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ABSTRACT  

Non-motorist injury severity can be affected by various observed and unobserved attributes related 

to the crash location type (segment or intersection). Recognizing the distinct non-motorist injury 

severity profiles by crash location type, we propose a joint modeling framework to study crash 

location type and non-motorist injury severity as two dimensions of the severity process. We 

employ a copula-based joint framework that ties the crash location type (represented as a binary 

logit model) and injury severity (represented as a generalized ordered logit model) through a closed 

form flexible dependency structure to study the injury severity process. The proposed approach 

also accommodates the potential heterogeneity (across non-motorists) in the dependency structure. 

The data for our analysis is drawn from the Central Florida region for the years of 2015 to 2021. 

The model system explicitly accounts for temporal heterogeneity across the two dimensions. A 

comprehensive set of independent variables including non-motorist user characteristics, driver and 

vehicle characteristics, roadway attributes, weather and environmental factors, temporal and socio-

demographic factors are considered for the analysis. We also conducted an elasticity analysis to 

show the actual magnitude of the independent variables on non-motorist injury severity for the two 

locations. The results highlight the importance of examining the effect of various independent 

variables on non-motorist injury severity outcome by crash location type. 

 

Keywords: Non-motorist, Crash severity, Crash location type, Copula model, Temporal 

heterogeneity. 

  



 

 

3 

 

1 INTRODUCTION 

In the United States, motor vehicle traffic crashes resulted in 42,915 fatalities in 2021 

marking the highest single year growth rate (10.5%) in fatalities since 2005 (NHTSA, 2022). In 

Florida, pedestrian and bicyclist fatalities increased by 16.8% and 16.6% respectively in 2022 

compared to 2021 (FLHSMV, 2022) highlighting safety challenges for vulnerable road users in 

Florida. As transportation agencies and public health professionals promote the adoption of active 

transportation, it is also important to examine the factors affecting vulnerable road user safety. An 

important tool for examining the contributing factors to crash occurrence and crash consequences 

is the application of econometric and statistical models. The current study builds on existing 

literature contributing to identifying factors affecting crash consequences for active transportation 

users by developing disaggregate level active user severity models.  

The discrete nature of injury severity has resulted in the adoption of discrete outcome 

models for analysis of motorist and non-motorist injury severity. In these frameworks, the 

emphasis is on identifying the impact of various observed and unobserved factors on road user 

injury severity. The host of observed factors examined include road user attributes, driver and 

vehicle attributes, roadway and traffic attributes, road environmental and weather attributes. The 

traditional model structures employed include ordered logit/probit model, generalized ordered 

logit/probit model and multinomial logit model (Islam and Mannering, 2006; Tay et al., 2011; 

Yasmin et al., 2015). With advancements in modeling, growing number of studies have developed 

advanced variants of traditional models including random parameter variants with and without 

heterogeneity in means and variances (Behnood and Mannering, 2016; Eluru et al., 2008; Marcoux 

et al., 2018; Wang et al., 2022). Generally, in these model systems, there is an implicit assumption 

that the parameter space to be estimated is universally same i.e., all observations follow the same 

functional form (simple mean or distribution). To clarify, random parameter models allow for 

parameters to vary across the dataset. However, the overall distribution of the parameter is still 

constrained to be the same across the dataset. The imposition of the universal parameter space is 

relaxed in the latent class models where each class is expected to allow for a different parameter 

space (Behnood and Mannering, 2016; Chang et al., 2021; Yasmin et al., 2014a). While these 

models offer enhanced flexibility, these models are complicated to estimate and rarely offer more 

than two or three segments (Yasmin et al., 2014a). 

A more theoretically grounded approach that has gained prominence for addressing the 

universal parameter space challenge employs well-defined classes of the observation. For example, 

in analyzing motorist severity, a common approach employed is the partitioning of the 

observations by crash type – an important crash variable – thus allowing for crash type associated 

injury severity profiles (Schneider and Savolainen, 2011; Wang et al., 2022). This approach allows 

for the same parameter to have distinct impact on severity by crash type. This approach, while 

allowing for additional heterogeneity, can be further enhanced by explicitly modeling crash type 

variable along with the severity variable in a joint framework. The joint framework enhances the 

severity model by incorporating additional observed heterogeneity and unobserved heterogeneity 

across the two decision variables (Eluru et al., 2010; Yasmin et al., 2014b). The joint system can 

take the form of a bivariate or multivariate model system based on the functional form of the 

dependent variables of interest. Further, these multivariate models can be examined using 

traditional multivariate distributions (such as multivariate normal) (Abay et al., 2013; Kabli et al., 

2020) or copula distributions that offer enhanced flexibility (Eluru et al., 2010; Wang et al., 2019; 

Yasmin et al., 2014b). 
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Following this line of inquiry, in our current research, we focus on understanding non-

motorist injury severity recognizing the important role of crash location defined as intersection or 

segment (Lin and Fan, 2021; Ma et al., 2018; Moore et al., 2011; Tanishita et al., 2023). It is 

plausible to consider that non-motorist crashes exhibit different severity profiles by crash location 

type i.e., non-motorist crash severity at segment has a distinct profile than non-motorist crash 

severity at an intersection.  Drivers are more likely to expect non-motorists at intersections and are 

possibly more well placed to respond to these users. On the other hand, drivers might be less likely 

to respond appropriately to non-motorists on segments. Further, non-motorists themselves 

choosing to cross the road on segments are exhibiting different behavior compared to non-

motorists’ behavior while using intersections. The combination of driver and non-motorist 

behaviors are likely to mediate the influence of independent variables differently across the two 

severity profiles. Further, the unobserved factors related to non-motorist location presence are also 

likely to affect non-motorist crash severity.  

Recognizing these important interactions, we employ a copula-based model to examine 

crash location type and non-motorist injury severity jointly. The crash location type is analyzed as 

a binary variable employing binary logit model while the severity component is examined using a 

generalized ordered logit model. The model estimation process begins with the development of 

separate binary logit and generalized ordered logit components. The reader would note that the 

severity model is estimated in a pooled manner for pedestrians and bicyclists to estimate a more 

parsimonious and efficient specification (Bhowmik et al., 2019; Wang et al., 2019). The two 

components are jointly analyzed using various copula structures including Gaussian, Farlie-

Gumbel-Morgenstern (FGM), Frank, Clayton, Joe, and Gumbel to allow for a range of dependency 

structures (see Bhat and Eluru, 2009 for a detailed description of the copula structures). The 

dependency parameter in the copula models is parameterized to allow for the influence of 

unobserved factors to vary across observations. The data for our analysis is drawn from the Central 

Florida region for the years of 2015 to 2021. As temporal factors are likely to be significant in a 

multi-year crash dataset (see Mannering, 2018), the model system explicitly accounts for temporal 

effects. In our model estimation, we consider a comprehensive set of independent variables 

including non-motorist user characteristics, driver and vehicle characteristics, roadway attributes, 

weather and environmental factors, temporal and socio-demographic factors. 

The rest of the paper is organized as follows. Section 2 provides a review of the literature 

relevant to the current study. In Section 3, we provide details of the econometric model framework 

used in the analysis. In Section 4, the data source and variables considered are described. The 

model results and elasticity effects are presented in Section 5 and Section 6, respectively. Section 

7 concludes the paper and presents directions for future research. 

 

2 LITERATURE REVIEW 

This section provides an overview of the earlier research relevant to non-motorist injury 

severity and context of the current study. 

 

2.1 Previous Research Relevant to the Non-motorists’ Severity  

Transportation safety literature has introduced extensive modeling approaches to gain a 

comprehensive understanding of the contributing factors to the motorist and non-motorist injury 

severity (please see Savolainen et al., 2011; Yasmin and Eluru, 2013 for a detailed review). In the 

current study, we will restrict ourselves to discussing methods employed for analyzing non-

motorist injury severity. Researchers have developed non-motorist (pedestrian and/or bicyclist) 
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injury severity models considering non-motorist severity outcome as a dichotomous variable 

(usually fatal and non-fatal injury), or a polytomous variable (with categorical outcomes including 

fatal, major injury, minor injury and no-injury). For dichotomous variables, as expected, 

researchers predominantly applied binary logit/probit regression models (Lee and Seo, 2022; Sze 

and Wong, 2007). For polytomous variable, application of ordered models (such as ordered 

logit/generalized ordered logit) (Ma et al., 2018; Yasmin et al., 2014c) and unordered models (such 

as multinomial logit) (Islam and Mannering, 2006; Tay et al., 2011) are prevalent in the literature. 

Many studies also developed random parameter ordered probit/logit models to capture unobserved 

heterogeneity that possibly exist in the dataset (Behnood and Mannering, 2016; Eluru et al., 2008; 

Zamani et al., 2021). Several research efforts analyzed the injury severity of pedestrian and bicycle 

crashes with a focus on a crash location type such as intersection (Bahrololoom et al., 2020; 

Haleem et al., 2015; Ma et al., 2018) and non-intersection (Toran Pour et al., 2017). In these 

studies, the data is partitioned by the location of interest and a separate model was developed for 

the sample of interest. In other studies, data were partitioned and separate models were estimated 

for intersection and non-intersection (Lin and Fan, 2021; Moore et al., 2011; Tanishita et al., 2023). 

More recently, a joint model system was developed to examine pedestrian and bicyclist injury 

severity as a joint process using a random parameters binary logit-generalized ordered logit copula 

formulation (Phuksuksakul et al., 2023).  

From the various studies discussed above, the reported contributing factors relevant to the 

severity of the non-motorist users include non-motorist user characteristics such as age, gender, 

position and action (Behnood and Mannering, 2016; Chen and Fan, 2019; Tay et al., 2011; Yasmin 

et al., 2014c; Zamani et al., 2021), motorist characteristics such as age, gender, alcohol and drug 

usage, distracted driving, and speeding (Tay et al., 2011; Uddin and Ahmed, 2018), vehicle factors 

such as vehicle type, vehicle model year, and point of contact (Chen and Fan, 2019; Ma et al., 

2018; Tay et al., 2011; Yasmin et al., 2014c), roadway factors such as area type, intersection, 

presence of traffic control devices, roadway class, speed limit, median, number of lanes, surface 

conditions, and roadway alignment (Behnood and Mannering, 2016; Chen and Fan, 2019; Uddin 

and Ahmed, 2018; Yasmin et al., 2014c), road environmental characteristics such as daylight and 

dark condition (Chen and Fan, 2019; Uddin and Ahmed, 2018; Yasmin et al., 2014c), weather 

conditions such as rain, cloud, fog and snow (Haleem et al., 2015; Ma et al., 2018; Yasmin et al., 

2014c), crash environmental factors such as time of the day, and season (Eluru et al., 2008), crash 

specific characteristics such as hit-and-run and at-fault (Behnood and Mannering, 2016; Haleem 

et al., 2015), and land-use characteristics such as residential area, commercial and work zone 

(Behnood and Mannering, 2016).   

