a random variable at the individual crash 

occurrence level at CBG q with a cumulative distribution function such that, across all crash 
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occurrences, the aggregate crash risk has the same cumulative distribution function (CDF) as that 

of | qδ βq
. Define such a per-crash risk at CBG q, given 

qβ , as | .q q β  Let the CDF of |q q β  be 

Prob( | ) ( ) | .q q qz G z  =β β Then, across all crash occurrences at CBG q, the distribution of the 

aggregate crash risk would be  ( ) qn

qG z β . Equating this to the expression in Equation (7), we get 

the following as the distribution function of |q q β : 

 ( ) qn

qG z =β
1

; ,
q

q

q

n

I I qt q

t

F z
=

 
    

 
 1 V Θ β , or    ( ) qG z =β

1

1

; ,
q

q

q

q

n
n

I I qt q

t

F z
=

 
    

 
 1 V Θ β .          (8) 

The reader will note that |q q β  is itself a stochastic variable, and it is important to consider this 

stochasticity in the effect on crash occurrence. It is this |q q β  that serves as a CBG-specific linking 

term between the crash events and the CBG counts. To our knowledge, this linking function for 

the per-instance aggregate crash risk across multiple crash instances is a first in the econometric 

literature, and is the fundamental vehicle that allows us to consider conditional-on-crash attributes 

in a crash occurrence model. 

 

3.1.3. Crash frequency model 

The crash frequency model is based on a Generalized Ordered Response Probit (GORP) 

representation for count models (see Bhat, 2015, and Castro et al., 2012 who show that any count 

model may be reformulated as a special case of a GORP model in which a single latent continuous 

variable is partitioned into mutually exclusive intervals). This representation generalizes 

traditional count models, can exactly reproduce any traditional count data model, and allows 

handling excess zeros with ease.  

Define the latent crash propensity for CBG q as *

qy  and consider the following structure: 

( ) ( )* | |q q q q q q qy   


= + + +β θ θ w β ,    kyq =     if    *

, 1 |q k q q qky −  β ,  (9) 

0

( )
k

qk k q l

l

f 
=

= +z  

The parameter   is the linkage parameter. 
qw  is an (L×1)-column vector of exogenous attributes 

(excluding a constant), 
qθ  is a corresponding (L×1)-column vector of CBG-specific variable 
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effects, and 
q  is a random error term assumed to be identically and independently standard 

normal distributed across CBGs. 
qθ  is a realization from a multivariate normal density function 

with mean vector θ  and covariance matrix Ξ , such that q q= +θ θ θ  and ~ ( , )q L LMVNθ 0 Ξ  is 

independent of 
q  ( qθ  is a CBG-specific coefficient vector introduced to account for unobserved 

heterogeneity in the latent crash propensity). The latent crash propensity *

qy  is mapped to the 

observed count variable qy  by the thresholds 
qk , which satisfy the ordering conditions

, 1( q − = − ;− < ...)210  qqq   in the usual ordered-response fashion, ( )k qf z is a non-

linear function of a vector of CBG-specific variables 
qz  (

qz  includes a constant), and l  is a 

scalar similar to the thresholds in a standard ordered-response model 1( ; 0K − = − =  for 

identification, where K is the largest count value observed in the estimation sample). As indicated 

by Castro et al. (2013), traditional count models do not consider the vector 
qw , and only consider 

the vector 
qz . Write 

1

0

( ) ,
!

q

lk
q

k q

l

f e
l

 −−

=

 
=    

 
z  so that the thresholds in Equation (9) take the 

following form:  

1

0 0!

q

lk k
q

qk l

l l

e
l

 
 

−−

= =

 
=  +  

 
  , with q

q e


=
γ z

, and 0l =  if *l K ,  (10) 

where 
1−  is the inverse function of the univariate cumulative standard normal, γ  is a coefficient 

vector to be estimated, and 
*K  is an appropriate count level that may be determined based on the 

empirical context under consideration and empirical testing. The presence of the l  terms provides 

flexibility to accommodate high or low-probability masses for specific count outcomes without 

the need for using hurdle or zero-inflated mechanisms. Also, note that 
qw  and 

qz  can have 

common elements. The presence of intersection characteristics in 
qz  allows CBG with the same 

latent crash propensity to have different observed crash frequency outcomes.  

 Equation (9) may be rewritten after some straightforward algebraic manipulations as 

follows: 

( )* 2 2| | , where ~ ( , ), , 1.q q q q q q q q q q q q qy H H N μ μ    = + = = +β β θ Ξw w w   (11) 
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3.1.4. Model building  

To proceed, we need the cumulative distribution function of * |q qy β .  The cumulative distribution 

function of 
* |q qy β  for CBGs with 0k   may be obtained from the following theorem: 

 

Theorem 1: The distribution of 
* |q qy β , which includes the stochastic maximum over crash 

instances and crash risk propensities for each event state at each crash instance, takes the following 

cumulative distribution function form for 0  : 

( )

1

2 2

1

( ; , , , ) ; , ; , , ,
q q

q q q q

qq

n n
q

q q q I I qt H q q q q q qt qt q

th

u h
R u F f h dh    



+

==−

  
  −    

= =             

Θ 1 V Θ β V x β  (12)

where IF  is the multivariate normal cumulative distribution function of dimension I with mean  

qqtV and covariance matrix Θ , and 
qHf is the univariate normal density function with mean 

q  and 

variance 2.q   

( ) ( )

( )

( )

2 *

1

2

1

Proof : ( ; , , , ) = Prob | Prob |

Prob |

; , ; ,
q q

q q

qq

q q q q q q q q

q

q q

n n
q

qt q q q q qI I H
th

R u y u u H

u H

u h
F f h dh

    




 


+

==−

 
 

 
 
 

  
     
            

   

 =  −

−
= 

−
= 

Θ β β

β

1 V Θ β

         (13) 

For CBGs with k=0, there are no crash-specific variables, but CBG-level exogenous variables are 

still available. Thus, for such CBGs, Equation (12) holds with 1qn = , and ,
qqt qi q=V β  and the 

conditionality being taken only with respect to the 
qβ  vector. Next, the likelihood function from 

the total count model, given that the observed count level of CBG q is qn  conditional on 
qβ , may 

be written as:7 

 
7 If the event state model is analyzed using a simpler MNL model, the likelihood expression below simplifies to a 

one-dimensional integral: 
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2 2

, , 1( , , , , ) ( ; , , , ) ( ; , , , )
q qq,count q q q n q q q q n q qL R R        −= −Θ θ Ξ γ β Θ Θ   (14) 

The likelihood function above involves the computation of an I+1-dimensional integral.8 

 

3.2. Model Estimation 

The conditional likelihood function for the joint crash frequency-crash category model may be 

obtained from Equations (5) and (14) as follows: 

 ( ) ( ), ,( , , , , ) ( ) ( , , , , )q q q crash event state q count qL L L  = 
 

Θ θ Ξ γ β Θ Θ θ Ξ γ β .  (15) 

Defining 2( , ) , ( , )q q q q q

q

H 


 
   = = =  

 

Ω 0
β β b b Ω

0
, the unconditional likelihood from CBG q 

may be rewritten as follows: 

( ) ( ) ( ) , , 1, , , , , , ( ) ( , , , , ) ( | ) ,

q

q q crash event state q count q D q qL L L f d  +
 = 
 

β

Θ θ Ξ γ b Ω Θ Θ Ξ γ β β b,Ω βθ   (16) 

where 1(. | , )Df + b Ω  is the multivariate normal density function with mean vector b  and covariance 

matrix Ω . The integrand in the likelihood function above comprises the evaluation of MVNCD 

functions of dimension (I–1) in the , ( )q crash event stateL Θ  component and dimension I in the 

