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ABSTRACT 1 

In this paper, a framework is outlined to generate realistic artificial data (RAD) as a tool for 2 

comparing different models developed for safety analysis. The primary focus of transportation 3 

safety analysis is on identifying and quantifying the influence of factors contributing to traffic 4 

crash occurrence and its consequences. The current framework of comparing model structures 5 

using only observed data has limitations. With observed data, it is not possible to know how well 6 

the models mimic the true relationship between the dependent and independent variables. Further, 7 

real datasets do not allow researchers to evaluate the model performance for different levels of 8 

complexity of the dataset. RAD offers an innovative framework to address these limitations. 9 

Hence, we propose a RAD generation framework embedded with heterogeneous causal structures 10 

that generates crash data by considering crash occurrence as a trip level event impacted by trip 11 

level factors, demographics, roadway and vehicle attributes. Within our RAD generator we employ 12 

three specific modules: (a) disaggregate trip information generation, (b) crash data generation and 13 

(c) crash data aggregation. For disaggregate trip information generation, we employ a daily 14 

activity-travel realization for an urban region generated from an established activity-based model 15 

for the Chicago region. We use this data of more than 2 million daily trips to generate a subset of 16 

trips with crash data. For trips with crashes crash location, crash type, driver/vehicle 17 

characteristics, and crash severity. The daily RAD generation process is repeated for generating 18 

crash records at yearly or multi-year resolution. The crash databases generated can be employed 19 

to compare frequency models, severity models, crash type and various other dimensions by facility 20 

type – possibly establishing a universal benchmarking system for alternative model frameworks 21 

in safety literature. 22 

Keywords: realistic artificial data generation, crash data generation23 
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1. INTRODUCTION   1 

Transportation safety modeling has broadly evolved along two streams. The first stream, 2 

labeled as crash frequency models, examine the factors affecting the occurrence of crashes on 3 

transportation facilities. The second stream, referred to as crash severity models, examine factors 4 

affecting crash consequences (usually severity) at the disaggregate level (such as driver, vehicle 5 

or crash record). The primary focus of these two streams of safety analysis is on identifying and 6 

quantifying the influence of factors contributing to traffic crash occurrence and its consequences. 7 

In transportation (and other domains), observed data are generally employed to evaluate the 8 

performance of statistical or machine learning methods. The traditional analysis paradigm of 9 

model development employs the following steps. A statistical model structure is proposed for a 10 

selected empirical dataset. The proposed model and various comparable models are estimated 11 

using the empirical dataset. The model fit of the proposed model and the competitive models are 12 

compared using various performance measures. Finally, the preferred model for the empirical 13 

context is identified.  14 

The application of observed data in such performance evaluation has several drawbacks. 15 

First, the observed data only enables researchers to compare the performance of alternative models 16 

based on selected statistical measures. But it is impossible to know how well the models mimic 17 

the true relationship between the dependent and independent variables which is of utmost interest 18 

to researchers (Scott & Wilkins, 1999). For example, crash risk has an explicit relationship with 19 

roadway geometric characteristics such as lane width, shoulder with, and median width. With real 20 

datasets, it is only possible to find the best model based on how well the models fit the dataset. But 21 

we cannot identify the model which most successfully captures the true relationship between crash 22 

risk and roadway geometry. Second, real datasets do not allow researchers to evaluate the model 23 
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performance for different levels of complexity of the dataset. For example, some models may 1 

perform reasonably well on datasets without complex data generation processes but perform 2 

poorly on datasets with complex data generation processes. Often, it is not possible to compare the 3 

performance of alternative approaches on multiple datasets. Finally, some analysis methods 4 

demand comprehensive datasets that are resource intensive and scarce.  5 

 An effective approach to address these limitations is to consider the development of 6 

artificial data (or simulated data) with complete knowledge of the underlying crash generation 7 

process (as suggested by Dr. Ezra Hauer; Bonneson & Ivan, 2013). Such a simulated dataset, 8 

referred to as Realistic Artificial Data (RAD), can then be used to investigate different questions 9 

related to safety modeling analyses. In the RAD generation process, the true relationship is 10 

predefined but remains unknown to the analysts. Thus, it is possible for researchers to ideally 11 

examine the alternative methods in a more comprehensive manner. RAD data will allow objective 12 

evaluation of the methods used by comparing the inferences about the crashes and contributing 13 

factors to the assumptions that underlie the synthetic data generation process. In the RAD 14 

generation process, it is also possible to impose different degrees of complexity in the dataset 15 

which may enable researchers to more closely evaluate the performance of alternative models in 16 

handling complexity. Further, these artificially generated crashes can be aggregated at any spatial 17 

or temporal resolution to mimic data from the real world and carry out systematic safety analysis 18 

methods evaluation. With the RAD generated datasets, researchers can test their model framework 19 

on the RAD data and establish a benchmark. The approach is analogous to sample networks used 20 

by operation research and transportation researchers to compare runtimes of different algorithms. 21 

The RAD generated datasets, if employed as a benchmark, can serve as a guide for model selection. 22 
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 In this research, we document the development of a RAD for transportation safety crash 1 

record generation. The proposed RAD generator recognizes that crashes are a result of travel 2 

decisions made by individuals. Hence, to mimic the true crash generation process, we examine 3 

crash occurrence as a trip level decision. The generator considers a set of daily trips from a travel 4 

demand model framework as input to RAD. Each trip contains information on trip start time, end 5 

time, origin, destination, travel mode, and travel route details. Employing this rich set of 6 

information, for each trip, we evaluate crash risk. For trips identified to be involved in a crash, 7 

detailed crash characteristics are generated. The RAD generator employs a suite of models to 8 

process trips with crashes including crash type, crash severity, crash location, driver and vehicle 9 

characteristics. The RAD generator is developed employing multiple datasets including Strategic 10 

Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) data and Crash Report 11 

Sampling System data from National Highway Traffic Safety Administration. The RAD generator 12 

produces crashes at a daily resolution with detailed spatio-temporal information. These crashes are 13 

generated multiple times to obtain yearly or multi-year datasets. Further, the datasets can be 14 

aggregated at any spatial resolution (such as intersection, segment, zone) or temporal resolution 15 

(such as morning, evening, seasonal) for frequency and severity analysis. with the embedded 16 

randomness, multiple realizations of RAD will generate distinct crash samples. The 17 

implementation results from the RAD generator are presented in the paper. 18 

2. EARLIER LITERATURE 19 

The concept of RAD has been applied in a number of disciplines including statistics, 20 

econometrics, computer science, ecology, medicine and psychology. In all these disciplines, the 21 

primary goal is to assess the ability of the methods to draw inferences about the underlying 22 

assumptions and assertions that generated the data. The research team conducted a comprehensive 23 
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review of research efforts on RAD approaches across various domains. The criterion for selection 1 

of a study to be included in our review followed a simple core principle of RAD generation. The 2 

data generated in the research effort must be based on a framework that is built on research 3 

assumptions (as opposed to entirely real observed data-based simulation efforts). The criterion 4 

eliminates two major sets of transportation studies that generate simulated data. First, several travel 5 

demand modeling forecast systems such as activity-based models and synthetic population 6 

generators generate individual level synthetic data (Eluru et al., 2008; Konduri et al., 2016). 7 

However, the generation is entirely based on models estimated using observed data. Second, 8 

artificial data is generated in micro-simulation frameworks for traffic flow modeling. In these 9 

studies, the simulated data is generated based on well calibrated traffic flow models (Ranade et al., 10 

2007; Asano et al., 2010; Yu & Abdel-Aty, 2014; Mamun et al., 2018). Hence, these studies are 11 

also not appropriate for our review.  12 

In our review process, based on the realistic data generation criterion, we have identified 13 

several research studies that employed artificial data generation in their analysis. These studies 14 

span transportation (including transportation safety and travel behavior), medical science, data 15 

science, and information analytics. As opposed to providing a study-by-study summary of earlier 16 

research, we provide insights on the important elements of RAD framework that can be observed 17 

from earlier research efforts.  18 

 19 

2.1. Review Findings 20 

A concise summary of earlier research efforts on RAD generation is presented in Table 1. 21 

In this table, we provide information on study objectives, dataset adopted and study region, 22 

software/procedure followed for generating RAD, and field of the study (for example 23 
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transportation safety). For the ease of presentation, the studies presented in Table 1 are categorized 1 

along two streams based on the discipline of the study: 1) studies related to transportation and 2) 2 

studies related to other disciplines including statistics, economics, ecology and computer science. 3 

Several important observations can be made from Table 1. First, earlier research has 4 

explored RAD applications for wide ranging topics including statistical/econometric model 5 

performance and comparison, travel demand forecasting, route choice behavior, and data mining.  6 

Second, RAD applications have been developed using several software packages or platforms such 7 

as R, SAS, GAUSS, Python, and COMPAS. Third, employing RAD datasets, performance of 8 

several model structures was considered including ordered logit (OL), multinomial logit (MNL), 9 

generalized ordered logit (GOL), mixed multinomial logit (MMNL) and probit models (and their 10 

cross-sectional and panel variants), multiple discrete–continuous (MDC) frameworks with probit 11 

and extreme value formulations, and recurrent neural networks (RNN). Fourth, it is interesting to 12 

note that studies within transportation domain traditionally adopt RAD approaches for econometric 13 

models. However, non-transportation domain research typically is more focused on machine 14 

learning and data mining approaches. Finally, the number of alternatives in the RAD variable is 15 

related to the problem context. The number of alternatives could range from a small number (say 16 

2 for a binary variable based RAD) to a very large number (theoretically infinity for crash counts).  17 
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Table 1: Summary of Existing Literature on RAD generation 

Study Study Objectives 
Dataset Adopted 

(Study Region) 
Software/Procedure for RAD generation Field  

Transportation Domain 

Bhat et al., 2010 

Propose a Composite Marginal 

Likelihood (CML) approach to estimate 

ordered response discrete choice models 

with flexible copula based spatial 

correlation structures 

Simulated and 

observed data (San 

Francisco Bay 

area) 

Three independent variables are considered, and the values are 

drawn from univariate normal distribution. Fixed coefficients 

are assumed. Error terms are generated using correlation 

structure. 25 different datasets are generated with 500 

observations  

Travel behavior 

Bhat & 

Sidharthan, 2010  

Investigate the ability of Maximum 

Approximate Composite Marginal 

Likelihood (MACML) estimator to 

recover parameters from finite samples 

Simulated dataset 

Five independent variables are considered, and the values are 

drawn from univariate normal distribution. Random 

coefficients are assumed. Error terms are generated from 

univariate normal distribution with 0.5 variance. 20 datasets 

with 5000 observations are generated 

Travel behavior 

Pinjari & Bhat, 

2010 

To investigate non-worker out-of-home 

discretionary activity time-use and 

activity timing decisions on weekdays 

using multiple discrete-continuous nested 

extreme value (MDCNEV) model 

Simulated and 

observed data (San 

Francisco Bay 

area) 

Independent variable values are assumed to be uniformly 

distributed. Coefficients are assumed to be nested extreme 

values. Generate the data for 2500 hypothetical individuals 

with an assumption that each individual chose the value to 

maximize the total random utility 

Travel behavior 

Ferdous et al., 

2010 

Model the interactions in non-work 

activity episode decisions across 

household and non-household members 

at the level of activity generation using 

multivariate ordered-response system 

framework 

Simulated and 

observed dataset 

(2007 American 

Time Use survey 

data) 

Values for the independent variables are drawn from univariate 

normal distribution. A fixed coefficient is assumed and using 

that, the utility for each individual is computed using a linear 

combination. The error term is generated with predefined 

correlation structure. The process is repeated at least 50 times.  

