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ABSTRACT 

Multivariate models are widely employed for crash frequency analysis in traffic safety literature. 

In the context of analyzing data for multiple instances (such as years), it becomes essential to 

evaluate the stability of parameters over time. The current research proposes a novel approach, 

labelled the mixed spline indicator pooled model, that offers significant enhancement relative to 

current approaches employed for capturing temporal instability. The proposed approach entails 

carefully creating independent variables that allow us to measure parameter slope changes over 

time and can be easily integrated into existing methodological frameworks. The current research 

effort compares four multivariate model systems: year specific negative binomial model, year 

indicator pooled model, spline indicator pooled model, and mixed spline indicator pooled model. 

The model performance is compared using log-likelihood and Bayesian Information Criterion. The 

empirical analysis is conducted using the Traffic Analysis Zone (TAZ) level crash severity records 

from Central Florida for the years from 2011 to 2019. The comparison results indicate that the 

proposed mixed spline indicator pooled model outperforms the other models providing superior 

data fit while optimizing the number of parameters. The proposed mixed spline model can allow 

a piece-wise linear functional form for the parameter and is suitable to forecast crashes for future 

years as illustrated in our predictive performance analysis.  

 

Keyword: Crash severity, Crash frequency, Temporal instability, Unobserved effects, Mixed 

Spline Pooled Negative Binomial Model.  
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1. BACKGROUND 

1.1 Motivation 

Crash frequency models are employed in road safety literature to identify the factors affecting 

crash occurrence. These frequency models are developed either at the microscopic level (such as 

intersection and segment) or the macroscopic level (such as county and Traffic Analysis Zone 

(TAZ)). Earlier research efforts focused on employing a single dependent variable – total number 

of crashes – to study crash occurrence using univariate count regression models such as Poisson, 

Negative Binomial, and Poisson Log-Normal models (Anastasopoulos & Mannering, 2009; Barua 

et al., 2014; Bhowmik et al., 2018; Cai et al., 2018; Chiou et al., 2014; Lord & Mannering, 2010; 

Yasmin & Eluru, 2018). The univariate model systems were enhanced by incorporating the 

influence of unobserved factors on crash frequency via different random parameter univariate 

models (Huo et al., 2020; Z. Li et al., 2019; Venkataraman et al., 2013). In recent years, there is 

growing recognition that focusing on a single dependent variable can potentially mask the variation 

in the crash frequency variable due to different attributes such as severity, crash type, and crash 

location. The recognition has resulted in the consideration of crash frequency by attribute levels – 

resulting in multiple crash frequency variables. While separate univariate models can be employed 

to study these crash frequency variables, it is more appropriate to develop a multivariate model 

that recognizes that the different crash frequency variables for an observation are likely to be 

closely affected by several common unobserved attributes (Behnood & Mannering, 2015; 

Bhowmik et al., 2022; Malyshkina & Mannering, 2009; Mannering et al., 2016; Yasmin et al., 

2014; Yasmin & Eluru, 2013). The different frameworks employed for modeling multiple crash 

frequency variables in a joint framework include multivariate Poisson, multivariate Negative 

Binomial model, multivariate Poisson Log-Normal model, joint crash frequency and fractional 

split model systems (Negative Binomial Ordered Fractional Split model and Negative Binomial 

Multinomial Fractional Split model) (Bhowmik et al., 2018; Lee et al., 2014; Yasmin & Eluru, 

2018; Ye et al., 2013). The aforementioned multivariate frameworks are well equipped to address 

the impact of observed and unobserved factors across the multiple dependent variables for a single 

instance of data (such as a single year). With increasing availability of data for multiple instances 

(such as multiple years), there are emerging challenges to employ these multivariate frameworks. 

As discussed in Mannering, 2018, traditional approaches to safety implicitly assume that the 

impact of independent variables are stable over time in crash frequency and severity models. 

However, driver behavior changes influenced by cognitive biases, attitudes and personal 

experience over time might contribute to a changing crash frequency and severity profiles  

(Mannering, 2018). Thus, when data for multiple instances is available, it would be important to 

evaluate if parameters are stable over time and identify procedures that can pinpoint the variation 

(if any). As the dimensions of the dependent variables increase substantially (with data instances 

>3), accommodating for the potential parameter space of common unobserved factors is far from 

straight forward.  

The existing solutions employed to tackle these challenges associated with data from 

multiple instances in safety literature can be organized into two categories (see (Kabli et al., 2023) 

for a brief discussion on this categorization). In the first category, studies employ a pooled model 

assuming temporal stability across all instances and then compare the pooled model’s fit with 

instance-specific models’ fit using an appropriate likelihood-ratio test (see (Alogaili & Mannering, 

2022; Islam et al., 2020; Islam & Mannering, 2021; Se et al., 2021a, 2022; Song et al., 2020; 

Tamakloe et al., 2020; C. Wang et al., 2022b; Zamani et al., 2021)). This approach circumvents 

the dimensionality challenges by estimating models at the extremes of the temporal spectrum. The 
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pooled model treats the data as being generated in a single instance while the instance specific 

model avoids any need for interaction across instances. However, the instance specific model 

results in the highest numbers of parameters as every parameter is implicitly assumed to be 

temporally unstable. The comparison in this approach simply tests if temporal stability exists or 

not; the approach cannot identify which parameters exhibit a statistically discernible difference 

over time.  

A second approach employs a “pairwise” test to investigate the temporal instability 

between any two years by examining whether the parameters estimated from one subgroup are 

statistically different from another (see Al-Bdairi et al., 2020; Alnawmasi & Mannering, 2019; 

Behnood & Mannering, 2019, 2015; Dabbour, 2017; Hou et al., 2020, 2022; Hu et al., 2013; Islam 

et al., 2020; Y. Li et al., 2021; Meng et al., 2021; Pang et al., 2022a, 2022b; Ren & Xu, 2023; Se 

et al., 2021b; Tamakloe et al., 2021; Tirtha et al., 2020; C. Wang et al., 2022a; K. Wang et al., 

2019; Yan et al., 2021c, 2021a, 2021b, 2022, 2023a, 2023b; Yu et al., 2021; Zubaidi et al., 2021). 