 

2.2 Current Study in Context 

The literature clearly highlights the progress made in modeling non-motorist injury severity 

analysis. Several researchers have recognized that crash location type has a significant impact on 

non-motorist severity and developed location specific severity models. The econometric models 

developed so far account for the influence of observed factors. However, these models do not 

accommodate for the potential relationship between unobserved factors leading to the non-motorist 

location outcome and the severity outcome. In this study, we address this limitation by 

incorporating a joint framework that explicitly models crash location type and severity as two 

dimensions of the outcome process. To be sure, a recent study (Phuksuksakul et al., 2023) 

developed a similar econometric framework for non-motorist severity analysis. In their analysis 

the authors focused on active travelers while not explicitly accounting for crash location. Thus, in 
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their study, injury severity profiles were partitioned only on the basis of active traveler and not 

based on the crash location. The current study proposes a copula-based model to examine the joint 

process between the crash location type and the injury severity sustained by the non-motorists in 

a traffic crash. Specifically, the study proposes a copula-based joint binary logit (BL)-pooled 

generalized ordered logit (GOL) model to consider the dependence between the location types and 

crash severity sustained by pedestrian and bicyclist in a single motor vehicle crash. In the first 

stage of modeling, the study developed a binary logit to model crash location type and a pooled 

GOL to model pedestrian and bicyclist injury severity. Such pooled model offers significant 

advantages over un-pooled (separate model for pedestrian and bicyclist) in terms of parsimonious 

estimation and data fit while also accounting for variable specific (pedestrian and bicyclist) effects 

(Bhowmik et al., 2019; Wang et al., 2019). In the second stage, built on binary logit and pooled 

GOL, the study examines six copula structures - Gaussian, Farlie-Gumbel-Morgenstern (FGM), 

Frank, Clayton, Joe, and Gumbel to consider a wide range of dependency structures, including 

radial symmetry and asymmetry, and asymptotic tail dependence between location type and crash 

severity variables. The Bayesian Information Criteria (BIC) is used to select the best fitted model 

among the estimated models. Further, we parameterize the copula dependence parameter in the 

best fitted model to obtain a direct effect of exogenous variables on dependence structure. For the 

empirical analysis of the proposed model, the current study uses pedestrian and bicycle crash data 

drawn from the Central Florida region for the years of 2015 to 2021. In our analysis, we focus on 

motor vehicle crashes where a motor vehicle and a non-motorist (pedestrian or bicyclist) were 

involved. To account for the presence of data from multiple years, we used various spline 

functional forms (year spline variables and independent variables interacted with year spline 

variables) that account for potential temporal instability in parameter estimates (more details are 

provided in the variables considered section). 

In summary, the contributions of the current research effort to safety literature are twofold. 

First, methodologically we formulate a copula-based binary logit (BL)-generalized ordered logit 

(GOL) model to jointly estimate crash location type and injury severity sustained by pedestrians 

and bicyclists in a single motor vehicle crash by explicitly accounting for temporal heterogeneity 

of the parameters using a spline formulation approach. The model system allows us to capture 

potential dependency of the unobserved factors between two dimensions while also allowing the 

dependency to vary across pedestrians and bicyclists. Second, empirically, by using the pedestrian 

and bicycle crash data from the Central Florida region, we investigate the contributing factors to 

pedestrian and bicycle injury severity at intersections and segments that will guide and assist safety 

professionals to improve non-motorist safety in the region. 

  

3 MODEL FRAMEWORK 

The focus of our study is to jointly model the crash location type and injury severity 

outcome of non-motorists in single motor vehicle crashes using a copula-based joint binary logit-

pooled generalized ordered logit modeling framework. In this section, econometric formulation 

for the joint model is presented.   

 

3.1 The Crash Location Type Model Component 

Let 𝑞 (𝑞 = 1,2, … … , 𝑄) be the indices to represent non-motorist (pedestrian and bicyclist) 

and 𝑘 (𝑘 = 1,2, … … , 𝐾) represents crash locations (here, K=2). Let 𝑗 be the index for the discrete 

outcome that corresponds to the injury severity level 𝑗 (𝑗 = 1,2, … … , 𝐽) of non-motorist 𝑞. In this 

study, 𝑗 takes five severity levels: 𝑗 = 1 for no injury (NI), 𝑗 = 2 for possible injury (PI), 𝑗 = 3, 
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for non-incapacitating injury (NII), 𝑗 = 4 for incapacitating injury (II), and 𝑗 = 5 for fatal injury 

(FI). The propensity of a non-motorist 𝑞 involving in a crash at location type 𝑘 takes the form of: 

𝑢𝑞𝑘
∗ = 𝛽𝑘𝑥𝑞𝑘 + ξ𝑞𝑘 (1)  

where, 𝑥𝑞𝑘 is a column vector of exogenous variable, 𝛽𝑘 is a row vector of unknown 

parameters specific to location type 𝑘 and 𝜉𝑞𝑘 is an idiosyncratic error term (assumed to be 

standard type-I extreme value distributed) capturing the effects of unobserved factors on the 

propensity associated with location type 𝑘. A non-motorist 𝑞 is assumed to be involved in a crash 

of location type 𝑘 if and only if 𝑞 is associated with the maximum propensity among all 𝑘 crash 

location types, that is if the following condition holds: 

𝑢𝑞𝑘
∗ > max

𝑙=1,2,…,𝑘,   𝐾=2 𝑎𝑛𝑑 𝑙≠𝑘
𝑢𝑞𝑙

∗  (2)  

The condition demonstrated in Equation 2 can be expressed as a series of binary outcome 

models for each location type 𝑘 (Lee, 1983). Let 𝜂𝑞𝑘 be a dichotomous variable with 𝜂𝑞𝑘 = 1 if a 

non-motorist 𝑞 ends up in a crash at location type 𝑘 and 𝜂𝑞𝑘 = 0 otherwise. Thus, the condition 

presented in Equation 2 can be defined with a stochastic term 𝑣𝑞𝑘 as follows: 

𝑣𝑞𝑘 = ξ𝑞𝑘 − { max
𝑙=1,2,…,𝑘,   𝑙≠𝑘

𝑢𝑞𝑙
∗ } (3)  

The reader would note that in this study the 𝑣𝑞𝑘 term is specified following Portoghese et 

al. (2011) which is different than Lee’s transformation (please see Yasmin et al., 2014b for a 

detailed discussion). 

 

By substituting the right side for 𝑢𝑞𝑘
∗  from Equation 1 in Equation 2, we can write: 

𝜂𝑞𝑘 = 1  if  𝛽𝑘𝑥𝑞𝑘 + 𝑣𝑞𝑘 > 0 (4)  

In Equation 4, the probability expression of crash location outcome is dependent on the 

distributional assumption of 𝑣𝑞𝑘, which in turn depends on the distributional assumption of 𝜉𝑞𝑘. 

Thus, an assumption of independent and identical Type 1 Gumbel distribution for 𝜉𝑞𝑘 results in a 

logistic distributed 𝑣𝑞𝑘. Consequently, the probability expression for the corresponding discrete 

outcome (crash location type) model resembles the binary logit probability expression as follows: 

𝛬𝑘(𝛽𝑘𝑥𝑞𝑘) = 𝑃𝑟(𝑣𝑞𝑘 > −𝛽𝑘𝑥𝑞𝑘) =
∑ 𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑙)𝑙≠𝑘

𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑘) + ∑ 𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑙)𝑙≠𝑘
 (5)  

 

3.2 The Injury Severity Model Component 

In the joint model framework, the modeling of non-motorist injury severity is undertaken 

using a generalized ordered logit (GOL) specification. In the traditional ordered logit (OL) model, 

the discrete injury severity levels (𝑦𝑞𝑘) are assumed to be associated with an underlying 

continuous latent variable (𝑦𝑞𝑘
∗ ). This latent variable is typically specified as the following linear 

function:   
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𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜀𝑞𝑘 ,   𝑦𝑞𝑘 = 𝑗𝑘, 𝑖𝑓 𝜏𝑘,𝑗−1 < 𝑦𝑞𝑘

∗ < 𝜏𝑘,𝑗 (6)  

where, 𝑦𝑞𝑘
∗  is the latent injury risk propensity for non-motorist 𝑞 if he/she was involved in 

a crash at location type 𝑘,  𝑧𝑞𝑘 is a vector of exogenous variables, 𝛼𝑘 is a row vector of unknown 

parameters, and 𝜀𝑞𝑘 is a random disturbance term assumed to be standard logistic. 𝜏𝑘,𝑗 (𝜏𝑘,0 =

−∞ , 𝜏𝑘,𝐽 = ∞) represents the threshold associated with severity level 𝑗 for location type 𝑘, with 

the following ordering conditions: (−∞ < 𝜏𝑘,1 < 𝜏𝑘,2 <  … … … < 𝜏𝑘,𝐽−1 < +∞).  

GOL is a flexible form of the traditional OL model that relaxes the restriction of constant 

threshold across population. The GOL model represents the threshold parameters as a linear 

function of exogenous variables (Eluru et al., 2008). In order to ensure the ordering of observed 

discrete injury severity levels, we employ the following parametric form followed by Eluru et al. 

(2008) (Eluru et al., 2008): 

𝜏𝑘,𝑗 = 𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) (7)  

where, Ԍ𝑘𝑗 is a set of explanatory variables associated with the 𝑗𝑡ℎ threshold (excluding a 

constant), 𝛿𝑘𝑗 
′ is a vector of parameters to be estimated, and ɸ𝑘𝑗 is a parameter associated with 

injury severity level 𝑗. The remaining structure and probability expressions are similar to the OL 

model. For identification reasons, we need to restrict one of the 𝛿𝑗 
′ vectors to zero. 

Given these relationships across the different parameters, the resulting probability 

expressions for non-motorist 𝑞 sustaining an injury severity level 𝑗 in a crash at location type 𝑘 

take the following form: 

𝑃𝑟(𝑦𝑞𝑘 = 𝑗𝑘) = 𝛬𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘) − 𝛬𝑘(𝜏𝑘,𝑗−2

+ 𝑒𝑥𝑝(ɸ𝑘𝑗−1 + 𝛿𝑘𝑗−1 
′ Ԍ𝑘𝑗−1) − 𝛼𝑘𝑧𝑞𝑘) 

(8)  

where, Λk(. ) is the standard logistic cumulative distribution function. The probability 

expression of Equation 8 represents the independent injury severity model for a crash location type 

𝑘.  

 

3.3 The Joint Model: A Copula-based Approach 

The location type and the injury severity component discussed in previous two subsections 

can be brought together in the following equation system: 

𝜂𝑞𝑘 = 1  if  𝛽𝑘𝑥𝑞𝑘 > −𝑣𝑞𝑘 

𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜀𝑞𝑘 ,   𝑦𝑞𝑘 = 1[𝜂𝑞𝑘 = 1]𝑦𝑞𝑘

∗  
(9)  

The notation 1[𝜂𝑞𝑘 = 1] represents an indicator function taking the value 1 if 𝜂𝑞𝑘 = 1 and 0 

otherwise. 