 

( )

( )
( )

2 2

, , 1

,
2

,

11

( , , , ) ( ; , , , ) ( ; , , , ) ,

( ; , , ) exp exp ln exp

q q

q
q

q q

q

q,count q q q n q q q q q n q q q q

n I
q n q

q q n q q q q qt i

ith

L R R

h
R

          


   



−

==

= −

      −        = − − −                    



θ Ξ γ β β

β β x ( )

1

2; , ,

q

q

q

n

H q q q qf h dh 
+

=−



 

 
8 If ϑ=0, the contribution from the event state model into the count model ceases to exist, and the count model 

likelihood expression collapses to: 
2 2

, , 1( , , ) ( ; , ) ( ; , ),
q qq,count q q q n q q q q n q qL F F      −= −Ξ γ β  

where 2

,( ; , )
qq q n q qF     is the univariate normal cumulative distribution function with the upper threshold at , qq n , and 

a mean of 
q  and variance of 2

q . This corresponds to the case of an unlinked model. Of course, there is a 

computational time implication in the estimation of the linked and unlinked models. While the linked model 

(conditional on 
qβ ) requires the evaluation of the I+1-dimensional integral in the total crash component (based on 

Equation 14), the unlinked model (conditional on 
qβ ) entails only the estimation of a simple univariate normal 

cumulative distribution function. In our empirical analysis, the net result was that the unlinked model required only 

about a couple of minutes to estimate, while the corresponding linked model took about a couple of hours to estimate 

on the same machine. Such extended run times are expected given the multivariate integration involved in jointly 

estimating the aggregate and disaggregate models together. This is analogous to the increase in runtime observed when 

comparing a traditional fixed parameters model with its random parameters variant. 
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, ( , , , , )q countL Θ Ξ γθ  component. These are evaluated using the accurate analytic two-variate 

bivariate screening (TVBS) approximation proposed by Bhat, (2018). The integrals of dimension 

D+1 involved in unconditioning over the entire real line for the ( , )q q qH =β β  vector are evaluated 

using Halton draws (Bhat, 2003, Halton, 1960). 

One additional issue still needs to be dealt with. This concerns the positive definiteness of 

several matrices in Equation (16). Specifically, for the estimation to work, we need to ensure the 

positive definiteness of the following matrices: , , ΘΩ and Ξ . This can be guaranteed in a 

straightforward fashion using a Cholesky decomposition approach (by parameterizing the function 

in Equation (16) in terms of the Cholesky-decomposed parameters). 

 

3.3. Use of Model in Forecasting 

Once estimated, the model may be used to forecast crash counts by crash event state. To do so, 

note that qt i
q

z  contains variables in categorical form, and we first develop all combinations of these 

categorical variables and populate these combinations as members of a set zA . For example, if 

qt i
q

z  includes two time-of-day variables of day and night, and two weather-related variables of 

clear conditions versus rainy conditions, the cardinality (say zCA ) of the set zA  is four, with the 

membership being the combinations of za =1 (representing the combination of day, clear weather), 

za =2 (combination of day, rainy weather), za =3 (representing the combination of night, clear 

weather), and za =4 (representing the combination of night, rainy weather). Then, for each 

combination za  ( za =1,2,3,…, zCA ), assuming that combination za  is the one that applies for each 

crash instance 
q

t , the multivariate probability of counts in each crash event state, conditional on 

the total count level for CBG q being qk  0( qk ) and conditional on 
qβ , takes the following 

multinomial distribution form:  

1 1 2 2

1

1

!
[( ), ( ),..., ( ) | , , ] ( , )

!

I
q

q q q q qI qI q z q qi z qI
i

qi

i

k
P y k y k y k k a P a

k =

=

= = = = 


β β .  (17) 
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To compute ,qi z qP a β , define 
qiR  ),...,2,1( Ii =  as an II − )1(  matrix that corresponds to an 

)1( −I  identity matrix with an extra column of 1− ’s added as the 
thi  column. Let 

( )qi qi qi
=G R Θ R . Then, 

* 1 1 1

1 ( 1), [ ] ( ) ( ), ( ) ( )
z qi z qi qiqi z q qi qa I q I qa q qiP a P − − −

− −
 =  = −
 G G Gβ R S 0 β ω x β ω G ω .   (18) 

where *

zqaS  refers to the vector of injury severity risks given that the crash event-specific 

combination state of za  applies, and 
zqax includes the 2( )I D − intersection-specific matrix 

1 2( , ,..., )q q q qI
=     and the 1( )I D −CBG/crash-specific matrix of explanatory variables 

based on the combination za . 
qiGω  is the diagonal matrix of standard deviations of 

qiG .  

Next, to obtain the multivariate probability unconditional on the crash state context at each 

event instance, we write the following mixture based on the probability of occurrence of crash 

state za :9 

1 1 2 2

1 1

1

!
[( ), ( ),..., ( ) | , ] ( , )

!

z

qi

z

z

CA I
kq

q q q q qI qI q q a qi z qI
a i

qi

i

k
P y k y k y k k P P a

k= =

=

= = = = 


β β   (19) 

The expression above needs the probability of the occurrence of the crash combination .za  For 

CBGs in the estimation sample, this is easily computed as the probability of actual occurrence of 

the crash combination. For CBGs not in the estimation sample, this may be computed as the 

average of the corresponding probabilities from the CBGs in the estimation sample or using a more 

stratified grouping based on a similarity index for CBGs and then attributing the average of the 

probabilities of the appropriate grouping from the estimation sample, or using a separate 

supplementary model. In our joint crash frequency-crash event state model, the unconditional 

 
9 We are not aware of the earlier use, within the context of the multinomial distribution, of a discrete mixture 

probability for accounting for different probabilities across event instances as well as a continuous mixture to 

accommodate unobserved heterogeneity of the 
qβ  coefficient vector. Of course, if crash-specific variables are entirely 

ignored in the crash count model (that is, the exogenous variable vector is restricted to the same across all crash 

instances, which is the current state-of-the-art in the crash literature), then (and only then) does the expression below 

in Equation (19) collapse to the well-known multinomial distribution (in this special case, 1zCA = , and 
zaP =1).   
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multivariate probability for any given set of values 
qik then takes the form indicated below:


=

=
I

i

qiq kk
1

, ( 0,1,2,...,qik =  , 0,1,2,...,qk =  ): 

1 1

1 1

1

!
[( ),...,( )] [ ] ( , ) ( | , ) ,

!

z

qi

z

zq

CA I
kq

q q qI qI q q a qi z q D q qI
a i

qi

i

k
P y k y k P y k P P a f d

k= =

=

  
  
  = = = =  
  

  
  

 
β

β β b Ω β   (20) 

with ][ qq kyP =  as in Equation (14) after replacing qn  (the actual observed total crash count for 

CBG q in the estimation sample) with an arbitrary value 
qk . Using the properties of the 

multinomial distribution, the marginal probability of qik  counts for crash event state i is: 

( ) ( )( )
( )

1

[ ] [ ] , 1 ,
( )

z q qiqi

z

q qi zq

CA k kk
q

qi qi q q a qi z q qi z q

k k a qi q qi

k !
P y k P y k P P a P a

k ! k k !