Travel behavior 

Ye & Lord, 

2011 

Examining the effects of underreporting 

crash data using multinomial logit 

(MNL), ordered probit (OP), and mixed 

logit (ML) models 

 Simulated and 

observed data 

(Texas) 

Weighted exogenous sample maximum likelihood estimator 

(WESMLE). Computer code was developed for daily travel 

pattern generation 

Safety 

Geedipally et al., 

2012 

Application of a negative binomial (NB) 

generalized linear model with Lindley 

mixed effects for analyzing traffic crash 

data 

Simulated and 

observed data 

(road segment, 

Indiana, Michigan) 

Coefficients are selected in a way that they seem logical and 

comparable with existing literature. Crash mean was computed 

and then crashes are simulated 

Safety 

Lord & Kuo, 

2012 

Examining the effects of site selection 

criteria 
Simulated Data 

The software R was used to generate sites with crash counts 

with a predefined overall mean for different dispersion 

parameters.  

Safety 

Cummings et al., 

2013 

Reviews three methods for estimating 

relative risks in matched-pair crash data 

Simulated and 

observed data 

Employing Stata Statistical Software the study generated crash 

data with an assumed probability of fatality as a function of 

speed and seatbelt use 

Safety 
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Study Study Objectives 
Dataset Adopted 

(Study Region) 
Software/Procedure for RAD generation Field  

Eluru, 2013 

Investigating the performance of the 

ordered (OL, GOL) and unordered 

(MNL) injury severity response 

frameworks 

Simulated dataset 

Three independent variables are considered. Assume 

parameters that provides the same aggregate shares. 50 

realizations of the data with 5000 observations each are 

generated for each proportion value. Total 6 aggregate sample 

shares are generated 

Safety 

Paleti & Bhat, 

2013 

Comparison between the maximum-

simulated likelihood inference (MSL) 

and composite marginal likelihood 

(CML) approach 

Simulated dataset 

Independent variables are drawn from univariate normal 

distribution while coefficients are assumed and drawn from 

multivariate normal distribution. Consider both independent 

and correlated realizations. Data is generated at least 50 times 

Travel behavior 

Wu et al., 2015 

Generating crash modification factors 

(CMFs) using NB regression model and 

compared with assumed true values 

Simulated data 

CMF values for lane width, curve density, and pavement 

friction were assumed and used to generate simulated crash 

counts 

Safety 

Highway safety 

and information 

system, 2017 

Use of RAD to assess performance of 

cross-sectional analysis methods 

Artificial realistic 

data (Rural two-

lane highways, 

Washington) 

Data generation was implemented by SAS programs based on 

an assumed model structure for AADT and roadway geometry 

factors 

Safety 

Berke et al., 

2022 

Generating synthetic mobility data using 

recurrent neural networks (RNN) 

Synthetic data and 

LBS data from 

more than 22,700 

mobile devices 

Population distribution is the input and mobility traces for a 

synthetic population is generated 

Transportation 

planning and 

epidemic 

modeling 

Non-Transportation Domain 

Zimmermann, 

2012 

Generation of diverse data sets reflecting 

realistic data characteristics 
Artificial Data Data generator was implemented in JAVA Data science 

Devroye et al., 

2012 

Estimation of a density using real and 

artificial data 

Observed and 

Artificial data 

Data generator was implemented in R. The artificial data is 

generated from a regression analysis of observed data 
Data science 

Hazwani et al., 

2016 

Developing the automatic artificial data 

generator for generating artificial data set 

based on the real data 

Artificial and real 

data 

Random permutation algorithm was used to generate different 

sets of artificial data that represent realistic data 

Information 

and 

Communication 

Technology 

Dahmen & 

Cook, 2019  

Introducing a synthetic data generation 

method 

Simulated and real 

data 

SynSys, a machine learning-based synthetic data generation 

method 
Medical science 

Chatterjee et al., 

2022 

Generating synthetic multiuser datasets 

for multiuser activity recognition 

Simulated and real 

data 

A strategy to generate a multiuser dataset from the existing 

single-user dataset 

Information 

and 

Communication 

Technology 

Charalambidis et 

al., 2022 

Developing dataset generator for large-

scale electric vehicles charging 

management 

Simulated and 

anonymized real 

datasets 

Flask—a Python micro web framework, pure HTML and 

JavaScript 
Data science 
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From our review of earlier literature, the embedded RAD frameworks are consistently 1 

single level frameworks, i.e., the underlying decision process consists of only one layer of 2 

decisions. For example, in modeling crash occurrence, earlier research has related the crash 3 

occurrence to roadway geometry and traffic volume under pre-specified assumptions of what 4 

variables will influence crash occurrence (say AADT and lane width). While the approach is 5 

useful, it inherently disregards the nature of crash occurrence. The process of crash occurrence is 6 

a multi-layered decision process that is dependent on travel decisions (such as mode, travel route, 7 

departure time), transportation infrastructure (roadway characteristics, speed limits, facility types) 8 

and network interactions (congestion, presence of pedestrians). Hence, in our study, we develop 9 

and implement a multi-layered RAD that is more appropriate to represent the underlying crash 10 

generation process.  11 

2.2. Current Study in Context 12 

The current research builds on Hauer’s earlier work on building RAD framework for crash data. 13 