However, the level of dependency between the underlying location type outcome and the 

injury severity level of non-motorist depends on the type and extent of dependency between the 

stochastic terms 𝑣𝑞𝑘 and 𝜀𝑞𝑘. These dependencies (or correlations) are explored in the current 

study by using a copula-based approach (please see Bhat and Eluru, 2009 for a detailed description 

of the copula approach). In constructing the dependency with the copula structure, the stochastic 
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terms (𝑣𝑞𝑘 and 𝜀𝑞𝑘) are transformed into uniform distribution by using their inverse cumulative 

distribution functions. Further, these uniform distributed functions are coupled as a multivariate 

joint distribution function using the copula framework. Let us assume that 𝛬𝑣𝑘(. ) and 𝛬𝜀𝑘(. ) are 

the marginal distribution of 𝑣𝑞𝑘 and 𝜀𝑞𝑘, respectively and 𝛬𝑣𝑘,𝜀𝑘(. , . ) is the joint distribution of 

𝑣𝑞𝑘 and 𝜀𝑞𝑘. Subsequently, a bivariate distribution 𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) can be generated as a joint 

cumulative probability distribution of uniform [0, 1] marginal variables 𝑈1 and 𝑈2 as below: 

𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) = 𝑃𝑟(𝑣𝑞𝑘 < 𝑣, 𝜀𝑞𝑘 < 𝜀) 

= [𝛬𝑣𝑘
−1(𝑈1) < 𝑣, 𝛬𝜀𝑘

−1(𝑈2) < 𝜀 ]  

= [𝑈1 < 𝛬𝑣𝑘(𝑣), 𝑈2 < 𝛬𝜀𝑘(𝜀) ] 

(10)  

The joint distribution (of uniform marginal variable) in Equation 10 can be generated by a 

function 𝐶𝜃𝑞(. , . ) (Sklar, 1973), such that: 

𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) = 𝐶𝜃𝑞(𝑈1 = 𝛬𝑣𝑘(𝑣), 𝑈2 = 𝛬𝜀𝑘(𝜀)) (11)  

where 𝐶𝜃𝑞(. , . ) is a copula function and 𝜃𝑞 is the dependence parameter defining the link 

between 𝑣𝑞𝑘 and 𝜀𝑞𝑘. It is important to note here that the level of dependence between location 

type and injury severity level can vary across non-motorists. Therefore, in the current study, the 

dependence parameter 𝜃𝑞 is parameterized as a function of observed crash attributes as follows: 

𝜃𝑞 = 𝑓𝑛(𝛾𝑘𝑠𝑞𝑘) (12)  

where, 𝑠𝑞𝑘 is a column vector of exogenous variable, 𝛾𝑘 is a row vector of unknown 

parameters (including a constant) specific to location type 𝑘 and 𝑓𝑛 represents the functional form 

of parameterization. Based on the dependency parameter permissible ranges, alternate 

parameterization forms for the six copulas are considered in our analysis. For Gaussian, Farlie-

Gumbel-Morgenstern (FGM) and Frank Copulas we use 𝜃𝑞 = 𝛾𝑘𝑠𝑞𝑘, for the Clayton copula we 

employ 𝜃𝑞 = 𝑒𝑥𝑝 (𝛾𝑘𝑠𝑞𝑘), and for Joe and Gumbel copulas we employ 𝜃𝑞 = 1 + 𝑒𝑥𝑝 (𝛾𝑘𝑠𝑞𝑘). 

 

3.4 Estimation Procedure 

The joint probability that the non-motorist 𝑞 gets involved in a crash at location type 𝑘 and 

sustaining injury severity level 𝑗, from Equation 5 and Equation 8, can be written as:  

𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘) 

= 𝑃𝑟 {(𝛽𝑘𝑥𝑞𝑘 > −𝑣𝑞𝑘), (
(𝜏𝑘,𝑗−2 + exp(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 

′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘)

< 𝜀𝑞𝑘 < (𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘)

)}   

  = 𝛬𝜀𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘) −  𝛬𝜀𝑘(𝜏𝑘,𝑗−2 +

𝑒𝑥𝑝(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘) − (𝑃𝑟[𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <  (𝜏𝑘,𝑗−1 +

𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘)] − 𝑃𝑟[𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <  (𝜏𝑘,𝑗−2 +

𝑒𝑥𝑝(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘)] ) 

(13)  
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The joint probability of Equation 13 can be expressed by using the copula function in 

Equation 11 as: 

𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)

= 𝛬𝜀𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘)

−  𝛬𝜀𝑘(𝜏𝑘,𝑗−2 + 𝑒𝑥𝑝(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘)

−  [𝐶𝜃𝑞(𝑈𝑞,𝑗
𝑘 , 𝑈𝑞

𝑘) − 𝐶𝜃𝑞(𝑈𝑞,𝑗−1
𝑘 , 𝑈𝑞

𝑘)]   

(14)  

where 𝑈𝑞,𝑗
𝑘  = 𝛬𝜀𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 

′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘), 𝑈𝑞
𝑘 =

𝛬𝑣𝑘(−𝛽𝑘𝑥𝑞𝑘)  
(15)  

Thus, the likelihood function with the joint probability expression in Equation 14 for 

location type and non-motorist injury severity outcomes can be expressed as: 

𝐿 = ∏ [∏ ∏{𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)}
 𝜔𝑞𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1

]

𝑄

𝑞=1

  (16)  

where, 𝜔𝑞𝑘𝑗 is dummy with 𝜔𝑞𝑘𝑗 = 1 if the non-motorist q sustains crash at location type 

k and an injury severity level of 𝑗 and 0 otherwise. All the parameters in the model are then 

consistently estimated by maximizing the logarithmic function of 𝐿. The parameters to be 

estimated in the model are: 𝛽𝑘 in the BL component, 𝛼𝑘 and 𝜏𝑘,𝑗, ɸ𝑘𝑗, 𝛿𝑘𝑗 
′  in GOL component, 

and finally 𝛾𝑘 in the dependency component. We use GAUSS matrix programming software to run 

the models.  

 

4 DATA PREPARATION   

The current research effort examined crash data involving pedestrian and bicyclist crashes 

from the Central Florida region. These data were collected from the Signal Four Analytics (S4A) 

database for the years of 2015 to 2021. For this study period, a total of 10,013 pedestrian and 6,597 

bicycle crash records were found in the database. After cleaning the missing information, a total 

of 9,241 pedestrian and 6,237 bicycle crash records were retained. The injury severity is classified 

according to a five-point severity scale. The distribution of the severity of the overall non-motorists 

is 12.2% no injury (NI), 27.7% possible injury (PI), 37.3% non-incapacitating injury (NII), 16.7% 

incapacitating injury (II), and 6.1% fatal injury (FI). Out of the total 15,478 pedestrian and bicycle 

crash records, this study randomly considered 10,000 records for model estimation and the 

remaining 5,478 crash records were set aside for validation purpose.    

 

4.1 Variables Considered  

The variables for the analysis were collected from different data sources including Signal 

Four Analytics (S4A), US Census Bureau and American Community Survey, and Florida 

Geographic Data Library databases. The dependent variables considered in this study can be 

categorized into two dimensions. In the first dimension of modeling, this study considers the crash 

location type (segment and intersection) as the dependent variable while in the second dimension, 

the injury severity sustained by pedestrians and bicyclists is considered according to the five-point 

injury severity scale. For the independent variables, this study considers an exhaustive set of 
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variables including non-motorist characteristics (such as age and sex), driver and vehicle 

characteristics (such as driving under influence, distraction, vehicle type, and model year), 

roadway characteristics (such as road class, shoulder type, speed limit, and number of lanes), 

weather and environmental factors (such as clear, rainy, light conditions, time of the day, and 

season), temporal factors (such as year of the crash) and socio-demographic characteristics (such 

as population density, income, means of transport, and population group by different races) of the 

census block groups where crashes occurred. We use ArcGIS to combine the crash records, census 

data and census block group geography to obtain the socio-demographic information at the crash 

record resolution.  

In our study, we tested the temporal instability of the variables by using a spline formulation 

approach that includes year spline variables, and the interactions of year splines and other 

exogenous variables. In this approach, multiple spline variables were computed for the year 

variable including “nYear1”, “nYear2” … “nYear6” and “nYear7” where nYeari represents the spline 

for the year and is defined as the following approach: 

𝑛𝑌𝑒𝑎𝑟1 = 𝑀𝑎𝑥(𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 − 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 , 0) (17)  

𝑛𝑌𝑒𝑎𝑟2 = 𝑀𝑎𝑥(𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 − 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 − 1,0) (18)  

… … …  

𝑛𝑌𝑒𝑎𝑟𝑖 = 𝑀𝑎𝑥(𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 − 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 − (𝑖 − 1),0) (19)  

 where 𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 corresponds to year of the observation, 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 corresponds to the year 

of data prior to the first year used for analysis (in this study, 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 = 2014), and 𝑖 (1, 2, … , 𝑖) 

represents the years starting from 2015. The approach effectively serves as a piecewise linear 

formulation for each parameter over the years. For example, if the estimates for DUI variable are 

found 0.30 (estimate of DUI*nYear1), -0.45 (estimate of DUI*nYear3), and 0.25 (estimate of 

DUI*nYear6) for the year 2015, 2017 and 2020 respectively,  the overall impact of DUI is 0.30 for 

the year 2015, (0.30*2) for 2016, (0.30*3-0.45) for 2017, (0.30*4-0.45*2) for 2018, (0.30*5-

0.45*3) for 2019, (0.30*6-0.45*4+0.25) for 2020, and (0.30*7-0.45*5+0.25*2) for 2021. To be 

specific, this spline approach represents the year threshold points where the slope for a variable is 

expected to change (see Eluru and Gayah, 2022; Shabab et al., 2023 for an application of the 

approach). 

In estimating the model, several functional forms, and combination of variables were 

considered and those that provide the best fit were retained in the final specification. The final 

specification of the model was based on removing the statistically insignificant variables in a 

systematic process based on 90% confidence level. The sample share of the variables considered 

for the final model estimation is presented in Table A.1 in the Appendix section. 

  

5 EMPIRICAL ANALYSIS 
 

5.1 Model Specification and Overall Measures of Fit 

The empirical analysis involves a series of model estimation. The model estimation process 

started with the development of a binary logit (BL) to model crash location type and separate 

ordered logit (OL) models to analyze pedestrian and bicyclist severity for each location type. Then, 



 

 

12 

 

we developed a pooled OL model for each location type that examines if parameter differences 

between pedestrian and bicyclist components are statistically different. The reader would note that 

in this pooled modeling approach, we tested the statistical significance of an exogenous variable 

from pooled dataset and an interaction of that variable with pedestrian/bicyclist indicator variable 

to examine the potential deviation of the variable effect across pedestrians and bicyclists. An 

insignificant effect of the interaction variable indicates no significant deviation of the effect of the 

main variable across two users resulting in the same coefficient and t-statistic for pedestrians and 

bicyclists. It is worthwhile to mention that this pooled modeling approach offers significant 

advantages in terms of dimensionality and model performance relative to the separate models for 

pedestrians and bicyclists (see for previous examples of such pooled models Wang et al., 2019, 

Marcoux et al., 2018). Subsequently, we tested the temporal instability of the variables by using 

year spline variables, and the interactions of year splines and other exogenous variables in both 

BL and pooled OL models. Next, we parametrized the thresholds to relax the monotonic effect of 

the pooled OL model and developed a pooled GOL model with temporal heterogeneity. With these 

independent model results, we build a joint model with six different copula structures: 1) Gaussian, 

2) FGM, 3) Frank, 4) Clayton, 5) Joe, and 6) Gumbel. Based on the significance of copula 

dependence parameter for each location type, copula models that allow for different dependency 

structures for different location types and injury severity combinations were estimated.  

The alternative copula models estimated are non-nested and hence, cannot be tested using 

the traditional log-likelihood ratio test (Eluru et al., 2010). We employ the Bayesian Information 

Criterion (BIC) to determine the best model among all copula models. The BIC for a given 

empirical model is equal to: 

 

𝐵𝐼𝐶 =  − 2𝐿𝐿 + 𝑁𝑝 𝑙𝑛(𝑄) (20)  

 

where LL is the log-likelihood value at convergence, Np is the number of parameters, and 

Q is the number of observations. The model with the lower BIC is the preferred model. 

The LL and BIC values of the estimated models are presented in Table 1. From Table 1, it 

is clear that the pooled model system offers improved data fit (with lower BIC value) compared to 

the separate models supporting the findings of earlier research (Wang et al., 2019). Further, the 

values indicate that capturing temporal heterogeneity and parameterizing the threshold values 

improved the model performance compared to the models without temporal heterogeneity and 

unparameterized threshold values. The comparison exercise among copula models shows that with 

exclusively a single copula dependency structure, all the copula structures show better 

performance than the independent copula model. However, only three copula structures – 

Gaussian, Clayton and Joe show significant dependence parameters for both segment and 

intersection locations. The FGM and Frank structures show significant dependence parameter only 

for segment location while the Gumbel structure shows significant dependence parameter only for 

intersection location. We also tested the performance of the combinations such as Gaussian-

Gumbel, and Frank-Gaussian, structure. However, the lowest BIC value was obtained for the single 

Gaussian structure as shown in Table 1. For this model, we find that parameterizing the dependence 

structure provides further improved BIC (lower) compared to the model structure without 
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parameterization1. Thus, the Gaussian copula with parameterized dependence was finalized for our 

analysis2.  