 −

= =

   
 = = =   −  

 −     
 

β

β β  (21) 

In the above expression, the upper bound of the summation is 
qk =  , though the probability 

values fade very rapidly beyond a 
qk  value of 5. So, the summation may be carried out up to a 

predetermined threshold (such as say 20)qk =  depending on the empirical context. 

Equation (20) provides the probability for any given multivariate count category by event 

state at a CBG (for data fit assessment purposes on the estimation sample, Equation (20) can also 

be used to compute an average probability of correct prediction across CBGs). Similarly, Equation 

(21) provides the probability of any specified univariate marginal count for an event state, given a 

specified total count (again, for data fit assessment purposes on the estimation sample, Equation 

(21) can also be used to compute an average probability of correct prediction separately for each 

crash event state). For prediction at any given CBG, one can compute all possible combinations of 

the multivariate outcomes (from Equation (20)), and then translate those probabilities to a 

deterministic prediction at the CBG in the usual microsimulation-based fashion by (1) arranging 

the probabilities sequentially in a linear line between 0 and 1 in a cumulative fashion, (2) picking 

a random uniform number between 0 and 1, and (3) selecting the combination that corresponds to 

the random number realization on the cumulative probability line.  
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4. DATA 

4.1. Sample Formation 

Our study uses crash data from the city of Austin, located in Central Texas, encompassing a total 

of 671 CBGs. The data is extracted from the Texas Department of Transportation (TxDOT) crash 

database between January 1, 2018, and December 31, 2019. We specifically focus on motorized 

vehicle crashes occurring at intersections and involving two vehicles. For each crash, five levels 

of injury severity are reported: no injury, possible injury, non-incapacitating injury, incapacitating 

injury, and fatal injury. Due to the relatively limited number of observations in the fatal crash 

category, we combine fatal and incapacitating injuries into a single severe injury category. Also, 

the choice of a two-year aggregation period (2018-2019) was an informed decision based on the 

spatial resolution of CBG areas. A one-year aggregation often led to many CBGs recording zero 

or very few crashes, resulting in limited variation to extract a meaningful relationship between 

crash count and determining variables. Extending the aggregation period to two years allowed us 

to achieve better variation in crash counts. Finally, to ensure consistency and comparability across 

the two time periods, we implemented a logarithmic offset of ln(2) in our count model. This 

adjustment aligns the frequency model to an annual basis, enabling predictions to reflect annual 

count rates. In total, our dataset comprises 2,757 crashes, distributed across 469 CBGs.  

 

4.2. Outcome Variables 

The endogenous outcome variables correspond to the total count of crashes per CBG by the four 

severity levels. Figure 1 provides an overview of the distribution of crash counts by severity level. 

The black line represents the number of CBGs with a specific crash count (based on the left-side 

y-axis), while the color scheme of the stacked bars represents the allocation of the total crashes 

across the severity levels (based on the right-side y-axis). The figure shows that, among the 671 

CBGs, 202 CBGs (30.1%) did not experience any crashes, while 115 CBGs (17.1%) had one crash, 

and 67 CBGs (10.0%) had two crashes. The remaining specific crash counts were observed in a 

smaller number of CBGs, as evident from the declining trend revealed in Figure 1. Notably, 

regardless of the total count of crashes per CBG (the x-axis in Figure 1), non-injury crashes were 

the most prevalent, accounting for an average of about 45.7% of all crashes. Possible injury crashes 

constituted an average of 26.0% of all crashes, while the corresponding figures for non-

incapacitating injury crashes and severe injury crashes are 25% and 3.3% respectively. 
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Additionally, Figure 1 indicates a slightly increasing trend in the proportion of severe injury 

crashes as the total number of crashes per CBG increases. This finding suggests a linkage between 

injury outcomes and counts in CBGs.  

 While our current application does not encounter issues associated with high crash counts, 

our modeling framework is robust and versatile enough to be adapted for high-crash-count 

scenarios, typically in cases when larger geographic units such as Traffic Analysis Zones (TAZs) 

are employed as the spatial unit of analysis. In such situations, counts in the upper end of the 

spectrum may be grouped into bracketed categories without much loss in the accuracy of the 

estimated relationship. 

 

4.3. Exogenous Variables 

The study draws upon an array of data sources to compile a comprehensive set of variables 

influencing crash occurrence and severity. The exogenous variables and data sources include (a) 

crash location, time, and conditions as well as the characteristics of the involved parties from 

TxDOT’s CRIS database, (b) road network and built-environment (BE) features from the roadway 

network inventory database of the Texas Department of Transportation (TxDOT), (c) land-use 

distribution by type from the City of Austin's Open Data Portal, (d) motorized vehicle ownership 

data from the U.S. Environment Protection Agency (EPA) Smart Location Database (or SLD; see 

Chapman et al., 2021, and Ramsey and Bell, 2014) (e) commute mode splits and sociodemographic 

data from the American Community Survey (ACS) 2021 five-year estimates, and (f) police-

reported crime and traffic violations from the City of Austin's Open Data Portal.  

 The exogeneous variables are categorized into five categories (i) most severely injured 

individual characteristics, (ii) at-fault vehicle and parties characteristics, (iii) crash time variables, 

(iv) crash location variables, and (v) CBG level variables. First, the characteristics of the most 

severely injured individual in the crash, including gender, age, race, and ethnicity, are considered. 

Second, after determining the at-fault vehicle for each crash, the characteristics of the driver are 

reported, including their gender, age, race, and intoxication levels. Third, the time-varying 

covariates associated with each crash include the time of day, categorized as dawn, day, dusk, and 

night, as well as weather conditions, which include clear, cloudy, fog, rain, and other conditions. 

Fourth, crash location level variables reflect intersection characteristics and roadway attributes for 

the major and minor intersection approaches. Intersection characteristics include the number of 
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intersection legs, and the type of traffic control device. Roadway attributes include the functional 

classification, number of lanes, and posted speed limit. Fifth, the aggregate CBG level variables 

are further divided into several subcategories. Road/network BE features include the proportion of 

roads categorized by different functional classes, the number of lanes, and posted speed limits, as 

well as the number of intersections with different number of legs and signalized intersections. Note 

that these road and intersection level data were aggregated to a zonal CBG level using appropriate 

GIS tools. Land use distribution variables include the proportion of the CBG area corresponding 

to residential, commercial, office, industrial, civic, open space, utilities, and undeveloped land use 

types. Crash exposure variables are related to population density, vehicle ownership, and means 

of transport to work. The sociodemographic variables reflect the racial composition of the CBG, 

and income levels. Lastly, the crime and traffic violations category corresponds to the crime rate 

of the CBG and the proportion of yielding, intoxication, red light running, stop sign running, and 

speeding traffic violations.  

Table 1 and Table 2 provide the descriptive statistics for the many variables considered at 

both the crash and CBG levels, respectively. Table 1 provides the percentage of observations 

corresponding to each crash-specific exogenous variable within each injury severity category (the 

percentages in the table are taken row-wise; that is, the percentages sum to 100% for each row). 