The current paper develops a multi-layered RAD recognizing that crashes occur at an individual 14 

trip level. The approach introduces significant realism in the data generation process while also 15 

incorporating significant stochasticity in the data generation process. As is evident from the 16 

literature review, earlier efforts across different fields have focused on single layer RAD 17 

generation and our current study is the first effort to conceptualize and develop a RAD platform 18 

with multiple connected layers. The RAD framework identifies trips with crashes and for these 19 

selected trips builds crash type, crash severity, crash location, driver and vehicle characteristics.  20 

To operationalize the RAD platform the paper employs data from three data sources including (a) 21 

Travel demand model outputs for the Chicago region developed by Argonne National Laboratory, 22 

(b) Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) data and 23 
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(c) Crash Report Sampling System data from National Highway Traffic Safety Administration. 1 

The RAD platform and the various datasets generated are analyzed to illustrate how they represent 2 

current crash data realistically.  3 

The rest of the paper is organized as follows: We present the conceptual framework for 4 

crash data generation and present a discussion of data processing steps. Subsequently, the module 5 

specific results for RAD components are described. Next, we present an overview of overall RAD 6 

datasets generated and outline how the RAD datasets can be used for alternative model 7 

comparison. Finally, we provide some concluding thoughts and future directions of research. 8 

3. RAD CONCEPTUAL FRAMEWORK 9 

In this section, we describe the conceptual framework for a high resolution Disaggregate 10 

Realistic Artificial Data (RAD) generation. Specifically, we propose a framework of RAD 11 

generation embedded with heterogeneous causal structures that generates crash data by 12 

considering crash occurrence as a trip level event impacted by trip level factors, demographic 13 

characteristics, roadway facility and vehicle attributes. The proposed framework will be general 14 

enough to generate crashes for all roadway facility types and also be able to generate data for 15 

different combinations of inputs including modeling methods, model formulation, input 16 

specification, and unobserved heterogeneity. Employing daily trip level travel information, we will 17 

generate crash characteristics including crash occurrence, crash type, and crash severity. Trip level 18 

attributes to be considered include driver and other occupant characteristics, vehicle 19 

characteristics, and roadway attributes. Toward generating the proposed framework, we employ 20 

three specific modules: (a) disaggregate trip information generation, (b) crash data generation and 21 

(c) crash data aggregation (see Figure 1). The red tables represent the input data for the step and 22 

the green tables represent the data outputs in the step.   23 
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Figure 1: RAD Conceptual Framework 
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3.1. Disaggregate Trip Information Generation 1 

The travel demand modeling paradigm has undergone a transformation from an aggregate 2 

zonal level statistical framework (such as a four step or trip-based model) to a disaggregate 3 

individual level framework (tour level and/or activity based models) (Kamel et al., 2019; Pinjari 4 

et al., 2008). The disaggregate frameworks accommodating for the influence of socio-demographic 5 

characteristics (such as income, age, household structure, education, car ownership), employment 6 

characteristics (such as employment industry and location), transportation network characteristics 7 

(such as access to travel mode and travel time by mode) and built environment measures (such as 8 

population density, land-use mix, public transit density), provide a representation of an 9 

individual’s travel in continuous time and space. From these travel patterns, high resolution 10 

information for trips can be retrieved including trip start and end time, trip start and end location, 11 

trip characteristics (such as alone/group trip), vehicle used for the trip and precise route considered. 12 

In this research, we will employ a daily activity-travel realization for an urban region generated 13 

from an established travel demand model for the Chicago region developed by Argonne National 14 

Laboratory (Auld et al., 2016).  15 

3.2. Crash Data Generation  16 

The objective of the Crash Data Generation module is to generate crashes on the 17 

transportation system. The framework would utilize the detailed trip information from the previous 18 

module to generate crashes. The crash generation would involve identifying the vehicles involved 19 

in the crash, crash location, severity of drivers (such as fatal, capacitating injury, non-20 

incapacitating injury and no injury), and crash type (such as head-on, rear-end, vehicle-pedestrian). 21 

The framework to be employed for crash generation is described below.  22 
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In the first step of the framework, the research team will classify the trips on the 1 

transportation system into two categories: (a) No Crash and (b) Crash. In urban regions, trips in a 2 

typical day amount to several million and are likely to take up large storage space with high 3 

resolution details on routing characteristics with geographical information system (GIS) 4 

coordinates. The proposed classification process allows us to reduce the number of trips to be used 5 

for crash data generation. Given the relatively small proportion of crash involved trips, the 6 

classification approach provides an elegant solution to computational and data burdens. The 7 

classification problem will be modelled using a binary classification model (such as binary logit 8 

or probit model).  9 

The “crash” tagged trips will be processed in the second step of the framework to determine 10 

crash type, crash location and injury severity. It is important to note that while crash type and crash 11 

severity have fixed and well-defined alternatives, crash location alternatives are more complicated. 12 