 

TABLE 1 Comparison of the Model Performance  

Model Log-Likelihood 
Number of 

Parameters 
BIC 

Independent models (BL and separate OL models) -20,417.4 93 41,691.4 

Independent models (BL and pooled OL models) -20,418.1 75 41,527.0 

Independent models with temporal heterogeneity (BL 

and pooled OL models) 
-20,254.2 94 41,374.2 

Independent models with temporal heterogeneity (BL 

and pooled GOL models) 
-20,214.5 98 41,331.6 

Gaussian copula model -20,191.9 94 41,249.6 

FGM copula model -20,197.2 94 41,260.2 

Frank copula model -20,206.6 92 41,260.6 

Clayton copula model -20,223.2 96 41,330.6 

Joe copula model -20,193.6 94 41,253.0 

Gumbel copula model -20,215.9 97 41,325.2 

Gaussian-Gumbel copula model -20,193.5 94 41,252.8 

Frank-Gaussian copula model -20,202.9 94 41,271.6 

Gaussian copula model with parameterized 

dependence  
-20,178.0 96 41,240.2 

 

5.2 Estimation Results 

The estimation results of the Gaussian copula model with parameterized dependency are 

shown in Table 2. The results of the independent copula model are shown in Table A.2 of the 

Appendix. For the ease of presentation, the location type component and injury severity component 

are discussed separately. The copula parameters are presented in the last row panel of Table 2.  

 

 

 
1 We conducted a comparison exercise between the performance of a separate model system 

(composed of a crash location type model (BL) and a single injury severity model (OL) with crash 

location type exogenous variable - intersection vs segment for pedestrians and bicyclists by using 

pooled dataset) with the performance of proposed copula-based model. The comparison exercise 

showed that our proposed copula-based model offers superior performance than the separate model 

system in terms of BIC and LL values. The BIC (LL) values of separate model system and 

proposed copula-based model are 41,536.55 (-20,565.65) and 41,240.19 (-20,178.00) respectively. 

This finding further reinforces the rationale for developing the joint model structure with crash 

location types as a dependent variable linked through copula structure. 
2 In an effort to further assess the predictive performance of the proposed copula-based joint model, 

a validation exercise is carried out using the holdout sample. We compare the predictive log-

likelihood of the proposed copula-based joint model with the independent model system. The 

predictive BIC (LL) of the proposed model and independent model system are 23,921.37 (-

11,556.08) and 23,957.85 (-11,557.11) respectively. This result further highlights the enhanced 

performance of the proposed copula model. 
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5.2.1 Location Type Component 

The results of the location type model component are presented in the first column panel 

of Table 2. The reader would note that a positive (negative) sign for a variable in Table 2 signifies 

that an increase in the variable is likely to result in a higher (lower) likelihood of segment crash 

(compared to intersection crash) given that a crash occurred. For the ease of discussion, in the 

following sections, the impacts of the variables are discussed by variable characteristics separately. 

 

Non-motorist characteristics  

The age variable impacts suggest that non-motorists under the age of 20 are less likely to 

be involved in segment crashes while senior non-motorists (age ≥65) are more likely to be crash 

prone on segments. The results might suggest that senior individuals are unable to respond in time 

to prevent crashes on segments. On the other hand, for younger non-motorists, intersections offer 

complexity that cannot be overcome by their agility. The reader would note that crash location type 

variable (intersection versus segment) as considered in our analysis has not been examined in 

earlier work on severity analysis. Thus, it is not possible to compare our findings with earlier 

research efforts.  

 

Driver characteristics    

Drivers under the influence of alcohol and drug are more likely to be involved in crashes 

on segments. Drivers under influence are likely to react slower and are unlikely to identify objects 

adequately. On the other hand, distracted drivers are more likely to be involved in crashes at 

intersections. Non-motorist exposure is typically higher at intersections, and distraction while 

driving might increase the crashes at intersections compared to segment locations. 

 

Vehicle characteristics 

With respect to vehicle characteristics, vehicles of model year earlier than 2006 are more 

likely to be involved in segment crashes compared to the vehicles of model year after 2006. This 

is probably a result of technological safety advancements in motor vehicles over the years in 

relation to assisted driving, assisted breaking, and lane departure avoidance.  

 

Roadway characteristics 

Several roadway characteristics were tested in the model. The results indicate that on rural 

roads, non-motorist crashes are more likely to be segment crashes. The results probably reflect the 

low density of intersections and non-motorists crossing along non-intersection locations. Further, 

the results show that the effect of this variable is not stable over the years. The negative sign of the 

variable “Rural roads*nYear3” implies that the impact decreases in 2017 and slope of the impact 

changes over time starting from 2017.    

Table 2 also suggests that the presence of curb shoulder reduces the likelihood of segment 

crashes as this shoulder type typically includes a sidewalk and possibly higher intersection density 

for crossing. Interestingly, the slope of the effect further increases in 2017 and then decreases in 

2020 as indicated by “Curb shoulder*nYear3” and “Curb shoulder*nYear6” variables 

respectively.  
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TABLE 2 Estimation Results of the Gaussian Copula Model with Parameterized Dependence  

Variables 

Location Type 

Model (Base: 

Intersection) 

Intersection Severity Model Segment Severity Model 

Pedestrian Bicycle Pedestrian Bicycle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant 0.172 4.244 -- -- -- --     

Threshold between NI-PI -- -- -2.406 -18.019 -1.962 -15.284 -2.545 -40.478 -2.410 -35.561 

Threshold between PI-NII -- -- -0.690 -13.355 -0.434 -10.919 -1.096 -13.572 -0.961 -13.572 

Threshold between NII-II -- -- 0.965 11.455 1.308 11.329 0.240 8.707 0.442 8.028 

Threshold between II-FI -- -- 2.264 3.485 3.122 6.014 1.322 1.656 1.571 1.657 

Non-motorist Characteristics 

Age (Base: Other age group)           

Age <20* -0.065 -4.816 -0.069 -2.479 -- -- -- -- -- -- 

Age ≥ 65 0.029 2.079 0.196 3.953 0.196 3.953 0.083 5.656 0.083 5.656 

Age ≥ 65*nYear4 -- -- -0.184 -1.801 -0.184 -1.801 -- -- -- -- 

Driver Characteristics 

DUI related (Base: Not DUI driving)           

DUI driving  0.143 2.984 0.483 6.606 0.483 6.606 0.122 2.901 0.290 3.574 

Distracted related (Base: Not distracted 

driving) 
          

Distracted driving  -0.051 -4.334 -- -- -- -- -- -- -- -- 

Movement pattern (Base: Straight and others)           

Turning -- -- -0.045 -3.628 -0.045 -3.628 -0.297 -2.928 -0.252 -2.478 

Turning*nYear2 -- -- -- -- -- -- 0.299 2.411 0.299 2.411 

Threshold between II-FI -- -- -- -- -- -- 0.062 2.645 0.062 2.645 

Vehicle Characteristics 

Vehicle type (Base: Car and others)           

SUV -- -- -- -- -- -- 0.302 2.995 0.302 2.995 

SUV*nYear2 -- -- -- -- -- -- -0.363 -2.864 -0.363 -2.864 

SUV*nYear7 -- -- -- -- -- -- 0.398 2.668 0.398 2.668 

Pickup -- -- -- -- -- -- 0.036 2.851 0.036 2.851 

Vehicle model year (Base: Model 2006-2021)           

Model < 2006 0.033 3.235 -- --   -- -- -- -- 

Point of impact (Base: Front impact)           

Left impact -- -- -0.083 -3.355 -0.083 -3.355 -0.095 -5.966 -0.095 -5.966 

Rear impact -- -- -- -- -- -- -0.083 -4.095 -- -- 

Right impact -- -- -0.046 -2.411 -0.046 -2.411 -0.164 -8.243 -0.097 -4.502 

Right impact*nYear6 -- -- -- -- -- -- 0.306 3.643 0.306 3.643 
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Variables 

Location Type 

Model (Base: 

Intersection) 

Intersection Severity Model Segment Severity Model 

Pedestrian Bicycle Pedestrian Bicycle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Roadway Characteristics 

Road class (Base: Urban roads)           

Rural roads 0.149 4.292 0.424 4.753 0.424 4.753 0.065 1.845 0.065 1.845 

Rural roads*nYear2 -- -- -0.420 -3.803 -0.420 -3.803 -- -- -- -- 

Rural roads*nYear3 -0.126 -2.336 -- -- -- -- -0.111 -2.043 -0.111 -2.043 

Road system identifier (Base: Local roads and 

others) 
          

State roads -- -- -- -- -- -- 0.056 3.777 -- -- 

US roads -- -- -- -- -- -- 0.787 6.192 0.787 6.192 

US roads*nYear2 -- -- -- -- -- -- -0.909 -5.826 -0.909 -5.826 

Parking lots -- -- -- -- -0.198 -1.888 -0.045 -3.714 -0.045 -3.714 

Shoulder type (Base: Other types)           

Curb shoulder -0.240 -7.368 -- -- -- -- -- -- -- -- 

Curb shoulder*nYear3 0.319 5.624 -- -- -- -- -- -- -- -- 

Curb shoulder*nYear6 -0.113 -1.860 -- -- -- -- -- -- -- -- 

Speed limit (Base: SL ≤ 25 mph)           

SL 26-40 -- -- -- -- -- -- 0.331 4.201 0.331 4.201 

SL 26-40*nYear2 -- -- -- -- -- -- -0.353 -3.698 -0.353 -3.698 

SL ≥ 41 0.042 3.210 0.412 3.706 0.412 3.706 0.081 5.817 0.081 5.817 

SL ≥ 41*nYear2 -- -- -0.436 -3.179 -0.436 -3.179 -- -- -- -- 

Number of lanes (Base: Lane ≤ 2)           

Lane 3 -0.427 -4.298 -- -- -- -- -- -- -- -- 

Lane 3*nYear3 0.514 3.318 -- -- -- -- -- -- -- -- 

Lane 4 -0.058 -4.646 0.051 2.841 0.051 2.841 0.066 4.253 -- -- 

Lane ≥ 5 -0.029 -1.817 0.080 3.753 0.080 3.753 0.049 2.687 -- -- 

Traffic control device (Base: No control)           

Traffic signs -- -- -0.047 -3.249 -0.047 -3.249 -0.041 -1.975 -0.041 -1.975 

Traffic signals -- -- -0.035 -2.253 -0.035 -2.253 -- -- -- -- 

Threshold between NII-II -- -- 0.030 2.922 0.030 2.922 -- -- -- -- 

Threshold between II-FI -- -- 0.223 4.557 0.223 4.557 -- -- -- -- 

Weather and Environmental Characteristics 

Weather condition (Base: Clear)           

Cloudy 0.032 2.706 -- -- -- -- -- -- -- -- 

Light condition (Base: Daylight)           

Dawn and dusk 0.031 1.846 -- -- -- -- -- -- -- -- 
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Variables 

Location Type 

Model (Base: 

Intersection) 

Intersection Severity Model Segment Severity Model 

Pedestrian Bicycle Pedestrian Bicycle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Dark lighted 0.056 5.018 0.114 7.076 0.114 7.076 -- -- -- -- 

Dark not lighted 0.706 8.527 1.097 5.441 1.097 5.441 -- -- -- -- 

Dark not lighted*nYear2 -- -- -1.090 -4.430 -1.090 -4.430 -- -- -- -- 

Dark not lighted*nYear3 -1.155 -4.358 -- -- -- -- -- -- -- -- 

Dark not lighted*nYear4 0.365 1.658 -- -- -- -- -- -- -- -- 

Time of the day (Off-peak and peak evening)           

Late night (00:00-6:30) -- -- -- -- -- -- 0.494 4.579 0.494 4.579 

Late night*nYear2 -- -- -- -- -- -- -0.535 -4.034 -0.535 -4.034 

Peak morning (6:30:9:00) -0.057 -5.008 -- -- -- -- -- -- -- -- 

Off-peak morning (9:00-12:00) -- -- -- -- 0.070 2.923 -- -- -- -- 

Late evening (18:30-24:00) -- -- -- -- -- -- 0.030 2.387 -- -- 

Socio-demographic Characteristics 

Proportion of public transportation means 0.174 2.065 -- -- -- -- -- -- -- -- 

Dependence Parameter           

Constant  -0.443 -4.348 -0.443 -4.348 -0.857 -34.285 -0.857 -34.285 

Curb shoulder -- -- -- -- 0.086 4.069 0.086 4.069 

SUV 0.123 2.856 0.123 2.856 -- -- -- -- 

Log-likelihood: -20,178.00; Number of parameters: 96; BIC: 41,240.19 

Note: “*” Represents the effect of the variable for the year 2015 (nYear1*Age <20); “--” Represents the variables are not significant at 90% confidence level; 

NI=No injury, PI=Possible injury, NII=Non-incapacitating injury, II=Incapacitating injury, FI=Fatal injury. 
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The results also indicate that crashes occurring on roadways with higher posted speed limit 

(speed limit ≥41mph) are likely to be segment crashes. Model results also imply that crashes occur 

on roadways with 3 lanes, 4 lanes, or more than 5 lanes are less likely to be segment crashes 

compared to 2 lane roads. Typically segments with higher number of lanes increase the distance 

that non-motorists have to traverse substantially and thus discouraging non-motorist crossings. 