In general, the table indicates that women, older individuals, and minorities are more represented 

in the pool of severe injury crashes than their peers, while men, young individuals (≤25 years) and 

older individuals (>60 years), and individuals of Black and Hispanic origin are over-represented 

as drivers in the pool of severe injury crashes. Also, crashes that take place during clear/cloudy 

conditions (relative to crashes during rainy conditions) are more likely to be associated with severe 

injuries, as are crashes during night time (relative to day time). Of course, the table is a simple 

univariate crosstabulation of each crash-level exogenous variable with injury severity, which does 

not control for the effect of other variables at the same time. Thus, the relationships listed above 

should be viewed as mere associations rather than substantive causal effects. Table 2 provides the 

sample characteristics for other CBG-level exogenous variables.  
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5. ESTIMATION RESULTS 

5.1. Variable Specification 

The selection of variables included in the final model specification was based on previous research, 

intuitiveness, and parsimony considerations. We investigated different functional forms and 

combinations of explanatory variables. For variables in bracketed form (such as age and time) and 

those naturally discrete (such as gender, race, driving under the influence, weather, and traffic 

control variables), we created dummy variables in the most disaggregate form and progressively 

combined them based on statistical tests. This approach helps achieve parsimonious specifications 

without sacrificing essential information. In cases where certain levels of a categorical variable 

lacked sufficient observations, we combined them with other appropriate levels to enhance 

statistical reliability. Additionally, when two levels showed similar effects, we merged them into 

one level to simplify the model without compromising its accuracy. For variables in continuous 

form (most BE and CBG level variables), various functional forms were tested, including a 

continuous linear form, a continuous logarithm form, a piece-wise linear form, and a set of dummy 

variables for different ranges. Among the tested forms, the continuous linear form stood out as the 

most effective and efficient option for most variables. CBG attributes were considered both in the 

crash frequency model specification and the crash severity model specification.   

The final estimation results are presented in Table 3. As may be observed from the table, 

not all variables included in the model are statistically significant at a 90% confidence level. This 

is to acknowledge the relatively small sample size used in our estimation, particularly for the severe 

injury category. In the context of crash severity models, it is common practice to group severity 

categories to increase the number of data points within each severity category (thus pinning down 

parameters more precisely and increasing confidence levels). For example, most studies group the 

five possible severity levels into three levels (refer to Zou et al. (2023), Gong et al. (2022), Yan et 

al. (2021), and Wu et al. (2014) for examples). While the rationale is understandable, these 

grouping approaches result in models that are less informative. In our analysis, we opted to 

maintain four alternatives to retain a more detailed classification of severity levels. Given the small 

share of the “severe injury” alternative, a low significance level for variables in this category is to 

be expected. In fact, in scholarly research, retaining variables with lower than the 0.05 level of 

confidence (t-statistic of 1.96) is not at all an uncommon practice, particularly when dealing with 

small or unbalanced sample sizes, as with the severe injury category in the current paper. Doing 
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so has the benefit of identifying variables that are suggestive and that may help inform future 

specifications with more balanced injury severity categories.  

A few other notes about the estimation results in Table 3. We use the label “na” to indicate 

that the corresponding explanatory variables are not applicable to the outcome of interest. In 

contrast, a “—” is used to signify that a variable is not statistically significant for a given alternative 

even at the 75% confidence level. Additionally, we attempted random coefficients on several 

exogenous variables to control for unobserved heterogeneity effects in the injury severity model, 

as discussed in Section 3, but none of these turned out to be even marginally statistically 

significant. Finally, we also investigated the effect of exogenous variables in the latent propensity 

of the count model (that is, for the presence of exogenous variables in the 
qw  vector of Equation 

(9)), but none turned out to be statistically relevant. As in traditional count models, exogenous 

variables appeared only in the vector 
qz .  

 

5.2. Crash Event State Model 

The table is partitioned into two main components: the injury severity model and the crash count 

model. The second broad column represents the injury severity model component results, showing 

the impact of each exogenous variable on the crash risk propensity (elements of the β  vector). The 

injury severity model was estimated with the “no injury” category as the base. A positive (negative) 

coefficient specific to a severity category represents an increased (decreased) risk propensity for 

the specific severity level relative to the “no injury” category. The estimation results of the severity 

model component demonstrate that the severity of a crash is closely related to various factors, 

including the characteristics of the individuals involved, crash time and location attributes, and the 

broader CBG characteristics.  

 

5.2.1.  Individual-level variables 

The results indicate that gender exerts a notable influence on injury severity, revealing that women 

are more susceptible to injuries when involved in crashes compared to men. The increasing 

magnitude of the gender coefficient across various severity levels indicates a higher probability of 

women being involved in more severe crashes. A similar result has been reported in other studies 

(see, for example, Bose et al., 2011, and Fu et al., 2021). This trend can be attributed to several 

reasons, including gender-specific disparities in the effectiveness of vehicle safety devices, as well 
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as physical differences related to neck anthropometry, strength, and musculature (Bose et al., 

2011). At the same time, when women are at-fault in a crash, these crashes tend to have lower 

severity than when men are responsible (as shown by the negative sign for the female variable 

under the at-fault vehicle and parties section in Table 3). Women tend to be more cautious drivers, 

avoiding risky maneuvers such as speeding, tailgating, and aggressive acceleration, all of which 

may lead to fewer high-impact crashes (see Rhodes and Pivik, 2011, and Song et al., 2021). 

Age is another variable that significantly influences crash severity. Individuals who are 

either younger than 13 years old or older than 60 years old face a higher risk of being involved in 

a crash with injuries compared to other age groups. In particular, older vehicle occupants are more 

likely to be involved in an incapacitating/fatal crash. This finding aligns with earlier research by 

Kabli et al. (2020), and Regev et al. (2018), which also highlight that the presence of physical 

fragility among these older age groups likely contributes to the higher vulnerability and more 

severe injury outcomes in crashes. The age of the at-fault driver is associated with a lower 

likelihood of possible injury crashes.  

Consistent with prior research (Adanu and Jones, 2017), the race of vehicle occupants is 

another significant factor correlated with crash severity. Our results reveal that Black individuals 

have a higher likelihood of being involved in injury-causing crashes. Specifically, the results in 

Table 3 indicate that being Black has a positive impact on the propensity of possible, non-

incapacitating, and severe injury crashes compared to being white. Several confounding variables 

may contribute to this finding. From a sociodemographic perspective, on average, Black 

individuals may face limited access to newer and safer vehicles equipped with advanced safety 

features, thereby increasing their risk of injury in crashes (Hanks et al., 2018). Disparities in 

healthcare access and response times could also contribute to differences in injury severity and 

likelihood of fatality among racial groups (Hanks et al., 2018, Hanchate et al., 2019). Another 

factor to consider is social resistance, where racial minorities may resist norms perceived to be set 

by the majority group. A previous study by Factor et al. (2013) found that Black drivers and 

passengers who exhibited high social resistance were more likely to drive with unbuckled 

seatbelts, which can impact injury severity in crashes. 

 Lastly, drivers under the influence of alcohol or drugs are less likely to be involved in 

possible injury and non-incapacitating crashes. While it might appear counter-intuitive, the result 
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indicates that based on other crash characteristics, the individual will either sustain no injury or a 

severe injury. 

 

5.2.2.  Crash time variables 

Among the temporal factors, crashes occurring during rainy weather are negatively associated with 

possible and non-incapacitating injury severities. This finding aligns with the many studies that 

have shown that drivers tend to be more cautious in adverse pavement surface conditions, driving 

at lower speeds with heightened attention (see, for example, Chen et al., 2016, and Pervaz et al., 

2023).  

In contrast, crashes occurring at night are more likely to be severe, possibly due to (a) 

drivers experiencing reduced visibility during nighttime driving, (b) increased fatigue among 

drivers, and (c) the lower traffic volumes that allow for higher driving speeds (consistent with 

Marcoux et al., 2018, and  Pervaz et al., 2023). 