The approach relative to the first category of studies offers additional information on which of the 

instance pairs exhibit stability in terms of parameters. However, even in this approach, the stability 

is compared for the entire set of variables. Thus, there is no information available on specific 

parameter stability. Thus, while instance specific models from these two approaches accommodate 

for temporal instability accurately, they do not identify variables that are temporally unstable and 

fail to provide a process for employing these models into the future.  

Recently, Alnawmasi and Mannering, 2023 and Dzinyela et al., 2024 have proposed 

approaches to address this limitation. In these studies, the authors employ approaches to compare 

three variants of the models: (a) unconstrained models, (b) constrained models, and (c) partially 

constrained models. The approach compares two models using the log-likelihood ratio test to 

identify the more suited form of temporal stability based on data fit. The approach, while very easy 

to implement, requires the estimation of separate models and pair-wise test statistics for each 

individual temporal parameter variation possibility. The number of possible models to be estimated 

can become very large in scenarios with several temporal instances (>4) and independent variables 

(>5). For example, to test for all possible temporal variations for a single independent variable 

with 10 years of data, the full set of models to be developed will be of the order of 210 (see 

explanation note in the Appendix). When we need to do this simultaneously for several 

independent variables, the number can be even larger. To be sure, estimating these models is not 

complicated. It simply would require us to develop an algorithmic approach to carefully test each 

possibility for temporal variation prior to concluding that an exhaustive test has been conducted. 

A for loop-based routine in Python or R should be able to generate all the requisite test scores for 

analysis given adequate time is invested.  

 

1.2 Study in Context 

In recent research efforts by Eluru and colleagues, a framework has been proposed to assess the 

stability of each parameter across temporal periods – labelled year interaction pooled model. This 

approach involves pooling the data into a unified data frame, selecting a base year as reference, 

and estimating deviations across multiple time periods. By incorporating this base and deviation 

approach into the equations, researchers can assess the significance of the deviation for each 

parameter. If the deviation is found to be statistically significant, it indicates that the variable has 

a distinct effect in the corresponding year relative to the base year. By analyzing the significance 

of deviations, researchers can determine when and how certain variables exhibit temporal 

variability. In the worst-case scenario, the number of parameters required will remain the same as 
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the traditional approach while in the best-case scenario, the proposed framework can significantly 

reduce the number of parameters (D*X). The approach has been employed in several research 

efforts and has shown significant reduction in parameters needed relative to single year-based 

models (see (Kabli et al., 2023; Marcoux et al., 2018; Tirtha et al., 2020)). 

However, the pooled approach employed so far has one significant limitation. In the 

approach, the deviations in parameter impacts are compared with the reference year. However, this 

does not provide an easy way to examine if year specific deviations across years might be 

significantly different relative to the base year but yet not different among themselves. For 

example, the impact of AADT might be different for 2014 and 2015 relative to 2009. However, 

the approach does not allow us to easily evaluate if we can employ a single parameter to represent 

the difference from 2014 and 2015. A statistical test will need to be added to test this accurately. 

The testing of such effects across several pairs (or multiples) will be tedious and resource intensive.  
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Figure 1. Year Specific Variable Creation and Spline Formulation Method 
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In our research, we propose a novel approach that builds on the pooled data approach while 

also making it easier to evaluate differences across parameters. The new approach labelled the 

spline indicator pooled model, utilizes the same pooling approach discussed earlier, but instead of 

creating year-specific dummies, we adopt the spline approach to creating temporal variations. In 

this approach, as opposed to creating year specific dummy variables, we create time variables 

using the following approach:  

Year1 = Max(Yearrecord – Yearbase, 0); 

Year2 = Max(Yearrecord – Yearbase -1,0); 

… 

YearN = Max(Yearrecord – Yearbase –(N-1),0) 

 where Yearrecord corresponds to year of the observation, and Yearbase corresponds to the year 

of data prior to the first year used for analysis. The approach will yield the same number of 

variables as the year dummy approach (N variables). In the model estimation effort, the 

independent variable is interacted with the newly created year variables to estimate temporal 

effects. The proposed approach effectively serves as a piecewise linear formulation for each 

parameter over the years.  

The spline variables allow for easy identification of the real changes in slope over time for 

the different variables. These variables are used directly to get year specific variations. These 

variables can be interacted with any independent variable to test the temporal stability of that 

variable. The advantage of these variables is illustrated in Figure 1 (see (Eluru & Gayah, 2022) for 

another example). Figure 1 presents an example with four time periods (2018, 2019, 2020 and 

2021). Yearbase in the example will be 2017. The Year specific variables created are shown on the 

top and their impact on propensity are presented on the bottom of Figure 1. We can see that the 

four years provide four degrees of freedom for estimation represented as C1, C2, C3 and C4. C1 

serves as the base variable impact and the spline variables provide the year specific deviations as 

2019 – C2, 2020 – C3 and 2021 – C4. If any of the year specific parameters are insignificant then 

the deviation for that year is 0. The approach is quite straightforward to implement and only 

requires the creation of additional independent variables.  