Further, the results show that the impact of the 3-lane variable is not stable over time and the effect 

increases from 2017.   

 

Weather and environmental characteristics 

Among the weather conditions, cloudy weather shows positive impact on segment crashes. 

Compared to daylight conditions, crashes occurring at dawn/dusk and dark conditions irrespective 

of lights are more likely to be segment crashes. This is plausible as segments have lower lighting 

facilities compared to intersections and hence crashes occurring at dawn/dusk or dark conditions 

are more likely to occur on segments. The results also indicate that the impact of the dark not 

lighted variable is not stable over time, and the impact changes during 2017 and 2018. 

With regards to the time of the day, the model results show that crashes occurring during 

morning peak are less likely to be segment crashes compared to other times of the day. As the 

exposure of non-motorists is typically higher at intersections, more activities such as crossings are 

likely to be higher at peak times which might increase intersection crashes. 

  

Socio-demographic characteristics 

A higher proportion of public transportation adoption is associated with higher segment 

crash likelihood. The result is intuitive as public transit stops are found on mid-blocks and are 

usually away from intersection for traffic management reasons. Hence, transit riders trying to cross 

the road might be obscured by the bus and are likely to be subject to higher crash risk.  

 

5.2.2 Severity Component 

The results of the severity component are presented in the last column panels of Table 2. 

The reader would note that a positive (negative) sign for a variable in Table 2 signifies that an 

increase in the variable is likely to result in higher (lower) severity in a crash. We present the 

discussion for severity component for segment and intersection by variable group together.  

 

Non-motorist characteristics  

For intersection crashes, younger pedestrians are likely to sustain less severe injury. For 

senior non-motorists, the results show that pedestrians and bicyclists of age 65 and older have a 

higher likelihood of severity in a crash compared to other age groups with slightly higher 

magnitude for intersections. The results are consistent with many previous studies (Bahrololoom 

et al., 2020; Ma et al., 2018). For intersection crashes, the impact of the variable Age ≥65 is found 

to decrease from the year 2018 as shown in Table 2.  

 

Driver and vehicle characteristics    

As expected, driving under influence increases the likelihood of pedestrian and bicyclist 

severity in intersection and segment crashes (Chen and Fan, 2019; Eluru et al., 2008; Tay et al., 

2011). The magnitude of the impact is higher for intersection crashes. At both locations, turning 

maneuvers decrease the severity of the pedestrian and bicycle crashes compared to other 

maneuvers. In addition, for this variable, the impact is found to increase starting from 2016 for 



 

 

19 

 

segment location. The results also indicate that this variable further reduces the likelihood of 

severity at segments as it shifts the threshold between fatal and incapacitating injury towards right 

resulting in further decrease in the probability of severe crashes.   

Vehicle type of the motor vehicle involved in the crash has a significant impact on severity 

at segment location. Specifically, severity of crash is exacerbated for SUV and Pickup vehicle 

types. Further, the magnitude of the impact of SUV decreases from the year 2016 and increases 

again in the year 2021. Notably, the results did not find significant impact of heavy vehicle in crash 

severity in our study area. The direction of impact offers expected results with front impact that 

most risky while left and right impact reduce severity across locations for non-motorists (Zamani 

et al., 2021). The effect of the right impact variable is found to be unstable over the years and the 

slope of the impact increases from the year 2020 at segment location. The rear impact direction on 

segments is observed to reduce severity only for pedestrians. The result warrants further 

investigation.  

 

Roadway characteristics 

The parameters estimated for rural roads variable highlight the increased risk for non-

motorists at both locations on rural roads. Further, the impact of the parameters is found to change 

from the year 2016 and 2017 at the intersection and segment location, respectively.  

With respect to state roads, the segment severity model results highlight an increased 

severity risk for pedestrians. On US roads, at segment location, there is an increased severity risk 

of the non-motorists, and the impact is found to decrease from the year 2016.  

As expected, crashes in parking lots are less likely to be severe for bicyclists across both 

locations and for pedestrians at segment location. In terms of posted speed limit, higher speeds 

(greater than 40mph) are associated with severe injuries across locations (Chen and Fan, 2019; 

Pervaz et al., 2023). On the other hand, the speed limit 26-40mph also shows higher severity for 

segment location compared to the speed limit ≤25mph and the impact of this variable is found to 

decrease starting from 2016. For intersection location, the impact of the SL ≥41 variable also 

indicates variable impact starting from the year 2016. Across both locations, crashes on facilities 

with 4 or 5 lanes and higher are associated with higher pedestrian injury severity while the 

variables show higher severity for bicyclists at intersection location only (Haleem et al., 2015; 

Yasmin et al., 2014c). 

The presence of traffic signs is associated with reduced severity for non-motorists across 

locations. Traffic signals variables, unsurprisingly, exert influence on intersection location. The 

three parameters estimated – propensity, thresholds between fatal and incapacitating injury, and 

incapacitating and non-incapacitating injury – highlight how traffic signals reduce non-motorist 

injury severity at intersections (Eluru et al., 2008; Toran Pour et al., 2017).  

 

Weather and environmental characteristics 

Among road environmental variables, the interaction of natural light and lighting 

conditions offers interesting results. Dark conditions irrespective of light are associated with higher 

non-motorist severity for intersection facilities. It is also interesting to note that the impact of the 

dark not lighted variable has changed from the year 2016. The findings are in general consistent 

with earlier studies (see Chen and Fan, 2019; Uddin and Ahmed, 2018).  

Segment crashes occurring during late night period are associated with increased non-

motorist severity and the impact is found to decrease from the year 2016. Bicycle crashes occurring 

at intersection during off peak morning time have a higher impact on severity compared to the 
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other times of the day (see Eluru et al., 2008; Phuksuksakul et al., 2023 for similar findings). The 

findings also indicate that pedestrian injury severity is likely to be higher for crashes in the late 

evening period.  

 

5.2.3 Dependence Effect 

As indicated earlier, the estimated Gaussian copula-based joint BL-pooled GOL model 

provides the best fit in incorporating the correlations between the crash location type and injury 

severity outcome of the pedestrian and bicycle crashes. An examination of the copula parameters 

presented in the last row panel of Table 2 highlights the presence of common unobserved factors 

affecting crash location type and injury severity. The reader would note that in our dataset, the 

copula parameters did not offer statistically significant differences for pedestrians and bicyclists 

between the crash location types and injury severity outcomes. The negative correlations indicate 

that the unobserved factors that increase the likelihood of segment and intersection crashes 

decrease the injury severity of the pedestrians and bicyclists involved in those crashes. We 

parameterized the dependency by exogenous factors in our model system. For intersection 

location, the copula dependency is characterized by an additional exogenous variable – SUV for 

both pedestrian and bicycle crashes while for segment location, the copula dependency is 

characterized by an additional variable – curb shoulder type. The findings indicate that for 

intersection location, the dependency parameter 𝜃𝑞 varies across the pedestrians and bicyclists 

with the SUV variable i.e., for crashes involving SUV’s at the intersection, the dependency 

between crash location type and severity increases relative to other crashes. For segment location, 

the presence of curb shoulder type increases 𝜃𝑞 compared to crashes without curb shoulder. This 

provides support to our hypothesis that the dependency structures are not constant across the entire 

database. 

 

6 ELASTICITY EFFECT ANALYSIS  

The model results shown in Table 2 do not provide the true magnitude of the effects of the 

exogenous variables on the probability of crashes across location types as well as the probability 

of the crash severity sustained by pedestrians and bicyclists. To demonstrate the actual magnitude 

of the variables impact, we compute the aggregate level “elasticity effects” for the exogenous 

variables following the methodology formulated by  Eluru and Bhat (2007). According to the 

methodology, for any indicator exogenous variable, the elasticity can be computed by changing 

the value of the variable to one for the subsample of observations for which the variable takes a 

value of zero and to zero for the subsample of observations for which the variable takes a value of 

one. Subsequently, the shifts in expected aggregate shares in the two subsamples are summed after 

reversing the sign of the shifts in the second subsample and the percentage change in expected 

aggregate shares in the entire sample due to change in the indicator variable from 0 to 1 is obtained. 

For mathematical expressions, let’s consider an exogenous indicator variable DUI driving (where 

DUI is 1 if a driver is under the influence of drug/alcohol and 0 otherwise) for which elasticity will 

be computed. From equation 8, probability expressions for non-motorist 𝑞 sustaining an injury 

severity level 𝑗 in a crash at location type 𝑘 is (base probability as estimated in the model), 

 

𝑃𝑟𝑏𝑎𝑠𝑒 = 𝑃𝑟(𝑦𝑞𝑘 = 𝑗𝑘)

= 𝛬𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘) − 𝛬𝑘(𝜏𝑘,𝑗−2

+ 𝑒𝑥𝑝(ɸ𝑘𝑗−1 + 𝛿𝑘𝑗−1 
′ Ԍ𝑘𝑗−1) − 𝛼𝑘𝑧𝑞𝑘) 

(21)  
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According to the discussions presented above, we compute the probability again by 

changing the DUI driving variable value to 0 (where the value is 1) and to 1 (where the value is 0) 

while keeping all other characteristics unchanged by following expression,   

 

𝑃𝑟𝑁𝑒𝑤 = 𝑃𝑟(𝑦𝑞𝑘 = 𝑗𝑘)

= 𝛬𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘) − 𝛬𝑘(𝜏𝑘,𝑗−2

+ 𝑒𝑥𝑝(ɸ𝑘𝑗−1 + 𝛿𝑘𝑗−1 
′ Ԍ𝑘𝑗−1) − 𝛼𝑘𝑧𝑞𝑘) 

(22)  

 

Now, aggregate elasticity effects for DUI driving variable can be computed as,  

 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦(𝑦𝑞𝑘=𝑗𝑘) =
∑ ((𝑃𝑟𝑁𝑒𝑤 −  𝑃𝑟𝑏𝑎𝑠𝑒) × 𝑆𝑖𝑔𝑛) × 100𝑞

∑ 𝑃𝑟𝑏𝑎𝑠𝑒𝑞
 (23)  

 

Where “sign” takes the value of “1” for the individual for which value changes from 0 to 

1 and (-1) for the individual for which value changes from 1 to 0.  