Thus, depending on when crash location is examined, alternative structures for crash variable 13 

generation become possible. For example, one sequence can be as follows. For the crash tagged 14 

trips, a trip level model is estimated to identify the type of crash (such as head-on, rear-end and 15 

vehicle-pedestrian). Using the crash type, a subsequent model for crash severity follows. Finally, 16 

conditional on crash type and severity a crash location model is developed (see Figure 2). As we 17 

move toward the latter models in the sequence, the reader would recognize that more information 18 

is available i.e., additional independent variables can be included in the model estimation. For 19 

example, if crash severity follows crash type model, it will be possible to include crash type as an 20 

independent variable in the model. The crash location model that follows can have crash type and 21 

crash severity as independent variables. The attributes of other drivers and vehicles (for multi-22 

vehicle crashes) involved in crashes will also be generated based on the driver and vehicle 23 
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characteristics of the crash trips. Alternatively, the sequence of the variables can be altered to crash 1 

location followed by crash type and crash severity. In this sequence, crash location model 2 

estimation will be based on trip level characteristics and crash type and crash severity variable will 3 

have access to location variables in the model (see Figure 3 for a potential model structure).  4 

The final step of crash data generation framework would involve determining the 5 

econometric model framework. Given that crash type and crash location are categorical variables 6 

a multinomial logit model framework would be appropriate. For the severity variable, given the 7 

inherent ordered nature of the variable, an ordered logit model structure would be employed. 8 

3.3.Crash Aggregation 9 

The crash data generation module will provide as outputs, the crash data including crash 10 

type, crash severity and crash location along with time and number of vehicles in the crash for a 11 

typical day in the year. However, for crash datasets it might be necessary to aggregate data 12 

temporally by facility type (such as crashes on a segment or intersection in a 6-month period or 13 

multiple years), and spatially (such as crashes in a zone, county). We can run the framework 14 

developed for a typical day multiple times with different random seeds (to ensure we don’t just 15 

duplicate the same crashes in each run) to aggregate the data.  16 

4. DATA SECTION 17 

Three datasets were used in the development of this project: (1) Strategic Highway 18 

Research Program 2 (SHRP 2) Naturalistic Driving Study (NDS) data from Virginia Tech 19 

Transportation Institute (VTTI), (2) Crash Report Sampling System (CRSS) data from the National 20 

Highway Traffic Safety Administration (NHTSA) and (3) Chicago trip level data from Argonne 21 

National Laboratory. 22 
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4.1.SHRP2 NDS Data 1 

The SHRP2 NDS data was used to develop the models for crash risk and crash location. 2 

This data was collected through a naturalistic driving study where cameras and sensors were placed 3 

in participants’ cars to track their driving over an extended period of time. The data that we 4 

obtained information on 1,951 trips resulting in a crash, and 1,000,000 trips that did not result in 5 

a crash. These 1,000,000 trips were randomly selected from a full sample of 5,512,900 trips 6 

(Hankey et al., 2016). The data included information on trip data (such as start time, end time, day 7 

of week, facility locations, and facility speeds), driver demographics (such as age, gender, 8 

education, and income), crash event details (such as collision type, crash severity, driver 9 

impairments, and weather), and roadway segments and intersections (such as number of lanes, 10 

roadway classification, and AADT). Of the 1,951 trips where a crash occurred, 814 of those 11 

crashes were categorized as a “low risk tire strike”, and were therefore removed from the list of 12 

crashes, leaving 1,137 crashes.  13 

4.2.CRSS Data 14 

The CRSS data was used to develop the models for crash type, drivers and vehicles, and 15 

crash severity. This data is a sampling of police reported crashes from across the United States. 16 

The data was from 2016 through 2019 and contained records for 200,682 crashes in all 50 states 17 

and the District of Columbia. The data included crash information (such as hour, day, location, 18 

lighting, weather, vehicle type, vehicle age, number of lanes, and speed limit) and driver 19 

information (such as age and gender). Of the original set of crashes, those with missing values 20 

were removed from analysis, leaving 113,983 crashes. 21 
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Table 2: SHRP2 Descriptive Statistics 

Categorical Variables 

Variable Name Share of Category 

Age Distribution  

   Age: 16-19 0.023 

   Age: 20-24 0.064 

   Age: 25-29 0.081 

   Age: 30-74 0.758 

  Age: > 74 0.074 

Mileage Distribution  

   Avg. annual miles: < 10,000 0.229 

   Avg. annual miles: 10,000 to 25,000 0.637 

   Avg. annual miles: > 25,000 0.134 

Employment Status  

   Worker: Full-time 0.48 

   Worker: Part-time  0.19 

   Worker: Not working outside the home 0.33 

Gender Distribution  

   Gender: Male 0.49 

   Gender: Female 0.51 

Crash History  

   Previous Crash (within 3 years): Yes 0.26 

   Previous Crash (within 3 years): No 0.74 

 

Table 3: CRSS Descriptive Statistics 

Categorical Variables 

Variable Name Share of Category 

Time of Day  

   Hour: AM Peak 0.15 

   Hour: PM Peak 0.23 

   Hour: Off-Peak 0.62 

Day of the Week  

   Day: Weekday 0.77 

   Day: Weekend 0.23 

Location of Crash  

   Location: Urban 0.74 
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   Location: Rural 0.26 

Roadway Classification  

   Highway: Yes 0.11 

   Highway: No 0.89 

Lighting Condition  

   Light: Day 0.69 

   Light: Dark, no light 0.12 

   Light: Dark, with light 0.18 

Weather  

   Weather: Clear 0.72 

   Weather: Adverse 0.28 

1 
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Figure 2: Sequential Approach I: Crash Risk → Crash Type → Crash Severity → Crash 

Location 
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Figure 3: Sequential Approach II: Crash Risk → Crash Location → Crash Type → Crash 

Severity 
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4.3.Chicago Trip Level Data 1 

The Chicago trip level data was used as an input for implementation of the RAD generator. 2 