Further, the proposed approach allows us to generate a relationship of how parameters vary 

over time. This linearized relationship will allow us to generate potential values of the parameters 

for future years. Thus, the proposed model system enables us to develop future forecasts while 

allowing temporal variation. The current approaches are geared toward estimating the temporal 

variation without offering any information on future parameter variation. The methodological 

frameworks currently employed in research or practice can easily incorporate these variables. The 

current research effort compares four model multivariate model systems: (a) year specific negative 

binomial (YSNB), (b) year indicator pooled model and (c) spline indicator pooled model and (d) 

mixed spline indicator pooled model. The model performance is compared using log-likelihood 

and Bayesian Information Criterion. The modeling exercise is conducted using the Traffic 

Analysis Zone (TAZ) level crash records from four counties of Central Florida for the years 2011 

to 2019 considering a comprehensive set of exogenous variables.  

The remainder of the paper is structured as follows: The methodological framework used 

in the study is presented in the second section, and the dataset is thoroughly described in the third 

section. The fourth section covers the interpretation of the model results, and the last section 

contains some concluding remarks. 
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2 ECONOMETRIC FRAMEWORK 

We consider four injury severity categories (no injury, minor injury, non-incapacitating injury, and 

serious injury crashes). Thus, in estimating Multivariate Panel Mixed NB model, we examine four 

different Panel NB models considering 9 years of crash data for four different injury severity types 

simultaneously. In this section, we briefly provide details of the model frameworks employed in 

our study.  

Let’s assume 𝑖 (𝑖 = 1,2,3, … 𝑁, 𝑁 = 1,200) be an index to represent observation unit 

(TAZs); j 𝑗 (𝑗 = 1,2,3, … 𝐽, 𝐽 = 4)  be an index for different crash severity levels and 

𝑡 (𝑡 = 1,2,3, … 𝑇, 𝑇 = 9) be the index to represent different years of crash data at observation unit 

𝑖. In this empirical study, the index 𝑗 may take the values of no injury (𝑗 =1), minor injury (𝑗 =2), 

non-incapacitating injury (𝐽 =3), and serious injury (𝑗 =4) crashes. Using these notations, the 

equation system for modeling crash count across crash severities 𝑗 and different years 𝑡 in the usual 

NB formulation can be written in equation 1 as: 

𝑃(𝑐𝑖𝑗,𝑡) =  

𝛤 (𝑐𝑖𝑗,𝑡 +
1

𝛼𝑗,𝑡
)

𝛤(𝑐𝑖𝑗,𝑡 + 1)𝛤 (
1

𝛼𝑗,𝑡
)

(
1

1 + 𝛼𝑗,𝑡𝜇𝑖𝑗,𝑡
)

1
𝛼𝑗,𝑡

(1 −
1

1 + 𝛼𝑗,𝑡𝜇𝑖𝑗,𝑡
)

𝑐𝑖𝑗,𝑡

 
(1) 

where, 𝑐𝑖𝑗,𝑡 be the index for crash counts specific crash severity level 𝑗 and year 𝑡 occurring over 

a period of time in TAZ 𝑖. 𝑃(𝑐𝑖𝑗,𝑡) is the probability that TAZ 𝑖 has 𝑐𝑖𝑗,𝑡 number of crashes specific 

to crash severity 𝑗 for year 𝑡. Γ(∙) is the gamma function, 𝛼𝑗,𝑡 is NB over dispersion parameter for 

the corresponding severity level 𝑗  and year 𝑡 . 𝜇𝑖𝑗,𝑡 is the expected number of crashes for crash 

severity level 𝑗 occurring in TAZ 𝑖 over a given time period for year 𝑡. We can express 𝜇𝑖𝑗,𝑡 as a 

function of explanatory variables by using a log-link function as follows in equation 2: 

 

𝜇𝑖𝑗,𝑡 = 𝐸(𝑐𝑖𝑗,𝑡|𝑧𝑖𝑗,𝑡) = 𝑒𝑥𝑝((𝛿𝑗,𝑡 + 𝜁𝑖𝑗,𝑡)𝑧𝑖,𝑡 + 𝑙𝑛(𝑆𝐺_𝑙𝑒𝑛𝑔𝑡ℎ𝑖,𝑡) + 𝜂𝑖𝑡 + 𝜙𝑖𝑗 + 𝜀𝑖𝑗,𝑡) (2) 

where, 𝑧𝑖,𝑡 is a vector of explanatory variables associated with TAZ 𝑖 for the year 𝑡. 𝑆𝐺_𝑙𝑒𝑛𝑔𝑡ℎ𝑖,𝑡 

is the total segment length (in mile) in TAZ 𝑖 for each year 𝑡 and this variable is used as an offset 

variable in the NB model specification. 𝛿𝑗,𝑡 is a vector of coefficients to be estimated for each 

severity level across each year. 𝜁𝑖𝑗,𝑡 is a vector of unobserved factors on crash count propensity 

associated with injury severity type 𝑗 for TAZ 𝑖 and its associated zonal characteristics, assumed 

to be a realization from standard normal distribution: 𝜁𝑖𝑗,𝑡~𝑁(0, 𝜋2). In our current analysis, there 

are two levels of unobserved factors that can simultaneously impact the number of crashes for 

different severity levels over the nine years period: 1) within TAZ 𝑖 and year 𝑡, crashes of different 

severity levels could be correlated; 𝜂𝑖𝑡 captures such correlations and 2) for same severity level 𝑗, 

crashes can be correlated across the years as same TAZ 𝑖 is repeated 9 times (9 years);  𝜙𝑖𝑗captures 

such correlations. Finally, 𝜀𝑖𝑗,𝑡 is a gamma distributed error term with mean 1 and variance 𝛼𝑗,𝑡. 