For the severity component, the computed elasticity can be interpreted as the percentage 

change in the likelihood of an injury severity level 𝑗 for a crash at location type 𝑘 due to a change 

in the DUI driving variable from 0 to 1. For instance, the aggregate elasticity 60% for DUI driving 

variable for fatal injury at a segment can be interpreted as the likelihood of a non-motorist being 

fatally injured in a segment crash by a driver under the influence of drug/alcohol is about 60% 

higher than the likelihood of a non-motorist being fatally injured by a driver not under the influence 

of drug/alcohol while other characteristics being equal. 

The results of the measured elasticity for crashes by location types, intersection crash 

severity and segment crash severity are presented in Table 3, Table 4 and Table 5, respectively. 

Table 3 shows the percentage change in the likelihood of crashes by location type while Table 4 

and Table 5 show the percentage change in the likelihood of injury severities due to the changes 

in the exogenous variable of interest across location types. The findings from the tables indicate 

that the elasticity effects of the variables for both crash location type and injury severity 

components are consistent with the effects presented in Table 2. For example, the elasticity 

estimate for the senior non-motorist related variable (Age ≥65) indicates that senior non-motorists 

decrease the likelihood of intersection crashes by 6.11% and increase the likelihood of segment 

crashes by 4.83% (see Table 3) while increase the likelihood of the fatal injury by 48.36% at 

intersection location (see Table 4) and by 25.02% at segment location (see Table 5). The effects of 

all the variables presented in Table 3, Table 4 and Table 5 can be interpreted in a similar fashion.  

The results from Table 3 imply that higher number of lanes, curb shoulder type, young non-

motorists, peak morning period and distracted driving are the significant factors that contribute to 

intersection crashes while dark conditions without lighting, driving under the influence of drug 

and alcohol, higher public transportation means of transport and rural roads are the significant 

contributing factors for segment crashes. 

The elasticity results from Table 4 highlight that, for intersection location, the most 

significant variables with respect to an increase in the non-motorist fatal injury risk at intersection 

location are DUI related, dark not lighted, senior non-motorists, dark lighted, rural roads, higher 

speed limit and higher number of lanes in the roadways. The variables describing traffic signals, 

left impacts, traffic signs, turning movement and right impacts reduce the non-motorist fatal injury 

risks at intersection location. Further, pedestrians of age less than 20 reduce the fatal injury risks 
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at intersection location while bicyclists involved in crashes at off-peak morning increase the fatal 

injury risk. 

The results from Table 5 show that for segment location, the most significant variables with 

respect to an increase in the non-motorist fatal injury risk at segment location are DUI related, US 

roads, late night, senior non-motorists, higher speed limit, SUV and pickup vehicle. The variables 

describing turning movement, right impacts, left impacts, and traffic signs reduce the non-motorist 

fatal injury risks at segment location. Further, the higher number of lanes in segment increases the 

pedestrian fatal injury risks at segment location.   

  

TABLE 3 Elasticity Effects of the Variables for Crash Location Type Component 

Variables 
Location Type Model  

Intersection Crash Segment Crash 

Non-motorist Characteristics 

Age (Base: Other age group)   

Age <20 14.21 -11.23 

Age ≥ 65 -6.11 4.83 

Driver Characteristics 

DUI related (Base: Not DUI driving)   

DUI driving  -28.52 22.55 

Distracted related (Base: Not distracted driving)   

Distracted driving  11.02 -8.71 

Vehicle Characteristics 

Vehicle model year (Base: Model 2006-2021)   

Model < 2006 -7.08 5.60 

Roadway Characteristics 

Road class (Base: Urban roads)   

Rural roads -17.23 13.63 

Shoulder type (Base: Other types)   

Curb shoulder 17.19 -13.59 

Speed limit (Base: SL ≤ 25 mph)   

SL ≥ 41 -8.99 7.11 

Number of lanes (Base: Lane ≤ 2)   

Lane 3 31.98 -25.28 

Lane 4 12.46 -9.85 

Lane ≥ 5 6.20 -4.90 

Weather and Environmental Characteristics 

Weather condition (Base: Clear)   

Cloudy -6.75 5.34 

Light condition (Base: Daylight)   

Dawn and dusk -6.55 5.18 

Dark lighted -11.98 9.47 

Dark not lighted -42.85 33.88 

Time of the day (Off-peak and peak evening)   

Peak morning (6:30:9:00) 12.30 -9.73 

Socio-demographic Characteristics 

Proportion of public transportation means -20.21 15.98 
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TABLE 4 Elasticity Effects of the Variables for Intersection Crash Severity 

Variables 

Intersection Crash Severity Model 

Pedestrian Bicycle 

NI PI NII II FI NI PI NII II FI 

Non-motorist Characteristics 

Age (Base: 20-64)           

Age<20 28.26 15.01 -2.13 -14.57 -20.11 -- -- -- -- -- 

Age ≥ 65 -39.31 -28.27 -2.70 29.45 48.36 -39.31 -28.27 -2.70 29.45 48.36 

Driver Characteristics  

DUI related (Base: Not DUI driving)           

DUI driving -77.83 -70.90 -43.05 69.96 268.40 -77.83 -70.90 -43.05 69.96 268.40 

Movement pattern (Base: Straight and others)           

Turning 16.48 10.08 -0.51 -10.02 -14.47 16.48 10.08 -0.51 -10.02 -14.47 

Vehicle Characteristics 

Point of impact (Base: Front impact)           

Left impact 34.52 17.84 -2.78 -17.34 -23.66 34.52 17.84 -2.78 -17.34 -23.66 

Right impact 18.01 10.17 -1.06 -9.94 -14.00 18.01 10.17 -1.06 -9.94 -14.00 

Roadway Characteristics 

Road class (Base: Urban roads)           

Rural roads -37.04 -24.36 0.06 24.54 36.51 -37.04 -24.36 0.06 24.54 36.51 

Road system identifier (Base: Local roads and 

others) 
          

Parking lots -- -- -- -- -- 103.91 37.58 -13.06 -37.73 -46.31 

Speed limit (Base: SL ≤ 25 mph)           

SL ≥ 41 -27.41 -18.91 -0.69 19.63 28.76 -27.41 -18.91 -0.69 19.63 28.76 

Number of lanes (Base: Lane ≤ 3)           

Lane 4 -17.40 -11.21 0.06 11.31 16.97 -17.40 -11.21 0.06 11.31 16.97 

Lane ≥ 5 -25.86 -17.60 -0.80 18.09 28.23 -25.86 -17.60 -0.80 18.09 28.23 

Traffic control device (Base: No control)           

Traffic signs 17.67 10.24 -0.78 -9.97 -14.95 17.67 10.24 -0.78 -9.97 -14.95 

Traffic signals 12.96 7.68 10.03 9.04 -98.11 12.96 7.68 10.03 9.04 -98.11 

Environmental Characteristics 

Light condition (Base: Daylight)           

Dark lighted -35.74 -25.14 -1.62 26.24 40.26 -35.74 -25.14 -1.62 26.24 40.26 

Dark not lighted -67.30 -55.57 -16.58 62.16 123.72 -67.30 -55.57 -16.58 62.16 123.72 

Time of the day (Base: Other times)           

Off-peak morning  -- -- -- -- -- -23.00 -15.29 -0.52 15.41 25.04 
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TABLE 5 Elasticity Effects of the Variables for Segment Crash Severity 

Variables 

Segment Crash Severity Model 

Pedestrian Bicycle 

NI PI NII II FI NI PI NII II FI 

Non-motorist Characteristics 

Age (Base: 20-64)           

Age ≥ 65 -27.91 -21.60 -9.46 6.28 25.02 -27.91 -21.60 -9.46 6.28 25.02 

Driver Characteristics  

DUI related (Base: Not DUI driving)           

DUI driving -36.52 -29.91 -15.45 6.61 38.76 -63.70 -57.30 -39.97 -2.70 99.11 

Movement pattern (Base: Straight and others)           

Turning 66.93 22.59 2.24 5.79 -39.00 53.46 11.04 -1.38 11.14 -29.52 

Vehicle Characteristics 

Vehicle type (Base: Car and others)           

SUV -14.43 -11.23 -4.75 3.51 12.57 -14.43 -11.23 -4.75 3.51 12.57 

Pickup -12.93 -9.63 -3.76 3.14 10.45 -12.93 -9.63 -3.76 3.14 10.45 

Point of impact (Base: Front impact)           

Left impact 43.46 27.55 6.60 -11.23 -24.67 43.46 27.55 6.60 -11.23 -24.67 

Rear impact 37.48 24.15 6.04 -9.75 -21.84 -- -- -- -- -- 

Right impact 84.39 47.37 7.91 -20.44 -39.90 44.50 27.88 6.68 -11.40 -25.05 

Roadway Characteristics 

Road class (Base: Urban roads)           

Rural roads -1.53 -1.35 -0.58 0.48 1.41 -1.53 -1.35 -0.58 0.48 1.41 

Road system identifier (Base: Local roads and 

others) 
          

State roads -19.47 -14.94 -6.30 4.68 16.75 -- -- -- -- -- 

US roads -30.43 -25.33 -12.98 6.42 31.79 -30.43 -25.33 -12.98 6.42 31.79 

Parking lots 18.36 12.91 4.09 -4.87 -12.54 18.36 12.91 4.09 -4.87 -12.54 

Speed limit (Base: SL ≤ 25 mph)           

SL 26-40 -22.50 -17.27 -6.96 5.68 18.73 -22.50 -17.27 -6.96 5.68 18.73 

SL ≥ 41 -28.61 -22.08 -9.19 7.23 24.28 -28.61 -22.08 -9.19 7.23 24.28 

Number of lanes (Base: Lane ≤ 3)           

Lane 4 -22.66 -17.58 -7.60 5.41 19.95 -- -- -- -- -- 

Lane ≥ 5 -17.09 -13.04 -5.40 4.13 14.49 -- -- -- -- -- 

Traffic control device (Base: No control)           

Traffic signs 17.06 11.60 3.49 -4.39 -11.19 17.06 11.60 3.49 -4.39 -11.19 

Environmental Characteristics 

Time of the day (Base: Other times)           
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Variables 

Segment Crash Severity Model 

Pedestrian Bicycle 

NI PI NII II FI NI PI NII II FI 

Late night -29.60 -23.68 -10.88 6.95 27.68 -29.60 -23.68 -10.88 6.95 27.68 

Late evening -10.95 -8.11 -3.08 2.75 8.61 -- -- -- -- -- 

Note: NI=No injury, PI=Possible injury, NII=Non-incapacitating injury, II=Incapacitating injury, FI=Fatal injury 
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From the aforementioned elasticity effects, it can be highlighted that the influence of driver, 

road environmental and non-motorists related variables are found to be substantially larger than 

the influence of roadway and vehicle characteristics. Further, the elasticity values clearly highlight 

that each crash location type has a fundamentally distinct injury severity profile underscoring the 

importance of examining the effect of various exogenous variables on pedestrian and bicyclist 

injury severity outcome by different non-motorist location. 