 

5.2.3. Crash location (intersection) level variables 

At the crash location level, the traffic control device present, and the functional class of intersecting 

road segments were found to significantly impact crash injury severity. 

The model results indicate that crashes occurring at intersections with yield signs have a 

higher probability of resulting in non-incapacitating injuries compared to intersections with no 

traffic control or other types of traffic signs. This finding highlights the potential safety impacts of 

driver behavior at yield-controlled intersections. One contributing factor may be related to 

misunderstandings or misinterpretations of yield sign requirements by some drivers. Uncertainty 

about when to yield the right-of-way can lead to confusion and conflicting expectations among 

drivers approaching the intersection, increasing the risk of crashes. Furthermore, the higher speeds 

and reduced response times associated with drivers failing to yield may exacerbate the severity 

when crashes do occur. Additionally, it is worth noting that when drivers merge at a yield sign, the 

predominant crash type is likely angle crashes, known for having more severe injury consequences 

(Pervaz et al., 2023). However, the relatively slower speed associated with yielding likely prevents 

these crashes from resulting in the most serious injuries, such as fatalities. As a result, the 

combination of inherently more dangerous crash types occurring at lower speeds due to the 
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yielding contributes to the increased incidence of moderate non-incapacitating injuries at 

intersections with yield signs. 

Conversely, intersections connecting two highway road segments experience a reduced 

likelihood of non-incapacitating injuries. At highway intersections, traffic is usually regulated by 

traffic signals or stop signs, which control the flow of vehicles and reduce the likelihood of high-

speed crashes. Drivers approaching such intersections are more likely to come to a complete stop, 

ensuring that any potential crashes occur at lower speeds, thereby reducing the likelihood of non-

incapacitating injuries. 

 

5.2.4.  CBG level variables 

The severity of a given crash is significantly influenced by a combination of aggregate built 

environment, exposure, and sociodemographic variables. Notably, intersection density, proportion 

of industrial and agricultural land use, proportion of individuals commuting by car, and proportion 

of low-income households at the CBG level were found to be particularly significant factors.  

 Crashes occurring in CBGs with a higher intersection density are less likely to result in 

possible injuries, indicating that crashes at high intersection density CBGs are likely to be 

associated with injury severity spectrum extremes. This is an intriguing result that deserves 

additional investigation in future efforts, especially because the proportion of signalized 

intersections in the CBG has no effect on injury severity (suggesting that signal control at 

intersections has no bearing on injury severity, but the clustering of intersections does). 

Land-use also impacts the crash severity levels. In regions with a higher fraction of 

industrial and agricultural land use, the likelihood of non-incapacitating and severe injuries is 

higher. This could be due to higher speed limits, larger vehicles, or less effective traffic control 

measures in these areas. The results indicate a positive correlation between car usage and crash 

severity, implying that the risk of more serious crashes rises as more individuals rely on cars for 

commuting within the CBG. Crashes in lower-income CBGs have a higher likelihood of resulting 

in serious non-incapacitating injuries. Several factors may contribute to this finding. Lower-

income drivers are more likely to drive older, less safe vehicles that lack modern safety features, 

increasing their vulnerability to sustaining moderate injuries in a crash. Furthermore, infrastructure 

deficiencies (such as poorly designed roads, unmaintained surfaces, limited traffic control devices 
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like signals and signs, and insufficient lighting) that are more prevalent in lower-income areas can 

potentially exacerbate crash severity. 

 

5.2.5.  Correlation terms 

The correlation results, presented in Table 3, provide the correlation among the risks associated 

with the injury severity alternatives in differenced form (with the difference taken with respect to 

the first alternative of “no injury”). As such, this differenced correlation matrix is not interpretable, 

unless assumptions are made about the correlation among the original four injury severity levels. 

One such reasonable assumption is that there is not much variance in the “no-injury” risk category 

and that unobserved factors that increase the chances of no-injury do not have any bearing on the 

risks of other injury severity categories. In this case, the differenced correlation directly represents 

the correlation matrix for the three higher injury risk categories. Specifically, as the crash risk of 

possible injury increases due to unobserved factors, so does the crash risk of non-incapacitating 

injury. On the other hand, as the crash risk of possible or non-capacitating injury increases, the 

crash risk of severe injury decreases.  

 

5.3. Crash Frequency Model 

The last column presents the results for the crash count model component. The exogenous effects 

in the count model correspond to the non-constant elements of the   vector, which directly 

influence the count model after accounting for any indirect effects through the linking function. 

Regarding the direct effects, a positive coefficient in   shifts the threshold to the right on the 

propensity scale, leading to a reduced probability of low or zero crash outcome. Conversely, a 

negative coefficient shifts the threshold to the left on the propensity scale, increasing the 

probability of low or zero crash outcomes. The antepenultimate row section of Table 3 provides 

the constant estimates corresponding to the β  and   vectors, while the penultimate section 

provides the threshold shifter terms (elements of the α  vector) embedded in the thresholds of the 

count model. The constants do not have any substantive interpretation and are primarily 

responsible for optimally mapping the latent propensity to the observed counts, given the 

coefficients on other variables embedded in the threshold function. Similarly, the threshold shifter 

elements of the vector α  do not have any substantive interpretation, though they allow the count 

model to flexibly accommodate high or low probability masses for specific outcomes. In the 
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current empirical analysis, the best model specification was achieved with one predominantly 

positive threshold shifter term between 0 and 1 counts, reflecting the significant number of CBGs 

with zero crashes. The reader will note that an offset of two was used in the count model to 

represent the crash data from two years.  

 

5.3.1.  CBG level variables 

Our results, summarized in Table 3, suggest that a multitude of factors, including roadway 

characteristics, population density, sociodemographic variables, and crime rates, influence CBG 

crash counts. 

The number of intersections per square mile is found to be positively associated with crash 

counts, suggesting that as intersection density increases so does the likelihood of crashes. 

Intersections contribute to increased navigational complexity and growth in conflict points. 

Similarly, a higher proportion of four or more leg intersections also positively correlates with the 

number of crashes in CBG. The complex vehicle interactions and turning movements associated 

with multi-leg crossings may lead to increased crash risk due to intersection complexity and related 

driver confusion (see Wang and Huang, 2016, Lee et al., 2017, and Pervaz et al., 2023). In contrast, 

a higher density of signalized intersections reduces the overall crash count. This outcome is likely 

attributable to the role these signals play in enforcing precise right-of-way protocols during 

conflicting vehicular movements. 

Several critical patterns emerge when analyzing the results for roadway design variables. 

While a higher number of highway centerline miles increases the risk of crashes, a higher roadway 

density (road length relative to CBG area) lowers crashes. A plausible explanation is that a greater 

prevalence of roadways within an area naturally leads to higher exposure and, consequently, 

increased risk of crashes, while a dense road network induces slower vehicle speeds due to 

congestion and more organized traffic flow, thereby reducing the likelihood of crashes (see also 

Zeng et al., 2019). Another notable observation is that a higher proportion of freeway miles is 

associated with lower crash counts. Despite the high operating speeds on freeways, their design 

incorporates limited access points and controlled traffic flow, consequently leading to reduced 

clashes between traffic streams. Meanwhile, the proportions of principal and minor arterial miles 

significantly correlates with increased crash counts. Various attributes of arterial roads, such as 

elevated speeds and traffic volumes, alongside the prevalence of access points and traffic 
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interruptions, collectively lead to more conflicts among road users and subsequently increase the 

likelihood of crashes (Guerra et al., 2019). However, the proportion of minor arterial miles shows 

a less significant positive relationship with crash counts, suggesting that these roads, which usually 

experience less traffic and lower speeds, contribute less to the crash counts. 