Here, it is important to note that the two unobserved heterogeneities that impact different 

crash levels (over the severities and over the years) can vary across TAZs. Therefore, in the current 

study, the correlation parameters 𝜂𝑖𝑡 and 𝜙𝑖𝑗 are parametrized as a function of observed attributes 

as follows in equation 3 and equation 4 respectively: 

 

𝜂𝑖𝑡 = 𝛾𝑖,𝑡𝑠𝑖,𝑡 (3) 
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 𝜙𝑖𝑗 = þ𝑖,𝑗𝑞𝑖,𝑡 (4) 

where, 𝑠𝑖,𝑡 and 𝑞𝑖,𝑡 are vector of exogenous variables, 𝛾𝑖,𝑡  and þ𝑖,𝑗 are a vector of unknown 

parameters to be estimated (including a constant). In examining the model structure of crash count 

across different injury severity types over the years, it is necessary to specify the structure for the 

unobserved vectors 𝜁, 𝛾 𝑎𝑛𝑑 þ represented by Ω. In this paper, it is assumed that these elements 

are drawn from independent normal distributions: Ω~𝑁(0, (𝜋2, 𝜎2, 𝜓2)). Thus, conditional on Ω, 

the likelihood function for the joint probability can be expressed in equation 5 as: 

 

𝐿𝑖 = ∫ ∏ ∏ (𝑃(𝑐𝑖𝑗,𝑡))

𝐽

𝑗=1

𝑇

𝑡=1𝛺

𝑓(𝛺)𝑑𝛺 (5) 

Finally, the log-likelihood function is as follows in equation 6:       

 
 

 𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖,𝑡)𝑖  (6) 

 

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 6using routines coded in GAUSS Matrix Programming software (Aptech, 

2015).  

 

3 DATA DESCRIPTION 

The analysis was conducted using crash data from 2011 to 2019 obtained from Signal Four 

Analytics (S4A) database for the Greater Orlando Region with 1611 Traffic Analysis Zones 

(TAZs). We used four injury severity categories: no injury, minor injury, non-incapacitating 

injury, and serious injury (incapacitating injury and fatal injury were combined) as dependent 

variables for this study. A summary of how crash frequency mean varies by severity and year is 

provided in Figure 2. The results indicate an overall increase in mean crash frequency across all 

severity levels (relative to 2011). While the first three injury severity levels exhibit a monotonic 

increase in the tie period of analysis, we notice an up and down trend for the serious injury 

category.  

 

 

Year 
No 

Injury 

Minor 

Injury 

Non-

Incapacitating 

Serious 

Injury 

2011 17.56 4.10 3.52 0.87 

2012 22.53 5.03 3.33 0.92 

2013 27.12 5.98 3.61 1.20 

2014 29.90 6.52 3.67 1.69 

2015 32.46 7.12 3.88 1.97 

2016 31.83 7.50 4.06 1.70 

2017 34.63 7.93 4.17 1.54 

2018 36.00 8.69 4.44 1.36 

2019 36.49 9.02 4.77 1.28 
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Figure 2. Study Area Map and Yearly Crash Mean by Severity Type for 1611 TAZ’s 

In this study, we consider a wide range of independent variables, such as 

sociodemographic, land use, and transportation infrastructure characteristics. Sociodemographic 

variables are sourced from American Community Survey (ACS) data. Transportation 

infrastructure variables are processed in ArcGIS using roadway shapefiles hosted by the Florida 

Department of Transportation (FDOT). Land use variables are processed from high-resolution 

parcel data provided by Florida Department of Revenue (FDOR). The independent variables 

considered in our analysis are summarized in Table 1.  
 

Table 1: Summary Statistics of Exogenous Variables (Zonal Level) 
 

Variable Names (N=1611) Description Min Max Mean 
Standard 

Deviation 

Proportion of urban road 

Urban Road Length in 

TAZ/Total Road Length in 

TAZ 

0.000 1.000 0.092 0.272 

Proportion of rural road 

Rural Road Length in TAZ 

/ Total Road Length in 

TAZ 

0.000 1.000 0.867 0.326 

Proportion of arterial road 

Arterial Road Length in 

TAZ / Total Road Length 

in TAZ 

0.000 1.000 0.385 0.376 

Proportion of collector road 

Collector Road Length in 

TAZ /Total Road Length 

in TAZ 

0.000 1.000 0.455 0.383 

Proportion of Freeway 
Freeway Length in TAZ / 

Total Road Length in TAZ 
0.000 1.000 0.088 0.214 

Proportion of local road 

Local Road Length in TAZ 

/ Total Road Length in 

TAZ 

0.000 1.000 0.030 0.119 

Proportion of divided road 
Ln (Divided Road Length 

in TAZ) 
0.000 1.000 0.483 0.350 

Average speed 
Ln (Average Speed of 

major roads in TAZ) 
0.000 4.248 3.487 0.968 

Speed greater than 55 mph 

Road Length with 

Speed>55 mph in TAZ 

/Total Road Length in 

TAZ 

0.000 1.000 0.196 0.324 

Intersection Density 
Ln (Traffic Intersection 

Number in TAZ) 
0.000 4.234 2.010 1.063 

Signal Density 
Ln (Traffic Signal Number 

in TAZ) 
0.000 2.079 0.155 0.382 
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Proportion of poor pavement 