 

7 CONCLUSIONS 

Traditional models of crash frequency or severity analysis implicitly assume that the 

parameter space to be estimated is universally same i.e., all observations follow the same 

functional form (simple mean or distribution). However, several research efforts have highlighted 

the value of allowing for distinct crash severity profiles by various attribute categories. In modeling 

non-motorist injury severity, the crash location variable offers an attribute that can potentially 

mediate the impact of independent variables affecting severity. We build a mathematical 

framework that accommodates for observed and unobserved factors associated with crash location 

type impacting non-motorist crash severity. Specifically, we employed a copula-based model to 

examine crash location type and non-motorist injury severity jointly. In this model, the crash 

location type is analyzed as a binary variable employing binary logit (BL) model while the severity 

component is examined using a generalized ordered logit (GOL) model. The copula structures 

considered that represent a range of dependency structures include Gaussian, Farlie-Gumbel-

Morgenstern (FGM), Frank, Clayton, Joe, and Gumbel. Several Copula models including those 

that allow for varying copulas across the two locations are also considered. The copula parameter 

was also allowed to vary across the data. Bayesian Information Criterion (BIC) was employed to 

determine the best model among all copula models tested. For the empirical analysis of the models, 

we used pedestrian and bicycle crash data drawn from the Central Florida region for the years of 

2015 to 2021. A total of 15,478 non-motorist crash records (9,241 pedestrians and 6,237 bicyclists) 

were used for the analysis. To obtain accurate estimates, we explicitly accounted for temporal 

heterogeneity in our developed model system. We considered a comprehensive set of exogenous 

variables including non-motorist user characteristics, driver and vehicle characteristics, roadway 

attributes, weather and environmental factors, temporal and socio-demographic factors for the 

analysis of the models. 

The results of the empirical analysis show that a Gaussian copula model with parameterized 

dependence term offered the best fit. Further, we assessed the predictive performance of the 

developed copula-based joint model by conducting a validation exercise. The validation exercise 

further highlighted the enhanced performance of the developed model. We also conducted an 

elasticity analysis to show the magnitude of the variables on pedestrian and bicyclist injury severity 

at two locations. The elasticity results highlight that each crash location type has a fundamentally 

distinct injury severity profile underscoring the importance of examining the effect of various 

exogenous variables on pedestrian and bicyclist injury severity outcome by different non-motorist 

location. Finally, it is worthwhile to highlight that our study investigated the contributing factors 

to pedestrian and bicycle injury severity at crash locations that will guide the policymakers and 

transportation agencies to devise appropriate countermeasures to promote adoption of active 

transportation, particularly for the Central Florida region. 

This study uses the information of age and sex of the pedestrians and bicyclists as non-

motorist characteristics during empirical analysis. As a specific direction of research, future efforts 

can investigate the effect of the several pedestrian and bicyclist related factors (such as distraction, 
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failure to yield traffic signs/signals, jaywalking/crossing and other non-motorist activities) if such 

variables are available in the crash dataset. Furthermore, we recognize that crash location type 

variable is one possible dimension that potentially mediates crash severity. In future efforts, other 

mediating variables such as rural and non-rural environments can be considered to mediate crash 

severity outcome.  The analysts should exhibit caution in selecting the variable for partitioning the 

data – as a large number of categories can result in a very small share for each category. For 

appropriately selected variables, in future research efforts, it would be interesting to consider a 

series of joint models to identify the optimal mediating variable for the dataset.   
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APPENDIX 

 

TABLE A.1 Sample Characteristics of the Variables across Different Location Types 

Variables 

Intersection Crashes Segment Crashes 

Pedestrian 

(N=3,270) 

Bicycle  

(N=3,544) 

Total  

(N=6,814) 

Pedestrian 

(N=5,971) 

Bicycle  

(N=2,693) 

Total  

(N=8,664) 

Severity Class       

No injury (NI) 360 (11.01) 568 (16.03) 928 (13.62) 587 (9.83) 376 (13.96) 963 (11.11) 

Possible injury (PI) 937 (28.65) 1,071 (30.22) 2,008 (29.47) 1,520 (25.46) 755 (28.04) 2,275 (26.26) 

Non-incapacitating injury (NII) 1,231 (37.65) 1,391 (39.25) 2,622 (38.48) 2,110 (35.34) 1,041 (38.66) 3,151 (36.37) 

Incapacitating injury (II) 540 (16.51) 459 (12.95) 999 (14.66) 1,157 (19.38) 428 (15.89) 1,585 (18.29) 

Fatal injury (FI) 202 (6.18) 55 (1.55) 257 (3.77) 597 (10.00) 93 (3.45) 690 (7.96) 

Non-motorist Characteristics 

Age <20 376 (11.50) 473 (13.35) 849 (12.46) 446 (7.47) 276 (10.25) 722 (8.33) 

Age ≥ 65 444 (13.58) 324 (9.14) 768 (11.27) 819 (13.72) 237 (8.80) 1,056 (12.19) 

Other age group 2,450 (74.92) 2,747 (77.51) 5,197 (76.27) 4,706 (78.81) 2,180 (80.95) 6,886 (79.48) 

Driver Characteristics 

DUI driving 40 (1.22) 17 (0.48) 57 (0.84) 107 (1.79) 32 (1.19) 139 (1.60) 

Not DUI driving 3,230 (98.78) 3,527 (99.52) 6,757 (99.16) 5,864 (98.21) 2,661 (98.81) 8,525 (98.40) 

Distracted driving 399 (12.20) 550 (15.52) 949 (13.93) 547 (9.16) 315 (11.7) 862 (9.95) 

Not distracted driving 2,871 (87.80) 2,994 (84.48) 5,865 (86.07) 5,424 (90.84) 2,378 (88.30) 7,802 (90.05) 

Movement pattern       

Straight  1,265 (38.69) 1,192 (33.63) 2,457 (36.06) 3,630 (60.79) 1,438 (53.40) 5,068 (58.49) 

Turning 1,522 (46.54) 1,920 (54.18) 3,442 (50.51) 703 (11.77) 659 (24.47) 1,362 (15.72) 

Lane changing and overtaking 63 (1.93) 56 (1.58) 119 (1.75) 240 (4.02) 144 (5.35) 384 (4.43) 

Others 420 (12.84) 376 (10.61) 796 (11.68) 1,398 (23.41) 452 (16.78) 1,850 (21.35) 

Vehicle Characteristics 

Vehicle type       

Car 1,605 (49.08) 1,718 (48.48) 3,323 (48.77) 2,744 (45.96) 1,224 (45.45) 3,968 (45.8) 

SUV 581 (17.77) 711 (20.06) 1,292 (18.96) 1,088 (18.22) 504 (18.72) 1,592 (18.37) 

Pickup 391 (11.96) 423 (11.94) 814 (11.95) 721 (12.08) 359 (13.33) 1,080 (12.47) 

Heavy vehicle 96 (2.94) 103 (2.91) 199 (2.92) 185 (3.10) 79 (2.93) 264 (3.05) 

Other vehicles 597 (18.26) 589 (16.62) 1,186 (17.41) 1,233 (20.65) 527 (19.57) 1,760 (20.31) 

Vehicle model year       

Model < 2006 676 (20.67) 831 (23.45) 1,507 (22.12) 1,524 (25.52) 623 (23.13) 2,147 (24.78) 

Model 2006-2010 580 (17.74) 688 (19.41) 1,268 (18.61) 1,048 (17.55) 471 (17.49) 1,519 (17.53) 

Model 2011-2015 872 (26.67) 967 (27.29) 1,839 (26.99) 1,392 (23.31) 704 (26.14) 2,096 (24.19) 
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Variables 

Intersection Crashes Segment Crashes 

Pedestrian 

(N=3,270) 

Bicycle  

(N=3,544) 

Total  

(N=6,814) 

Pedestrian 

(N=5,971) 

Bicycle  

(N=2,693) 

Total  

(N=8,664) 

Model 2016-2021 605 (18.5) 648 (18.28) 1,253 (18.39) 1,037 (17.37) 504 (18.72) 1,541 (17.79) 

Point of impact       

Front impact 2,120 (64.83) 2,261 (63.8) 4,381 (64.29) 3,142 (52.62) 1,478 (54.88) 4,620 (53.32) 

Left impact 228 (6.97) 231 (6.52) 459 (6.74) 446 (7.47) 155 (5.76) 601 (6.94) 

Rear impact 19 (0.58) 19 (0.54) 38 (0.56) 429 (7.18) 68 (2.53) 497 (5.74) 

Right impact 298 (9.11) 519 (14.64) 817 (11.99) 777 (13.01) 576 (21.39) 1,353 (15.62) 

Others 605 (18.5) 514 (14.5) 1,119 (16.42) 1,177 (19.71) 416 (15.45) 1,593 (18.39) 

Roadway Characteristics 

Road class       

Urban roads 2,183 (66.76) 2,018 (56.94) 4,201 (61.65) 3,126 (52.35) 1,401 (52.02) 4,527 (52.25) 

Rural roads 1,087 (33.24) 1,526 (43.06) 2,613 (38.35) 2,845 (47.65) 1,292 (47.98) 4,137 (47.75) 

Road system identifier       

Inter-state roads 19 (0.58) 14 (0.40) 33 (0.48) 76 (1.27) 7 (0.26) 83 (0.96) 

State roads 764 (23.36) 781 (22.04) 1,545 (22.67) 1,021 (17.10) 539 (20.01) 1,560 (18.01) 

US roads 341 (10.43) 252 (7.11) 593 (8.70) 595 (9.96) 260 (9.65) 855 (9.87) 

County roads 523 (15.99) 658 (18.57) 1,181 (17.33) 830 (13.9) 566 (21.02) 1,396 (16.11) 

Local roads 1,523 (46.57) 1,736 (48.98) 3,259 (47.83) 1,986 (33.26) 950 (35.28) 2,936 (33.89) 

Parking lots 55 (1.68) 53 (1.50) 108 (1.58) 1145 (19.18) 262 (9.73) 1,407 (16.24) 

Private roads 33 (1.01) 38 (1.07) 71 (1.04) 184 (3.08) 67 (2.49) 251 (2.90) 

Other roads 11 (0.34) 12 (0.34) 23 (0.34) 134 (2.24) 42 (1.56) 176 (2.03) 

Shoulder type       

Curb shoulder 1,952 (59.79) 2,220 (62.64) 4,177 (61.30) 2,892 (48.43) 1,400 (51.99) 4,292 (49.54) 

Other shoulder types 1,313 (40.21) 1,324 (37.36) 2,637 (38.70) 3,079 (51.57) 1,293 (48.01) 4,372 (50.46) 

Speed limit in mph       

SL ≤ 25 1,263 (38.62) 1,608 (45.37) 2,871 (42.13) 2,865 (47.98) 1,152 (42.78) 4,017 (46.36) 

SL 26-40 1,171 (35.81) 1,218 (34.37) 2,389 (35.06) 1,447 (24.23) 722 (26.81) 2,169 (25.03) 

SL ≥ 41 836 (25.57) 718 (20.26) 1,554 (22.81) 1,659 (27.78) 819 (30.41) 2,478 (28.60) 

Number of lanes       

Lane ≤ 2 1,814 (55.47) 2,358 (66.53) 4,172 (61.23) 3,860 (64.65) 1,764 (65.50) 5,624 (64.91) 

Lane 3 160 (4.89) 149 (4.20) 309 (4.53) 144 (2.41) 68 (2.53) 212 (2.45) 

Lane 4 808 (24.71) 695 (19.61) 1,503 (22.06) 1,123 (18.81) 575 (21.35) 1,698 (19.60) 

Lane ≥5 488 (14.92) 342 (9.65) 830 (12.18) 844 (14.13) 286 (10.62) 1,130 (13.05) 

Traffic control devices       

Traffic signs 1,236 (37.8) 1,061 (29.94) 2,297 (33.71) 211 (3.53) 148 (5.5) 359 (4.14) 

Traffic signals 721 (22.05) 1,277 (36.03) 1,998 (29.32) 395 (6.62) 520 (19.31) 915 (10.56) 
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Variables 

Intersection Crashes Segment Crashes 

Pedestrian 

(N=3,270) 

Bicycle  

(N=3,544) 

Total  

(N=6,814) 

Pedestrian 

(N=5,971) 

Bicycle  

(N=2,693) 

Total  

(N=8,664) 

No control device 1,313 (40.15) 1,206 (34.03) 2,519 (36.97) 5,365 (89.85) 2,025 (75.19) 7,390 (85.3) 