In the context of crash exposure factors, population density has a direct impact on total 

CBG crash counts. Higher population densities often imply more road users - motorists, cyclists, 

and pedestrians, thus increasing the likelihood of crashes, as suggested by Lee et al. (2017),  

Yasmin and Eluru (2018), and others.  

With respect to sociodemographic variables, the proportion of white non-Hispanic 

individuals is positively related to crash counts. This association may be influenced by the number 

of vehicles per household, trip patterns, or other unobserved factors and requires further 

investigation. Notably, the proportion of high-income households displays a negative relationship 

with crash counts (coefficient -0.083). This may be due to factors such as safer vehicles, better 

road awareness, or adherence to traffic rules in such demographics (Lee et al., 2017). 

Lastly, the crime rate is also a significant determinant of crash counts, evidenced by a 

strong positive relationship. This could be attributed to the fact that areas with high crime rates 

might generally have lower levels of law enforcement, resulting in more traffic violations and 

hence higher crash rates. 

 

5.3.2.  Linking parameter 

The results indicate a significant and positive linkage parameter  , providing strong evidence that 

disaggregate crash-specific factors indeed influence the total crash count at the aggregate level. 

 

5.4. Measures of Fit 

The log-likelihood at convergence of the linked model proposed in this paper is -4641.26. The 

corresponding log-likelihood of an unlinked model (that is, with ϑ=0) is -4823.44. A nested 

likelihood ratio test between the two models yields a value of 364.36, which is much higher than 

the critical chi-squared value with one degree of freedom at any reasonable level of significance, 

clearly rejecting the unlinked model is favor of our proposed linked model. For completeness, a 

naïve model with only the alternative specific constants in the injury severity MNP model (with 

independent and identically distributed error terms across alternatives), and with only the constant 
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in the   vector and the 0|1 threshold shifter term in the crash count model, has a convergent log-

likelihood value of -4868.44.  

Following the procedure discussed in Section 3.3, we are also able to evaluate the model 

fit of our proposed model at the disaggregate level using an average probability of correct 

prediction (APCP) statistic. We present the APCP values only for the marginal univariate crash 

count distributions by injury severity, because there are too many multivariate crash count 

combinations across injury severities. These marginal APCP values for the observed counts by 

injury severity (averaged across all CBGs) are as follows: no injury -- 0.453, possible injury -- 

0.534, non-incapacitating injury -- 0.560, and severe/fatal injury -- 0.870. In addition to the 

marginal APCP at the disaggregate CBG-level, at the aggregate level, we design a heuristic 

diagnostic check of model fit by computing the predicted number of CBGs for the crash count 

values of 0, 1, and 2+ in each injury severity level category. To evaluate the performance of the 

model proposed here, we compute the absolute percentage error (APE) statistic for each count 

value (of 0, 1, and 2+) for each injury severity level (as the difference between the predicted and 

observed values of the number of CBGs in each count category of each injury severity state as a 

percentage of the corresponding observed values), and then compute a mean weighted APE value 

across the count values (of 0, 1, and 2+) using the observed number for each count value as the 

weight for that count value. The results are presented in Table 4. The predicted values are closely 

aligned with the observed values with only a 4.54% weighted absolute percentage error.  

 

5.5. Elasticity Effects and Implications 

The coefficients in Table 3 provide the exogenous variable effects on the disaggregate propensities 

of the injury severity levels as well as the crash count model; however, they do not directly provide 

a sense of the direction/magnitude effects of each variable on these outcomes in terms of their 

impact on the overall shares and count. Therefore, we compute the “pseudo” elasticity effects of 

the exogenous variables to characterize the impact of each variable. For each of the binary category 

variables used for the disaggregate crash event state analysis, we first predict the average share of 

each disaggregate injury severity category in the sample for the “base” level (which is typically 

the “0” for a binary variable), and then predict the average shares for the “treatment” level (which 

is typically the “1” for a binary variable) for the entire sample. The average “pseudo” elasticity 

effect is then reported as the difference between the “treatment” and the “base” shares as a 
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percentage of the “base” share. For the crash count level variables which are primarily in the 

continuous forms of fractions, densities, or proportions, we assume reasonable continuous values 

for the “base” and “treatment” levels to compute the elasticity effects. 

Table 5 provides the “pseudo” elasticity effects for our proposed model for selected 

exogenous variables. The numbers in the table may be interpreted as the percentage change in the 

shares of each injury severity category and total crashes due to a change in the exogenous variable. 

For example, the first percentage numeric entry of -65% in the table indicates that women are 65% 

less likely to be involved in a crash resulting in “No Injury” relative to men. Other numerical 

entries in Table 5 may be interpreted in a similar manner.  

 The following observations can be drawn from the results. First, the proposed model 

framework allows for the influence of disaggregate level variables on crash count and severity 

distribution (see the top panel of Table 5). In the unlinked model, none of the crash-specific 

variables in the top panel of Table 5 would have any effect on total crashes. Second, women are 

less likely to be represented in the pool of no-injury crashes relative to men, but are also less likely 

to be involved in vehicular crashes in the overall. As just mentioned, a multivariate count model 

or an unlinked model would not have picked up the effect of gender on total CBG crash count. 

Our empirical results suggest the need for gender-focused measures (such as perhaps reducing 

aggressive driving or targeted defensive driving courses) to reduce crashes. Third, “Driving under 

the influence” (DUI) increases overall crash risk by 7%, but increases the risk of severe injury 

crashes by 70%. This finding supports the need for stringent DUI enforcement and awareness 

programs to reduce severe crashes as well as the total crash risk. Fourth, similar to DUI effects, 

rainy conditions also increase overall crash risk only marginally (by 4%), but increase severe crash 

risk by 25%. This points to the necessity of targeted interventions during adverse weather 

conditions, such as enhanced road surface treatments and driver awareness campaigns. Fifth, 

among CBG attributes affecting crash counts (see the bottom panel of Table 5), road design 

attributes such as the proportion of freeway miles, principal arterial miles, and minor arterial miles 

have a modest absolute influence on the total crash count with a 2%-6% impact on the crash 

propensity. Population density and crime rate variables also yield similar figures. This finding can 

guide infrastructure development and improvement plans, ensuring that they are balanced with 

other safety measures. Sixth, however, an increase in the proportion of high-income households in 

a CBG is associated with a notable 6% decrease in crash propensity. This highlights a complex 



31 

interplay between socioeconomic factors and road safety, suggesting that interventions should be 

tailored to address specific community needs and characteristics. Specifically, there is a clear need 

to continue efforts to examine and address urban crash safety issues through the lens of equity, 

given the disparity in transportation infrastructure facilities between low-income/minority and 

high income/majority white neighborhoods (see, for example, Haddad et al. (2023), and Yu et al. 

(2022)). Overall, the results highlight the kinds of policy insights that may be drawn from the 

integrated model framework, particularly because variables that are crash-specific also factor in 

the prediction of total crash counts.  

 

6. CONCLUSIONS 

Crash frequency analysis is an integral component of safety research, traditionally undertaken by 

aggregating crash data over specific spatial and temporal scales. Given that the determinants of 

crash counts can significantly vary by crash type and severity, many studies have focused on 

examining specific crash types, such as road user type, injury type, impact type, or vehicle type 

and number. Despite these advancements, most studies often rely on univariate count models, 

independently estimating different crash types. While some researchers have implemented 

multivariate count models in crash analysis, these approaches often come with computational 

challenges and potential discrepancies in reflecting the ground reality between disaggregate and 

aggregate crash outcomes.  