Poor Pavement Length in 

TAZ /Total Pavement 

Length in TAZ 

0.000 1.000 0.066 0.200 

Proportion of agricultural land 

Agricultural land area in 

TAZ/Total land area in 

TAZ 

0.000 1.000 0.109 0.219 

Proportion of industrial land 
Industrial land area in TAZ 

/Total land area in TAZ 
0.000 0.928 0.037 0.103 

Proportion of institutional 

land 

Institutional land area in 

TAZ /Total land area in 

TAZ 

0.000 0.754 0.027 0.059 

Proportion of other land 
Others land area in TAZ 

/Total land area in TAZ 
0.000 1.000 0.059 0.101 

Proportion of public land 
Public land area in TAZ 

/Total land area in TAZ 
0.000 1.000 0.066 0.133 

Proportion of recreational land 

Recreational land area in 

TAZ /Total land area in 

TAZ 

0.000 0.992 0.013 0.064 

Proportion of residential land 

Residential land area in 

TAZ /Total land area in 

TAZ 

0.000 1.000 0.362 0.281 

Proportion of retail land 
Retail land area in TAZ 

/Total land area in TAZ 
0.000 1.000 0.128 0.198 

Proportion of vacant land 
Vacant land area in TAZ 

/Total land area in TAZ 
0.000 1.000 0.191 0.188 

Proportion of waterbody 
Water land area in TAZ 

/Total land area in TAZ 
0.000 1.000 0.009 0.042 

Land use mix 

Land use mix = 

[
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is 

the category of land-use, 𝑝 

is the proportion of the 

developed land area for 

specific land-use, 𝑁  is the 

number of land-use 

categories 

0.000 0.900 0.366 0.152 

Population density 
TAZ Population Count/ 

Total area of TAZ in acre 
0.009 24.637 3.210 2.785 

Employment density 

Total Employed Count in 

TAZ/Total area of TAZ in 

acre 

0.004 13.599 1.720 1.594 

Average Income 

TAZ Average 

Income/TAZ Employment 

Number 

1.564 6.826 3.179 0.700 
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Proportion of non-motorized 

commuter 

Proportion of non-

motorized commuter in 

TAZ 

0.000 13.242 0.424 0.823 

Average annual daily traffic Ln (AADT) 0.000 12.859 8.559 2.820 

Percentage of heavy vehicle 
(Truck AADT/AADT) * 

100 
0.000 40.197 7.539 5.340 

  

The reader would note that the variation over time in independent variables for crash 

frequency datasets at the macrolevel are likely to be smaller than the variation over time in 

independent variables for crash severity datasets. In our research analysis, we consider a larger 

time horizon (10 years) and thus we observed more variability in independent variables (relative 

to temporal studies with smaller time horizons). In the interest of space, we briefly discuss 

variations for a subset of the independent variables. The reader will note that the mean and standard 

deviation values vary differently for different variables over time. For example, for population 

density, the variable mean varies from 3.01 in 2011 to 3.49 in 2019. Thus, we observe there is 

substantial variation - 16% over 10 years - in our analysis. We can see similar trends for multiple 

variables including employment density (a variation of 11%), percentage of heavy vehicles (19%), 

and proportion of residential land (17%). The reader will also note that some variables in the 

dataset show smaller variations (less than ±5%). Overall, it is beneficial to examine variations in 

independent variables prior to developing models.  

 

4 EMPIRICAL ANALYSIS 

4.1 Model specification and overall measure of fit 

The dimensionality of the dependent variables in our study is 36 (4 severity levels and 9 years). 

The empirical study involves a series of model estimation from three approaches: 1) traditional 

model framework where individual Year Specific Negative Binomial model (YSNB) and 2) year 

indicator pooled negative binomial model (YIPNB), and 3) spline indicator pooled negative 

binomial model (SIPNB). The three model systems are evaluated based on Bayesian Information 

Criterion (BIC). BIC (log-likelihood at convergence) values for the three models are: (a.) YSNB 

model (356 parameters) is 232723.58, (b.) YIPNB model (152 parameters) is 230470.03, and (c.) 

SIPNB model (122 parameters) is 230406.68. The comparison exercise highlights two important 

aspects. First, the number of parameters required in pooled models are significantly lower than the 

year specific models. The difference clearly highlights the parsimonious nature of pooled 

frameworks employed in our study. Second, the pooled models provide a significantly improved 

data fit relative to their traditional counterparts (year specific NB models) as indicated by their 

lower BIC values. Second, within the pooled approaches, the SIPNB model shows considerable 

improvement in data fit compared to the YIPNB model. Finally, the results highlight how the 

additional flexibility from the spline model reduces the number of parameters from the year 

indicator model without a significant drop in data fit.  

For the best performing spline model incorporates unobserved heterogeneity along two 

dimensions: i) severity level correlation across each year and ii) temporal correlations across 

severity levels. The BIC (log-likelihood at convergence) for the spline model with unobserved 

heterogeneity with 131 parameters is 219819.44 (-109301.40). The BIC value is significantly 

better than the simple spline model. The improvement in model fit highlights the contribution of 

severity and temporal factor specific unobserved heterogeneity.  
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4.2 Model Estimation Results 

We describe the results of the spline model with unobserved heterogeneity effects. The spline 

indicator variable introduces several parameter specific deviations over time. Thus, we present our 

findings through two comprehensive tables each offering valuable insights into the temporal 

fluctuations as well as the overall effect of the variables on the crash severity components.  

In the first table (Table 2), we conduct a comprehensive examination of the temporal 

fluctuations of each variable's impact on crash severity. For the base year (e.g., 2011), we provide 

the slopes (coefficient) representing the variable's effect on the corresponding crash severity level. 

Then, we calculate the deviations in these slopes for each subsequent year (e.g., 2012 compared to 

2011, 2013 compared to 2012, and so forth). These deviations allow us to determine whether the 

influence of each variable varies significantly over time or remains relatively stable. When the 

deviations are statistically significant, they indicate variations in the variable's effect across 

different years. For example, consider the effect of proportion of arterial roads estimated in the no 

injury crash count components over the years. In 2011, we observed a positive impact indicating 

a rise in no injury crash counts with increased proportion of arterial roads. However, the effect 

significantly changed over the next three years as indicated by the significant variation in slope for 

2012, 2013 and 2014 in Table 2 (a downward shift in 2012 compared to 2011; an upward shift in 

2013 compared to 2012 and an again downward shift in 2014 compared to 2013). Interestingly, 

after 2014, the effect remained remarkably stable, showing no significant fluctuation (2014 to 

2019).  

The second table ( 

Table 3) presents the net effect of the variables on different severity components across the years. 