The data contained 2,256,502 trips, with information on trip data (such as start time and duration), 3 

driver demographics (such as age and education), and roadway segments (such as AADT, number 4 

of lanes, and roadway type).  5 

5. RAD MODULE DEVELOPMENT  6 

In our analysis, based on data availability the first sequence presented in Figure 3 were 7 

employed. The module development included the estimation of five models described in this 8 

section.  9 

5.1. Crash Risk 10 

The goal of the crash risk module is to evaluate each trip and determine stochastically if a 11 

crash will occur during that trip. To develop the crash risk model, we used the SHRP2 NDS dataset. 12 

In the dataset there were 1,137 trips resulting in a crash and 1,000,000 trips that did not result in a 13 

crash. For this model we removed any trips that were missing relevant trip or driver information. 14 

This left 1,004 trips resulting in a crash and 774,873 trips that did not result in a crash. We had to 15 

further filter the data because crashes accounted for only 0.13% of trips, making them very difficult 16 

to model. Therefore, we under sampled the trips not resulting in a crash, randomly selecting 10% 17 

to be used for analysis. The final dataset that was used for model development contained 78,336 18 

trips, 1,004 resulting in a crash and 77,332 that did not result in a crash. The reader is encouraged 19 

to review Hoover et al., 2022 for methods employed to minimize the impact of sampling.  20 

For modeling crash risk, a binary logit model was used. The results of the model estimation 21 

are presented in Table 4. In this model, the only variable that had a statistically significant 22 

parameter at the 90% confidence level was age. Drivers less than 30 years old (with teenage drivers 23 
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being the most likely) and greater than 74 years old were found to be more likely to be in a crash 1 

relative to other drivers. 2 

Table 4: Crash Risk Model 

Parameters Coefficients T-value 

Constant -5.4234 -86.994 

Age (Base: 30-74 years)   

16-19 years 3.4055 36.915 

20-24 years 2.5765 29.576 

25-29 years 1.0682 8.252 

Greater than 74 years 1.6611 15.553 

N = 78,336 

LL = -4,593.91 

Note: All coefficients in the model are significant at the 95% confidence level (p-value <0.05). 

 

Due to the under sampling of non-crash trips, the constant in the binary logit model is 3 

skewed towards a high crash risk. The constant was calibrated to match the true population crash 4 

shares. At the project sponsor's request, the calibrated parameter is not reported to avoid replication 5 

of our RAD software.  6 

5.2. Crash Location 7 

For developing the crash location model, we used the SHRP2 NDS dataset crash records 8 

with location information (about 857 crashes). As a significant amount of information was missing 9 

from the roadway data, the missing data was imputed based on the existing distributions observed 10 

in the data instead. For modeling the crash segments, the outcomes in the model could be very 11 

large for longer trips. To avoid computational complexity due to a large number of alternatives, a 12 

sampling of segments was considered for large trips spanning a large number of segments. The 13 

sampling process included the crash segment alternative and 29 additional segments randomly 14 

sampled from the trip segments (see Faghih-Imani and Eluru, 2015 for similar sampling 15 

approaches in literature). The results of the multinomial logit model estimated for crash location 16 

is presented in Table 5. For each trip, the longer segments tend to have a higher risk of a crash 17 
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occurring. Additionally for each trip, segments with more lanes, those with a higher AADT, and 1 

collector roads tend to have a lower risk of a crash occurring.  2 

Table 5: Crash Location Model 

Parameters Coefficients T-value 

Link length (x100) 0.7932 14.869 

Number of lanes  -0.078 -1.910 

AADT (/10,000) -0.0387 -3.191 

Collector Road -0.5801 -4.611 

N = 19,891 

LL = -2,378.94 

Note: All coefficients in the model are significant at 90% confidence level (p-value <0.1). 

 

5.3. Crash Type 3 

The goal of this module is to generate the type of crash that will occur based on trip and 4 

roadway variables. For developing the crash type model, we used the CRSS dataset. In the dataset 5 

there were 113,983 crashes. Of the 113,983 crashes in the CRSS dataset, 25,000 were randomly 6 

selected to be used for developing the crash type model. The alternatives considered for crash type 7 

were rear end crash, head on crash, angular crash, sideswipe crash, crash with fixed objects, crash 8 

with non-fixed objects, and non-motorized crash. Since different datasets were used for modeling 9 

and implementation, only those variables that were present in both datasets were considered when 10 

developing the model. The results of the multinomial logit model estimation can are presented in 11 

Table 6.  12 

For this model, rear end crashes are used as the base alternative, with angular crashes and 13 

crashes with fixed and non-fixed objects having a higher probability of occurrence and head on 14 

crashes, sideswipe crashes, and non-motorized crashes having a lower probability of occurrence. 15 

Also, as the number of lanes increases, the probability of any crash, other than a rear end crash, 16 

decreases. Crashes on freeways have a higher likelihood of sideswipe crashes, and a lower 17 

probability of head on crashes, angular crashes, crashes with non-fixed objects, and non-motorized 18 
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crashes. On weekdays, the probability of rear end crashes increases and the probability of head on 1 

crashes and crashes with fixed and non-fixed objects decreases. During the morning peak (7AM 2 

to 10AM), the probability of crashes with fixed and non-fixed objects and non-motorized crashes 3 

decreases. During the evening peak (4PM to 7PM), the probability of any crash, other than a rear 4 

end crash, decreases. 5 

 

Table 6: Crash Type Model 

Parameters Rear end Head on Angular Sideswipe 

Crash with 

fixed 

objects 

Crash with 

non-fixed 

objects 

Non-

motorized 

crash 

Intercept - 
-1.49 

(-13.74) 

0.65 

(12.37) 

-0.82 

(-13.16) 

1.27 

(22.01) 