In response to these challenges, we have proposed an integrated parametric framework for 

multivariate crash count data, based on linking a univariate count model for the total count of 

crashes across all possible crash type states with a discrete choice model for crash event state given 

a crash. This structure allows us to incorporate the highest event state risk propensity from the 

event state model as an explanatory variable in the total crash count model, creating a more realistic 

representation of crash propensities and total crash count intensity. Our proposed framework 

employs a Generalized Ordered Response Probit (GORP) model at the aggregate level and a 

multinomial probit model (MNP) at the disaggregate level to examine crash severity. 

We applied this approach in a demonstration exercise examining motor vehicle crashes in 

Census Block Groups (CBGs) in Austin, Texas, based on four injury severity levels. The data for 

this analysis was sourced from the Texas Department of Transportation crash incident files. The 

model estimation results are augmented with a host of disaggregate and aggregate data fit measures 
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and “pseudo” elasticity analysis. Overall, the results underscore the utility of the proposed model 

in determining the critical disaggregate level factors contributing to total crashes and crash severity 

increases. This new framework has potential implications for enhancing the precision and 

predictive power of crash frequency models, thereby potentially informing more effective safety 

measures.  
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Figure 1. Distribution of crashes across CBGs and severity levels 
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Table 1. Summary Statistics of Exogenous Variables at the Crash Level 

Variable 

Percentage of observations in each injury severity level (%) 

No Injury Possible 
Non-

incapacitating 
Severe 

Most severely injured individual 

Gender  

Male 56.52 20.08 21.11 2.29 

Female 40.15 29.29 26.61 3.95 

Age  

<13 years old 2.56 53.85 41.03 2.56 

13-25 years old 48.53 22.18 25.94 3.35 

26-60 years old 48.08 25.11 23.91 2.90 

>60 years old 36.09 25.65 32.17 6.09 

Race/Ethnicity  

White 55.20 22.40 19.62 2.78 

Black 38.10 31.57 26.32 4.01 

Hispanic 44.26 26.00 26.45 3.29 

Other 58.00 14.00 26.00 2.00 

At-fault vehicle and parties 

Gender  

Male 49.93 23.48 23.13 3.46 

Female 45.16 26.81 25.13 2.90 

Age  

≤25 years old 51.59 25.26 19.52 3.63 

26-60 years old 46.70 25.86 24.53 2.91 

>60 years old 40.19 23.83 32.24 3.74 

Race/Ethnicity  

White 54.46 23.5 19.13 2.91 

Black 41.86 28.8 25.87 3.47 

Hispanic 43.17 25.72 27.37 3.74 

Other 54.54 14.55 30.91 0.00 

Driver under the influence  

Yes 80.48 7.32 9.76 2.44 

No 47.16 25.33 24.30 3.21 

Crash Time 

Weather  

Clear 47.84 25.12 23.85 3.19 

Cloud 40.30 27.65 28.17 3.88 

Rain 60.73 19.63 17.81 1.83 

Other 20.00 20.00 60.00 0.00 

Time  

Day 46.43 26.28 24.35 2.94 

Night 50.76 22.01 23.41 3.82 
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Table 2. Summary Statistics of Exogenous Variables at the CBG level 

Variable Definition Mean Std. dev. 

Road/network BE features   

Intersections  

# intersections per mi2 (in 100) Number of intersections/ total area of CBG*100  1.003 0.651 

Fraction of four or more–leg intersections Number of for or more-leg intersections/Number of intersections in CBG 0.040 0.077 

Fraction of signalized intersections Number of traffic signals/Number of intersections in CBG 0.133 0.179 

General roadways  

Total road miles in CBG - mi (in 10) Sum of roadway centerline miles in CBG / 10 0.425 0.357 

Road density mi/mi2 (in 100) Total road miles in CBG/ total area of CBG*100 0.234 0.227 

Functional class 

Proportion of freeway miles Total freeway miles in CBG/ total road miles in CBG 0.116 0.111 

Proportion of principal arterial miles  Total principal arterial miles in CBG/ total road miles in CBG 0.039 0.099 

Proportion of minor arterial miles  Total minor arterial miles in CBG/ total road miles in CBG 0.097 0.143 

Proportion of major collector miles  Total major collector miles in CBG/ total road miles in CBG 0.151 0.151 

Proportion of minor collector miles  Total minor collector miles in CBG/ total road miles in CBG 0.014 0.044 

Proportion of local miles  Total local miles in CBG/ total road miles in CBG 0.583 0.280 

Number of lanes 

Proportion of one-lane road miles Total one-lane miles in CBG/ total road miles in CBG 0.034 0.081 

Proportion of two-lane road miles Total two-lane miles in CBG/ total road miles in CBG 0.668 0.274 

Proportion of three-lane road miles Total three-lane miles in CBG/ total road miles in CBG 0.096 0.148 

Proportion of four or more-lane road miles Total four or more-lane miles in CBG/ total road miles in CBG 0.202 0.183 

Land use  

Proportion of residential land use  Total area of residential land use/ total area of the CBG 0.483 0.293 

Proportion of commercial land use  Total area of commercial land use/ total area of the CBG 0.117 0.136 

Proportion of office land use  Total area of office land use/ total area of the CBG 0.064 0.106 

Proportion of industrial land use  Total area of industrial land use/ total area of the CBG 0.058 0.118 

Proportion of civic land use  Total area of civic land use/ total area of the CBG 0.082 0.137 

Proportion of open space land use  Total area of open space land use/ total area of the CBG 0.095 0.143 

Proportion of utility land use  Total area of utility land use/ total area of the CBG 0.026 0.087 

Proportion of undeveloped or agricultural land 

use  
Total area of undeveloped/agricultural LU/ total area of CBG 0.075 0.124 

Crash exposure factors  

Population Density - people/acre (in 10) Gross population density (people/acre) 0.085 0.072 

Modes of transport to work   

Proportion of individuals who drive to work 
Proportion of workers aged 16 years and over who commute by a private vehicle in 

the CBG 
0.876 0.16 
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Table 2. Summary Statistics of Exogenous Variables at the CBG level (Cond.) 

Variable Definition Mean Std. dev. 

Road/network BE features   

Proportion of individuals who use public transit to get to work Proportion of workers who commute by public transit in CBG 0.034 0.05 

Proportion of individuals who walk to work Proportion of workers who commute by foot in CBG 0.044 0.09 

Vehicle ownership  

Proportion of HH owning zero vehicles Proportion of zero-car households in CBG, 2018 0.080 0.081 

Proportion of HH owning one vehicle Proportion of one-car households in CBG 0.429 0.143 

Proportion of HH owning two or more vehicles Proportion of two or more-car households in CBG 0.491 0.169 

Sociodemographic variables  

Racial/ethnic composition  

Proportion of CBG population that is not Hispanic -- 0.651 0.236 

Proportion of CBG population that is not Hispanic white -- 0.456 0.233 

Proportion of CBG population that is not Hispanic Black -- 0.090 0.102 

Proportion of CBG population that is not Hispanic other -- 0.105 0.101 

Proportion of CBG population that is Hispanic -- 0.349 0.236 

Proportion of CBG population that is Hispanic white -- 0.184 0.143 

Proportion of CBG population that is Hispanic Black -- 0.006 0.026 

Proportion of CBG population that is Hispanic other -- 0.159 0.160 

Income levels  

Proportion of low-income HH Proportion of workers earning $1250/month or less 0.196 0.046 