A positive (negative) sign for a variable in  

Table 3 signifies that an increase in the respective variable is likely to result in more (less) motor 

vehicle crashes for the corresponding crash severity level, specific to that year. For instance, with 

respect to proportion of arterial roads effect on no injury crash counts, the slope was found to be 

0.37 for year 2011 (as presented in Table 2) and hence the overall impact is simply 0.37 for the 

year 2011. In 2012, the deviation was found to be -0.561 compared to 2011 (Table 2) and 

therefore, the net effect for 2012 would be: 0.37*2+(-0.561)*1 = 0.179 (please see  

Table 3). For 2013, we found another significant deviation of 0.311 relative to year 2012 as 

indicated in Table 2. So, the net effect of the variable in 2013 would be:  0.370*3+(-

0.561)*2+0.311 = 0.299 (see  

Table 3). Finally, in 2014, we observed additional deviation from 2013 and hence, the net 

effect in 2014 would be: 0.370*4+(-0.561)*3+0.311*2-0.139 = 0.288.We did not find any other 

significant deviation after 2014 and hence, the slopes remained the same as in 2014 for all the 

other years from 2015. For example, the net effect of the proportion of arterial roads on no injury 

crash counts in the year 2017 would be: is 0.370*7+(-0. 561)*6+0.311*5-0.139*4 = 0.222. 

  

Table 2: Mixed Spline Indicator Pooled Negative Binomial Model (MSIPNB) Results with Base 

and Deviation Effect of Each Exogenous Variable 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Constant 

No Injury 0.383 -0.555 0.250 
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Minor Injury  -1.181 1.204 0.060 

Non-Incapacitating -0.841 0.880 

Serious Injury -2.194 2.132 0.302 -0.398 

Roadway Characteristics 

Proportion of arterial road 

No Injury 0.370 -0.561 0.311 -0.139 

Minor Injury  0.326 -0.517 0.326 -0.175 0.071 

Non-Incapacitating 0.413 -0.600 0.192 

Serious Injury 0.332 -0.587 0.655 -0.404 -0.140 0.276 

Proportion of divided road 

No Injury 0.343 -0.399 0.058 

Minor Injury  0.234 -0.538 0.320 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Intersection density 

No Injury -- -0.056 0.062 -0.071 0.060 

Minor Injury  0.033 -0.085 0.036 

Non-Incapacitating -0.014 

Serious Injury -- -- -- -- -- -- -- -- -- 

Average speed 

No Injury -0.032 0.031 -0.020 

Minor Injury  -- -- -0.110 0.105 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 

AADT 

No Injury 0.081 -0.076 

Minor Injury  0.049 -0.047 

Non-Incapacitating 0.046 0.060 -0.103 -0.003 

Serious Injury 0.035 -0.075 0.074 -0.047 0.036 

Percentage of heavy vehicles 

No Injury -0.036 0.039 

Minor Injury  -0.019 0.020 0.006 -0.004 

Non-Incapacitating -0.007 0.010 

Serious Injury -0.002 0.015 -0.044 0.028 0.048 -0.058 

Land Use Attributes 

Proportion of retail area 

No Injury 1.623 -1.123 -0.518 

Minor Injury  1.709 -1.709 

Non-Incapacitating 1.294 -1.267 

Serious Injury 0.584 -0.651 
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Proportion of residential area 

No Injury 0.107 -0.102 

Minor Injury  0.053 

Non-Incapacitating 0.196 -0.169 

Serious Injury -- -- -- -- -- -- -- -- -- 

Proportion of institutional area 

No Injury -0.472 0.722 

Minor Injury  -- 0.359 -0.335 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 

TAZ population density 

No Injury 0.104 -0.109 

Minor Injury  0.122 -0.163 0.053 -0.022 

Non-Incapacitating 0.074 -0.075 

Serious Injury 0.088 -0.119 0.044 -0.026 

Proportion of NMT 

No Injury 0.064 -0.061 

Minor Injury  0.056 -0.067 0.021 

Non-Incapacitating 0.046 -0.045 

Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 

No Injury 0.960 -1.161 0.200 

Minor Injury  0.574 -0.582 

Non-Incapacitating 0.477 -0.480 

Serious Injury 0.699 -0.699 

Unobserved Heterogeneity 

Severity specific 

correlations 
0.475 0.583 0.442 

Temporal Interactions 

Non-Incapacitating 0.419 

Serious Injury 0.357 

 

Table 3: MSIPNB Model Results with Net Effect of Each Exogenous Variable 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Constant 

No Injury 0.383 0.211 0.288 0.366 0.443 0.521 0.598 0.676 0.753 

Minor Injury  -1.181 -1.159 -1.076 -0.994 -0.912 -0.829 -0.747 -0.665 -0.583 

Non-Incapacitating -0.841 -0.803 -0.764 -0.726 -0.687 -0.648 -0.610 -0.571 -0.533 

Serious Injury -2.194 -2.256 -2.016 -1.776 -1.537 -1.695 -1.854 -2.013 -2.172 

Roadway Characteristics 
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The proportion of arterial road 

No Injury 0.370 0.179 0.299 0.280 0.261 0.241 0.222 0.203 0.183 

Minor Injury  0.326 0.134 0.269 0.229 0.189 0.149 0.180 0.211 0.242 

Non-Incapacitating 0.413 0.225 0.230 0.234 0.238 0.242 0.247 0.251 0.255 

Serious Injury 0.332 0.077 0.477 0.473 0.469 0.324 0.180 0.035 0.167 

The proportion of divided road 

No Injury 0.343 0.287 0.231 0.233 0.236 0.238 0.240 0.242 0.244 

Minor Injury  0.234 0.469 0.166 0.182 0.198 0.215 0.231 0.248 0.264 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Intersection density 