1.01 

(15.06) 

-0.24 

(-3.39) 

Roadway variables 

Number of 

lanes 
- 

-0.1 

(-3.86) 

-0.24 

(-18.49) 

-0.02 

(-1.61) 

-0.44 

(-28.05) 

-0.55 

(-28.11) 

-0.35 

(-16.46) 

Freeway - 
-2.02 

(-8.81) 

-2.3 

(-21.71) 

0.3 

(5.51) 
- 

-0.24 

(-3.41) 

-2.31 

(-11.76) 

Temporal variables 

Weekdays 
0.11  

(2.87) 

-0.19 

(-2.16) 
- - 

-0.54 

(-12.68) 

-0.47 

(-9.23) 
- 

Morning 

peak 
- - - - 

-0.33 

(-6.1) 

-0.48 

(-6.89) 

-0.18 

(-2.32) 

Evening 

peak 
- 

-0.25 

(-2.95) 

-0.19 

(-4.72) 

-0.34 

(-6.53) 

-0.84 

(-16.23) 

-0.74 

(-12.16) 

-0.34 

(-5.17) 

Format: Coefficient (t-statistic) 

N = 25,000 

LL = -41,976.75 

Note: All coefficients in the model are significant at the 95% confidence level (p-value <0.05). 

 

5.4. Drivers and Vehicles 6 

The goal of this module is to generate data for each driver and vehicle involved in a crash. 7 

For the drivers and vehicles module we used Illinois crashes from the CRSS dataset. From this 8 

data we developed a probability distribution of different driver demographics (such as age, gender, 9 

and seatbelt use) and vehicle characteristics (such as type and age), which were used to generate 10 

driver and vehicle information for the generated crashes. The first step in generating the driver and 11 
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vehicle information is determining the number of vehicles involved in the crash. This is partially 1 

based on the crash type generated in the previous module. If the crash type was defined as crash 2 

with fixed objects, crash with non-fixed objects, or non-motorized crash then it was considered a 3 

single vehicle crash. Otherwise, the number of cars was generated as 2 or 3 cars. The probabilities 4 

from the Illinois dataset for multivehicle crashes were 88.1% two vehicles and 11.9% three 5 

vehicles. This number was generated using a cumulative probability table as described in previous 6 

modules. Once the number of vehicles was determined, data was generated for each driver and 7 

vehicle involved in a crash. The first driver would have the same age as the primary driver in the 8 

trip data, but subsequently, all other information was generated.  9 

5.5. Crash Severity 10 

The goal of this module is to generate the severity of the crash for each driver based on trip 11 

data, roadway information, driver demographics, vehicle information, and crash type. Of the 12 

25,000 crashes that were used in the crash type model, driver information was available for 24,351 13 

crashes, resulting in 42,039 drivers that were used in developing the crash severity model. 14 

For modeling crash severity an ordered logit model was used. In this case, the alternatives 15 

were property damage only (PDO), minor, major, and severe. The results of the model estimation 16 

are presented in Table 7. In this model, drivers that are less than 25 years old are less likely to 17 

experience high severity. Crashes that occur on freeways and those with a higher number of lanes 18 

are more likely to result in high severity. Crashes that occur on weekdays or during peak hours are 19 

likely to be less severe. Using rear end crashes, crashes with non-fixed objects, and non-motorized 20 

crashes as a base, sideswipe crashes are less likely to result in severe crashes, while head on 21 

crashes, angular crashes, and crashes with fixed objects are more likely to result in severe crashes. 22 

Using automobiles, motorcycles, and buses as a base, drivers in utility vehicles and trucks are less 23 
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likely to sustain severe injuries. The reader would note that while motorcycles and buses are very 1 

different from automobiles, these three vehicle types were grouped together due to small sample 2 

sizes for motorcycles and buses.  3 

 4 

Table 7: Crash Severity Model 

Parameters Estimates T-Value 

Thresholds 

a1 -0.1563 -4.787 

a2 0.9296 28.171 

a3 1.9466 56.983 

Demographics 

Age (Base: 25 years and more)   

Less than 25 years -0.1525 -6.68 

Roadway variables 

Base: Other roadways   

Freeway 0.2432 7.882 

Number of lanes 0.0286 4.513 

Temporal Variable 

Base: Weekend   

Weekday -0.1879 -8.015 

Base: Off-peak   

Morning peak (7AM-10AM) -0.1493 -5.563 

Evening peak (4PM-7PM) -0.1126 -5.1 

Crash type 

Base: Rear end, crash with non-fixed objects, and 

non-motorized crash 
  

Head on 1.5195 30.1 

Side swipe -0.8238 -24.143 

Angular crash 0.3918 17.54 

Crash with fixed objects 0.6821 18.206 

Vehicle type 

Base: Automobiles, motorcycle and bus   

Utility vehicles -0.1199 -5.055 

Light truck -0.0827 -3.259 

Medium and heavy truck -0.3874 -6.62 

N = 41,132 

LL = -49,819.08 

Note: All coefficients in the model are significant at the 95% confidence level (p-value <0.05). 
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6. RAD IMPLEMENTATION 1 

The implementation of RAD modules involved the process of employing Monte Carlo 2 

simulation for each module discussed above. Typically, the simulation process involves generating 3 

the cumulative probability function (CPF) for all alternatives using the module specific model. 4 

Then, by generating a uniform random number between 0 and 1 and comparing it with the CPF, 5 

the chosen alternative is identified. Across different modules, different CPF formulae are 6 

employed. The rest of the process remains stable across all modules. The implemented routines 7 

are validated and checked to ensure the model outcomes follow expected distributions.   8 