Proportion of medium-income HH 
Proportion of workers earning more than $1250/month bus less than 

$3333/month 
0.311 0.086 

Proportion of high-income HH Proportion of workers earning $3333/month or more 0.493 0.123 

Crime and traffic violations  

Crime rate – total crimes/total population (in 10) 
Total police-reported crimes from 2003 till 2022 / total population in 

 CBG*10 
0.319 0.358 

Proportion of cases where drivers failed to yield 
Total number of failure to yield cases/total number of violations  

charged in CBG from 2018 till 2022 
0.040 0.067 

Proportion of cases where drivers were intoxicated 
Total number of public intoxication cases/total number of violations  

charged in CBG from 2018 till 2022 
0.041 0.075 

Proportion of cases where drivers ran a red light 
Total number of red light running cases/total number of violations  

charged in CBG from 2018 till 2022 
0.020 0.094 

Proportion of cases where drivers ran a stop sign 
Total number of stop sign running cases/total number of violations  

charged in CBG from 2018 till 2022 
0.005 0.03 

Proportion of cases where drivers were speeding 
Total number of speeding cases/total number of violations  

charged in CBG from 2018 till 2022 
0.094 0.154 
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Table 3. Model estimation results (N = 2,959) 

 Exogenous Variables 

Severity Level (base: No Injury) 
Total count of 

crashes in CBG Possible Injury 
Non-incapacitating 

Injury 
Severe Injury 

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 

Most severely injured party 

Gender (Base: Male) 

Female 0.846 5.95 0.780 3.48 0.923 1.99 na na 

Age (Base: 13-60 years old) 

<13 years old 1.854 6.60 1.755 5.58 – – na na 

>60 years old 0.378 2.17 0.436 2.64 0.601 1.34 na na 

Race (Base: Not Black) 

Black 0.352 2.93 0.352 1.69 0.352 1.69 na na 

At-fault Vehicle and Parties 

Driver gender (Base: Male) 

Female -0.331 -4.49 -0.306 -2.56 -0.587 -1.40 na na 

Driver age (Base: ≤60 years old) 

>60 years old -0.096 -1.63 – –   na na 

Driver under the influence (Base: No)  

Yes -0.854 -2.56 -0.743 -2.99 – – na na 

Crash Time 

Weather (Base: Not rain) 

Rain -0.185 -1.79 -0.197 -2.47 – – na na 

Time (Base: Not night) 

Night – – – – 0.110 1.21 na na 

Crash Location (Intersection) Level Variables 

Traffic control (Base: None or other devices) 

Yield Sign – – 0.187 1.85 – – na na 

Intersecting road segments (Base: not two intersecting highway segments) 

Two intersecting highway segments – – -0.121 -1.66 – – na na 

CBG Level Variables 

Road design 

# intersections per mi2 (in 100) -0.027 -1.59 – – – – 0.016 2.08 

Proportion of four or more–leg intersections – – – – – – 0.427 2.02 

Proportion of signalized intersections – – – – – – -0.091 -1.50 

 

 



43 

Table 3. Model estimation results (N = 2,959) (Contd.) 

 Exogenous Variables 

Severity Level (base: No Injury) 
Total count of 

crashes in CBG Possible Injury 
Non-incapacitating 

Injury 
Severe Injury 

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 

Total road miles (in 10) – – – – – – 0.150 2.00 

Road density mi/mi2 (in 100) – – – – – – -0.080 -1.46 

Proportion of freeway miles – – – – – – -0.749 -2.36 

Proportion of principal arterial miles  – – – – –   0.115 2.04 

Proportion of minor arterial miles  – – – – – – 0.075 1.62 

Land-use (Base: Residential, commercial, office, civic and other land-use types) 

Fraction of industrial and agricultural LU – – 0.3297 2.21 0.864 1.55 – – 

Crash exposure factors 

Population density - people/acre (in 10) – – – – – – 0.109 1.98 

Proportion of individuals commuting by car – – 0.363 2.12 – – – – 

Sociodemographic variables 

Proportion of white non-Hispanic individuals – – – – – – 0.146 1.58 

Proportion of low-income HH – – 0.624 3.01 – – – – 

Proportion of high-income HH – – – – – – -0.072 -2.17 

Crime and traffic violations 

Crime rate – total crimes/total population (in 10) – – – – – – 0.090 2.29 

Linking parameter na na na na na na 2.788 5.12 

Constants -0.534 -5.56 -0.977 -4.98 -1.998 -1.95 2.284 10.91 

Threshold shifter terms 

0|1 na na na na na na 6.192 11.53 

Correlation Terms 

Possible Injury 1.00# 0.69* -0.26* 

 Non-incapacitating Injury  1.00#  -0.28* 

Severe Injury   1.00# 

* Correlation terms are statistically significant at 85% confidence level 
# Fixed scales (for imparting stability to the estimation routine) 
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Table 4. Aggregate data fit measures 

Marginal count category shares 

Severity level 
Count 

category 
Observed Predicted 

No injury 

0 294 310 

1 133 113 

2+ 244 248 

Possible 

0 383 389 

1 135 142 

2+ 153 140 

Incapacitating 

0 375 385 

1 157 138 

2+ 139 148 

Severe 

0 599 590 

1 60 65 

2+ 12 16 

Weighted Absolute Percentage Error (WAPE) 4.54% 
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Table 5. “Pseudo” elasticity effects 

Variables Base Level Treatment Level 

Injury Severity 
Total 

count of 

crashes in 
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o
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ju
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Disaggregate Level Variables 

   Most severely injured party 

     Gender Male Female -65% 50% 39% 237% -13% 

     Race Non-Black Black -16% 25% 3% 15% -7% 

   At-fault Vehicle and Parties 

     Driver gender Male Female 24% -28% -9% -58% 12% 

     Driver age <60 years old >60 years old 5% -24% 16% 4% 1% 

     Driver under the influence No Yes 55% -58% -50% 70% 7% 

   Crash Time 

     Weather No Rain Rain 18% -14% -23% 25% 4% 

     Time of Day Day Night -1% -2% -1% 28% 0% 

Aggregate (CBG) Level Variables 

Road design 

     Proportion of freeway miles 

Proportion of Freeways=0.1; 

Principal arterials=0.1; Minor 

arterials=0.1; Other roads=0.7 

Proportion of Freeways=0.5; 

Principal arterials=0.1; Minor 

arterials=0.1; Other roads=0.3 

- - - - -6% 

Proportion of principal arterial miles  

Proportion of Freeways=0.1; 

Principal arterials=0.1; Minor 

arterials=0.1; Other roads=0.7 

Proportion of Freeways=0.1; 

Principal arterials=0.5; Minor 

arterials=0.1; Other roads=0.3 

- - - - 2% 

     Proportion of minor arterial miles 

Proportion of Freeways=0.1; 

Principal arterials=0.1; Minor 

arterials=0.1; Other roads=0.7 

Proportion of Freeways=0.1; 

Principal arterials=0.1; Minor 

arterials=0.5; Other roads=0.3 

- - - - 2% 

Crash exposure factors 

Population density–people/acre (in 10) 0.05 0.25 - - - - 3% 

Sociodemographic variables 

Proportion of high-income HH 0.2 0.5 - - - - -6% 

   Crime and traffic violations 

Crime rate–total crimes/total 

population (in 10) 
0.1 0.5 - - - - 3% 

 