No Injury -- -0.056 -0.051 -0.046 -0.041 -0.107 -0.113 -0.118 -0.124 

Minor Injury  0.033 -0.019 -0.036 -0.052 -0.069 -0.085 -0.102 -0.118 -0.135 

Non-Incapacitating -0.014 -0.028 -0.042 -0.056 -0.070 -0.083 -0.097 -0.111 -0.125 

Serious Injury -- -- -- -- -- -- -- -- -- 

Average speed 

No Injury -0.032 -0.063 -0.095 -0.126 -0.158 -0.158 -0.159 -0.179 -0.200 

Minor Injury  -- -- -0.110 -0.116 -0.122 -0.127 -0.133 -0.138 -0.144 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 

AADT 

No Injury 0.081 0.161 0.166 0.171 0.176 0.181 0.186 0.190 0.195 

Minor Injury  0.049 0.098 0.147 0.149 0.151 0.154 0.156 0.158 0.160 

Non-Incapacitating 0.046 0.151 0.154 0.156 0.156 0.155 0.155 0.155 0.155 

Serious Injury 0.035 0.069 0.029 0.063 0.049 0.036 0.022 0.045 0.067 

Percentage of heavy vehicles 

No Injury -0.036 -0.034 -0.031 -0.029 -0.026 -0.024 -0.021 -0.019 -0.016 

Minor Injury  -0.019 -0.019 -0.019 -0.019 -0.013 -0.011 -0.010 -0.008 -0.007 

Non-Incapacitating -0.007 -0.015 -0.022 -0.030 -0.027 -0.024 -0.022 -0.019 -0.017 

Serious Injury -0.002 -0.004 0.009 -0.022 -0.025 -0.028 0.017 0.003 -0.010 

Land Use Attributes 

The proportion of retail area 

No Injury 1.623 2.124 2.107 2.090 2.072 2.055 2.038 2.020 2.003 

Minor Injury  1.709 1.709 1.709 1.709 1.709 1.709 1.709 1.709 1.709 

Non-Incapacitating 1.294 1.322 1.349 1.377 1.404 1.432 1.459 1.487 1.514 

Serious Injury 0.584 1.167 1.099 1.031 0.963 0.895 0.828 0.760 0.692 

The proportion of residential area 

No Injury 0.107 0.214 0.322 0.429 0.536 0.541 0.547 0.552 0.558 

Minor Injury  0.053 0.105 0.158 0.210 0.263 0.315 0.368 0.420 0.473 

Non-Incapacitating 0.196 0.224 0.252 0.280 0.308 0.335 0.363 0.391 0.419 
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Serious Injury -- -- -- -- -- -- -- -- -- 

The proportion of institutional area 

No Injury -0.472 -0.222 0.029 0.279 0.529 0.779 1.030 1.280 1.530 

Minor Injury  -- 0.359 0.718 0.743 0.768 0.793 0.817 0.842 0.867 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 

TAZ population density 

No Injury 0.104 0.098 0.093 0.088 0.082 0.077 0.071 0.066 0.061 

Minor Injury  0.122 0.082 0.095 0.107 0.098 0.088 0.078 0.069 0.059 

Non-Incapacitating 0.074 0.073 0.073 0.072 0.071 0.071 0.070 0.069 0.068 

Serious Injury 0.088 0.056 0.069 0.081 0.069 0.056 0.043 0.030 0.017 

Proportion of NMT 

No Injury 0.064 0.068 0.071 0.074 0.078 0.081 0.085 0.088 0.091 

Minor Injury  0.056 0.044 0.033 0.021 0.030 0.039 0.048 0.057 0.066 

Non-Incapacitating 0.046 0.046 0.046 0.047 0.047 0.047 0.047 0.048 0.048 

Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 

No Injury 0.960 0.759 0.759 0.759 0.758 0.758 0.758 0.757 0.757 

Minor Injury  0.574 0.566 0.557 0.549 0.541 0.532 0.524 0.516 0.507 

Non-Incapacitating 0.477 0.475 0.473 0.470 0.468 0.466 0.464 0.461 0.459 

Serious Injury 0.699 0.700 0.700 0.701 0.701 0.702 0.702 0.703 0.703 

Unobserved Heterogeneity 

Severity specific 

correlations 
0.475 0.583 0.442 

Temporal Correlations 

Non-Incapacitating  0.419 

Serious Injury 0.357 

 

4.2.1 Roadway Characteristics 

With respect to roadway characteristics, our analysis revealed a consistent positive impact (as 

indicated in  

Table 3) associated with the proportion of arterial road variables, indicating a higher risk of crashes 

in zones with an increased proportion of arterial roads, across all severity levels (Bhowmik et al., 

2021a). Further, the model results also highlight the significant fluctuation of the effect across the 

years, particularly for minor and serious injury counts, indicative of the varying effects of arterials 

roads on the corresponding crash severity risks. Interestingly, for the other two injury severity 

levels, we observe some variability in arterial roads effect until 2014 after which the impact 

becomes relatively stable. This is an example of how the proposed framework allows us to obtain 

a parsimonious specification. Traditional approaches in frequency modeling would have estimated 

nine separate parameters over the 9 years period for each severity level, thus resulting in a total of 

36 parameters. In other words, traditional approaches would strictly assume that the effect will 
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change across every year. In contrast, the proposed model allowed us to reflect variation and 

stability with fewer number of parameters (18 for arterial roads) compared to traditional system.  