For testing, the RAD generator was used to generate a full year of data. For one year data, 9 

RAD generator is employed 365 times using the 2 million daily trip data records. Across each day, 10 

a different sample of crash records are generated and processed to generate crash location, crash 11 

type, driver/vehicle characteristics, and crash severity. The one-year RAD generated data on crash 12 

type, driver and vehicle characteristics, and crash severity are compared to the CRSS dataset (see 13 

Figures 4 through 7). In these figures the generated data is comparable to the CRSS dataset. In 14 

Figure 4, the biggest differences are the rear end crashes, which are slightly underestimated, and 15 

crashes with fixed and non-fixed objects, which are slightly overestimated. In Figure 5 and Figure 16 

6, the main differences can be found in the number of vehicles and the driver age, which are 17 

partially affected by inputs from preceding modules. Crash severity results are well-aligned with 18 

the input data. The reader will note that the objective of RAD generation is not to match the 19 

observed data exactly. The emphasis is on ensuring that RAD generated crash data aligns with the 20 

observed crash data. Further, the embedded models can be carefully tweaked to produce different 21 

data distributions that might not be possible in empirical datasets. 22 
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Figure 4: Crash Type Results 

 
Figure 5: Driver Demographics Results 
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Figure 6: Vehicle Characteristics Results 

 
Figure 7: Crash Severity Results 
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7. RAD DATASETS 

The RAD generator is implemented to produces 3 data files: the crash file (containing 

information on crash details such as location, type, and severity), the driver file (containing 

information on each driver involved in a crash and their individual injury severity), and the vehicle 

file (containing information on each vehicle involved in a crash). The three files generated are 

cross-linked and columns from one dataset can be readily merged into the other two files as needed. 

The user can specify the number of years of crash data to be produced by the RAD generator, as 

well as the number of instances of data for that number of years. For example, a user can specify 

that they want two sets of three years of crash data. When the RAD generator is run two different 

crash files, driver files, and vehicle files will be produced, each containing three years of data.  

The crash dataset that is produced by the RAD generator can be used in a variety of ways. 

To analyze the crash data produced by the RAD generator, it can be aggregated by facility type 

(such as crashes on a segment in a 6-month period or multiple years) and spatially (such as crashes 

in a zone or county). There are also multiple variables that can be used for analysis. A selection of 

the variables (and their distribution) that could be used for analysis are shown in Figure 8. A user 

could analyze the data for roadway characteristics such as number of lanes, type of roadway, or 

AADT. A user could also analyze the data by crash characteristics such as time of crash, type of 

crash, or severity of crash. The crash databases generated can be employed to compare frequency 

models, severity models, crash type and various other dimensions by facility type. The 

development of the disaggregate RAD can serve as a universal benchmarking system for 

alternative model frameworks in safety literature. 
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Figure 8: Sample Variable Distribution 

8. CONCLUSION 

Transportation safety modeling has broadly evolved along two streams: crash frequency 

models and crash severity models. The primary focus of these two streams of safety analysis is on 

identifying and quantifying the influence of factors contributing to traffic crash occurrence and its 

consequences. Traditionally approaches to model evaluation have relied on observed data and have 

multiple drawbacks. Realistic artificial data (RAD) is a potential innovative approach to address 

the over-reliance on observed datasets. In this paper, we implemented this solution by proposing 

a RAD generation framework which will generate a compilation of traffic crashes and 

characteristics to be used for safety analysis. 

The proposed approach builds on Hauer’s earlier work on generating crash data. In our 

study, we build on previous single level data generation process by employing a multi-level crash 

data generation process using trip level data for crash generation. Specifically, we generate crash 

data by considering crash occurrence as a trip level event impacted by trip level factors, 

demographic characteristics, roadway facility and vehicle attributes. This conceptual framework 

has five stages of crash data generation that are described in this paper. The first stage of data 

generation is the crash risk stage, which evaluates a series of trips using a binary logit model to 
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classify each trip as “crash” or “no crash”. The second stage of data generation is the crash location 

stage, where the location of each “crash” trip is determined using a multinomial logit model. The 

third stage of data generation is the crash type stage, where the type of each crash is determined 

using a multinomial logit model. The fourth stage of data generation is the drivers and vehicles 

stage, where data on the driver(s) and vehicle(s) associated with each crash are generated using a 

probability distribution table. The fifth and final stage of data generation is the crash severity stage, 

where the severity of the crash is generated for each driver involved in a crash using an ordered 

logit model. Each of these modules is implemented sequentially in the RAD generator using the 

Python programming language. After Monte Carlo implementation of the RAD generator, the 

software will provide crash data in three interconnected files including (a) crash file, (b) driver file 

and (c) vehicle file. In future work, the crash databases generated can be employed to compare 

frequency models, severity models, crash type and various other dimensions by facility type. The 

development of the disaggregate RAD can serve as a universal benchmarking system for 

alternative model frameworks in safety literature. The approach can be enhanced further by 

employing trip level data from multiple urban regions.  

It is important to note that the crash frequency variables generated in our RAD originate 

from a multi-level aggregation of crashes on a single day. Hence, the crash frequency models 

developed with this data might not always be aligned with the current state of the art crash 

frequency models that assume a count over an aggregated timeframe. It will be an interesting future 

exercise to test how model specifications will vary between RAD datasets and traditional 

aggregated observed datasets. The RAD generator was developed based on trip data from one 

jurisdiction. It would be beneficial to update the RAD generator with data from multiple 

jurisdictions to enhance wider applicability. The RAD framework developed in the current study 
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should serve as starting point for future efforts that can establish benchmarks for safety modeling 

selection in the future.  
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