Weather Characteristics 

Clear 2,682 (82.02) 2,940 (82.96) 5,622 (82.51) 4,791 (80.24) 2,202 (81.77) 6,993 (80.71) 

Rainy 162 (4.95) 111 (3.13) 273 (4.01) 290 (4.86) 94 (3.49) 384 (4.43) 

Cloudy 407 (12.45) 482 (13.6) 889 (13.05) 849 (14.22) 382 (14.18) 1,231 (14.21) 

Others 19 (0.58) 11 (0.31) 30 (0.44) 41 (0.69) 15 (0.56) 56 (0.65) 

Environmental Characteristics 

Light condition       

Daylight 1,938 (59.27) 2,772 (78.22) 4,710 (69.12) 3,053 (51.13) 1,917 (71.18) 4,970 (57.36) 

Dawn and dusk 197 (6.02) 210 (5.93) 407 (5.97) 354 (5.93) 164 (6.09) 518 (5.98) 

Dark lighted 848 (25.93) 410 (11.57) 1,258 (18.46) 1,413 (23.66) 316 (11.73) 1,729 (19.96) 

Dark not lighted 284 (8.69) 150 (4.23) 434 (6.37) 1,132 (18.96) 294 (10.92) 1,426 (16.46) 

Time of the day       

Late night (00:00-6:30) 286 (8.75) 151 (4.26) 437 (6.41) 714 (11.96) 179 (6.65) 893 (10.31) 

Peak morning (6:30:9:00) 514 (15.72) 566 (15.97) 1,080 (15.85) 580 (9.71) 321 (11.92) 901 (10.40) 

Off-peak morning (9:00-12:00) 380 (11.62) 593 (16.73) 973 (14.28) 608 (10.18) 408 (15.15) 1,016 (11.73) 

Off-peak evening (12:00-16:00) 645 (19.72) 1,003 (28.30) 1,648 (24.19) 1,202 (20.13) 738 (27.40) 1,940 (22.39) 

Peak evening (16:00-18:30) 539 (16.48) 692 (19.53) 1,231 (18.07) 902 (15.11) 494 (18.34) 1,396 (16.11) 

Late evening (18:30-24:00) 906 (27.71) 539 (15.21) 1,445 (21.21) 1,965 (32.91) 553 (20.53) 2,518 (29.06) 

Temporal Characteristics 

Year       

2015 400 (12.23) 581 (16.39) 981 (14.4) 808 (13.53) 390 (14.48) 1,198 (13.83) 

2016 415 (12.69) 520 (14.67) 935 (13.72) 750 (12.56) 363 (13.48) 1,113 (12.85) 

2017 422 (12.91) 511 (14.42) 933 (13.69) 780 (13.06) 354 (13.15) 1,134 (13.09) 

2018 532 (16.27) 533 (15.04) 1,065 (15.63) 880 (14.74) 420 (15.6) 1,300 (15.00) 

2019 516 (15.78) 523 (14.76) 1,039 (15.25) 1,016 (17.02) 397 (14.74) 1,413 (16.31) 

2020 470 (14.37) 451 (12.73) 921 (13.52) 788 (13.20) 359 (13.33) 1,147 (13.24) 

2021 515 (15.75) 425 (11.99) 940 (13.8) 949 (15.89) 410 (15.22) 1,359 (15.69) 

Socio-demographic Characteristics 

Proportion of public  

transportation means 

Mean 0.023 0.021 0.022 0.023 0.021 0.023 

Std. Dev 0.049 0.044 0.046 0.048 0.047 0.047 

Min 0.000 0.000 0.000 0.000 0.000 0.000 

Max 0.602 0.494 0.602 0.602 0.511 0.602 

*The numbers in parenthesis correspond to column percentages within each category 
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TABLE A.2 Estimation Results of Independent Copula Model 

Variables 

Location Type 

Model (Base: 

Intersection) 

Intersection Severity Model Segment Severity Model 

Pedestrian Bicycle Pedestrian Bicycle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant 0.256 5.942 -- -- -- --     

Threshold between NI-PI -- -- -1.874 -22.189 -1.446 -19.240 -1.756 -24.271 -1.536 -19.666 

Threshold between PI-NII -- -- -0.165 -14.164 0.092 12.435 -0.130 -19.864 0.090 19.864 

Threshold between NII-II -- -- 1.586 16.725 1.985 18.987 1.641 21.628 2.073 18.785 

Threshold between II-FI -- -- 3.059 6.655 4.154 10.173 3.175 11.307 3.849 8.455 

Non-motorist Characteristics 

Age (Base: Other age group)           

Age <20* -0.070 -4.382 -0.052 -1.825 -- -- -0.050 -1.839 -- -- 

Age ≥ 65 0.028 2.028 0.202 3.890 0.202 3.890 0.123 7.569 0.123 7.569 

Age ≥ 65*nYear4 -- -- -0.208 -1.936 -0.208 -1.936 -- -- -- -- 

Driver Characteristics 

DUI related (Base: Not DUI driving)           

DUI driving  0.131 2.681 0.452 6.199 0.452 6.199 0.222 5.057 0.466 5.356 

Distracted related (Base: Not distracted 

driving) 
          

Distracted driving  -0.072 -5.116 -- -- -- -- -- -- -- -- 

Movement pattern (Base: Straight and others)           

Turning -- -- -0.044 -3.355 -0.044 -3.355 -0.470 -3.593 -0.401 -3.056 

Turning*nYear2 -- -- -- -- -- -- 0.472 2.946 0.472 2.946 

Threshold between II-FI -- -- -- -- -- -- 0.106 4.114 0.106 4.114 

Vehicle Characteristics 

Vehicle type (Base: Car and others)           

SUV -- -- -- -- -- -- 0.511 4.043 0.511 4.043 

SUV*nYear2 -- -- -- -- -- -- -0.624 -3.915 -0.624 -3.915 

SUV*nYear7 -- -- -- -- -- -- 0.487 2.493 0.487 2.493 

Pickup -- -- -- -- -- -- 0.280 2.023 0.280 2.023 

Pickup *nYear2 -- -- -- -- -- -- -0.295 -1.734 -0.295 -1.734 

Vehicle model year (Base: Model 2006-2021)           

Model < 2006 0.044 3.646 -- --   -- -- -- -- 

Point of impact (Base: Front impact)           

Left impact -- -- -0.081 -3.153 -0.081 -3.153 -0.123 -5.762 -0.123 -5.762 

Rear impact -- -- -- -- -- -- -0.105 -3.793 -- -- 

Right impact -- -- -0.045 -2.230 -0.045 -2.230 -0.209 -8.036 -0.126 -4.372 
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Variables 

Location Type 

Model (Base: 

Intersection) 

Intersection Severity Model Segment Severity Model 

Pedestrian Bicycle Pedestrian Bicycle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Right impact*nYear6 -- -- -- -- -- -- 0.386 3.395 0.386 3.395 

Roadway Characteristics 

Road class (Base: Urban roads)           

Rural roads 0.165 4.545 0.368 3.952 0.368 3.952 0.192 4.856 0.192 4.856 

Rural roads*nYear2 -- -- -0.368 -3.183 -0.368 -3.183 -- -- -- -- 

Rural roads*nYear3 -0.146 -2.559 -- -- -- -- -0.237 -3.849 -0.237 -3.849 

Road system identifier (Base: Local roads and 

others) 
          

State roads -- -- -- -- -- -- 0.061 3.246 -- -- 

US roads -- -- -- -- -- -- 1.033 6.570 1.033 6.570 

US roads*nYear2 -- -- -- -- -- -- -1.206 -6.220 -1.206 -6.220 

Parking lots -- -- -- -- -0.194 -1.723 -0.061 -3.783 -0.061 -3.783 

Shoulder type (Base: Other types)           

Curb shoulder -0.338 -9.125 -- -- -- -- -- -- -- -- 

Curb shoulder*nYear3 0.472 7.220 -- -- -- -- -- -- -- -- 

Curb shoulder*nYear6 -0.187 -2.680 -- -- -- -- -- -- -- -- 

Speed limit (Base: SL ≤ 25 mph)           

SL 26-40 -- -- -- -- -- -- 0.504 5.018 0.504 5.018 

SL 26-40*nYear2 -- -- -- -- -- -- -0.554 -4.523 -0.554 -4.523 

SL ≥ 41 0.043 3.195 0.416 3.552 0.416 3.552 0.098 5.518 0.098 5.518 

SL ≥ 41*nYear2 -- -- -0.459 -3.174 -0.459 -3.174 -- -- -- -- 

Threshold between NII-II -- -- -- -- -- -- -0.036 -3.890 -0.036 -3.890 

Number of lanes (Base: Lane ≤ 2)           

Lane 3 -0.626 -5.038 -- -- -- -- -- -- -- -- 

Lane 3*nYear3 0.786 4.065 -- -- -- -- -- -- -- -- 

Lane 4 -0.064 -4.732 0.067 3.801 0.067 3.801 0.059 3.151 -- -- 

Lane ≥ 5 -0.031 -1.802 0.089 4.079 0.089 4.079 0.052 2.459 -- -- 

Traffic control device (Base: No control 

device) 
          

Traffic signs -- -- -0.043 -2.811 -0.043 -2.811 -0.073 -2.624 -0.073 -2.624 

Traffic signals -- -- -0.035 -2.216 -0.035 -2.216 -- -- -- -- 

Threshold between NII-II -- -- 0.036 3.380 0.036 3.380 -- -- -- -- 

Threshold between II-FI -- -- 0.243 4.820 0.243 4.820 -- -- -- -- 

Weather and Environmental Characteristics 

Weather condition (Base: Clear)           
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Variables 

Location Type 

Model (Base: 

Intersection) 

Intersection Severity Model Segment Severity Model 

Pedestrian Bicycle Pedestrian Bicycle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Rainy -- -- -- -- -- -- 0.065 2.046 -- -- 

Cloudy 0.035 2.556 -- -- -- -- 0.041 2.589 0.041 2.589 

Light condition (Base: Daylight)           

Dawn and dusk 0.041 2.016 -- -- -- -- -- -- -- -- 

Dark lighted 0.040 3.267 0.098 5.911 0.098 5.911 -- -- -- -- 

Dark not lighted 0.646 6.943 0.765 3.745 0.765 3.745 -- -- 0.110 3.477 

Dark not lighted*nYear2 -- -- -0.733 -2.916 -0.733 -2.916 -- -- -- -- 

Dark not lighted*nYear3 -1.098 -3.583 -- -- -- -- -- -- -- -- 

Dark not lighted*nYear4 0.435 1.674 -- -- -- -- -- -- -- -- 

Time of the day (Off-peak and peak evening)           

Late night (00:00-6:30) -- -- -- -- -- -- 0.749 5.580 0.749 5.580 

Late night*nYear2 -- -- -- -- -- -- -0.784 -4.728 -0.784 -4.728 

Peak morning (6:30:9:00) -0.100 -7.011 -- -- -- -- -- -- -- -- 

Off-peak morning (9:00-12:00) -- -- -- -- 0.073 2.892 -- -- -- -- 

Late evening (18:30-24:00) -- -- -- -- -- -- 0.083 5.621 -- -- 

Socio-demographic Characteristics 

Proportion of public transportation means 0.217 2.172 -- -- -- -- -- -- -- -- 

Log-likelihood -6,531.80 -5,969.33 -7,713.35 

BIC 13,284.65 12,190.50 15,806.24 

Number of parameters 24 30 44 

Total log-likelihood: -20,214.50; Total BIC: 41,331.61; Total number of parameters: 98 

Note: “*” Represents the effect of the variable for the year 2015 (nYear1*Age <20); “--” Represents the variables are not significant at 90% confidence level; 

NI=No injury, PI=Possible injury, NII=Non-incapacitating injury, II=Incapacitating injury, FI=Fatal injury. 

 