 The parameters specific to divided roads indicate that zones with higher proportion of 

divided roads is more likely to experience increased incidence of property damage and minor 

injury crashes. Divided roadways provide barriers from opposing traffic flows and thus allow for 

fast moving traffic. Further, it is common for divided roads to have a complex intersection design 

with extra turning lanes and complex traffic signal design and hence the positive effect is intuitive 

(see (Stigson, 2009) for similar results). In terms of temporal variation, we found the impact of the 

variable significantly varies for both severity levels untill 2014 followed by consistent effect in the 

subsequent years. As is evident from  

Table 3, we observe that intersection density in a zone is negatively associated with less severe 

crashes  (proporerty damage, minor and non-incapaciating injuris) indicating a lower likelihood of 

these crashes in an area with higher number of intersections. It appreas that the impact might not 

be severity specific, rather it is perhaps indicatve of the reduction in overall crashes in intersection-

rich zones. Advanced traffic signals, visible traffic signs, and dedicated turning lanes are some of 

the possible factors resulting in a safer environment (Retting et al., 2011). Further, we also found 

temporal variation in the impact over the years for each severity level. Intersitngly, we found no 

significant fluctuation in the impact of intersection density on non-incapacitating crashes over the 

years. Finally, the parameter associated with average speed limit exhibits a negative impact on 

crash frequency for both property damage and minor injury. At first glance, the effect might seem 

unintuitive, but it could be attributed to better roadway facility conditions and design for high-

speed facilities (Milton & Mannering, 1998). Regarding temporal variation, the results reveal three 

distinct levels of fluctuation in no injury crash counts. On the other hand, for minor injury counts, 

the effect displays variation from the years 2013 to 2014, followed by a stable trend in subsequent 

years. 

 

4.2.2 Traffic Characteristics 

Among the several traffic characteristics considered in the model estimation process only Average 

Annual Daily Traffic (AADT) and heavy vehicle percentage in a zone are found to influence zonal 

level crash risks. Over the 9-year period analyzed in  

Table 3, the model findings highlight a significant positive relationship between AADT and crash 

occurrence across all four severity levels (Satria et al., 2021; Veeramisti et al., 2021). As for 

temporal variations, the results show two levels of fluctuations for less severe crashes while for 

severe crashes, we observe several levels of significant variations for the effect over time. 

Improvements/upgrades in road infrastructure, changes in driving behavior and land use changes 

are some of the possible factors leading to such varying impact of AADT. The results regarding 

heavy vehicle percentage are quite interesting, revealing multiple fluctuations over the years 

across all for crash severity levels. Notably, for serious crashes, we found six distinct variations 

in the effect of heavy vehicles as evidenced in Table 2. In terms of actual impact, our analysis 

consistently demonstrates a negative relationship between heavy vehicle percentage and the 

crash risk across all four severity levels (see  

Table 3). However, an interesting observation arises when we focus on serious crashes. In certain 

instances, we observed a positive association between heavy vehicles and serious crash incidences. 

The result might seem counterintuitive at first. However, heavy vehicles are usually dangerous due 
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to their size and weight while at the same time, their presence on the road might promote cautious 

behavior among drivers, hence the varying impacts is intuitive.  

 

4.2.3 Land Use Attributes 

With respect to land use attributes, we found that TAZ with high retail and residential area will 

likely experience increased incidence of crashes across all severity levels, as indicated by the 

positive impact of these variables in  

Table 3 (Parsa et al., 2020). Regarding temporal variations, both these variables showed a small 

number of fluctuations in the 9-year period analyzed in the study.  Proportion of institutional area 

in a zone is also found to have a significant impact on crash occurrences, particularly for less 

severe crashes (no injury and minor injury). While the impact varies slightly for both severity 

levels over the years (only two times), an intriguing trend is observed focusing on the net impact 

of the variable presented in  

Table 3. In general, the impact is positive indicating a higher likelihood of crashes for the 

corresponding severity with an increased proportion of institutional area in a zone (Bhowmik et 

al., 2019). However, a negative coefficient is observed for no injury crash counts highlighting the 

varying trends of the effect of institutional area in zonal level property damage crashes. Several 

factors like traffic volumes during peak hours, parking and drop-off activities, pedestrian 

movements might explain such two directional impact (Pulugurtha et al., 2013).  

 

4.2.4 Sociodemographic Characteristics 

In terms of sociodemographic characteristics, population density and proportion of non-motorists 

in a zone are found to be positively associated with crash frequency across different crash severity 

levels. Similar results were also found in earlier studies (Cai et al., 2016; Chen & Zhou, 2016). 

Interestingly, starting from 2012, the variable associated with population density remained 

temporally stable for property damage and non-incapacitating injury crashes. However, for minor 

injury and serious injury crashes, we observed notable fluctuations in the impact of population 

density over the years. Similarly, the impact of non-motorists also shows no variation after 2012, 

particularly for property damage and non-incapacitating injury crashes while an additional 

variation is observed in minor crashes from 2015. 

4.2.5 Unobserved Heterogeneity 

The final set of variables in both Table 2 and  

Table 3 correspond to the correlation matrix (unobserved heterogeneity) in the spline indicator 

model with unobserved heterogeneity. As discussed earlier, in the current research effort, two 

types of correlations are tested including: 1) severity specific correlation: common unobserved 

factors affecting the crash severity components within the same year and 2) temporal correlation: 

common unobserved factors affecting over the 9 years period analyzed in the study across different 

severity levels. Both these factors are found to be significant in our analysis (see Table 2) and these 

factors further demonstrate how our proposed unified model provides a parsimonious system with 

reduced complexity. For instance, traditional modeling system could be employed in two ways: 

The first modeling algorithm could be estimated while developing multivariate approaches 

considering four different severity levels models for each year, thus resulting in 9 different severity 

specific correlations while ignoring the temporal correlations. The second modeling approach 

could be employed considering 9 years of data for each severity level, thus proving 4 temporal 
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correlations while ignoring the severity correlations. To that extent, our approach is advantageous 

in two ways: 1) it allows us to capture both severity specific and temporal correlations thus offering 

a more accurate and unbiased parameter estimates; 2) it allows us to identify the number of severity 

specific correlations over the years. For example, in our analysis, we found three distinct levels of 

severity correlations over the 9-year period highlighting that correlation itself might not differ in 

subsequent years. Further, with respect to temporal correlations, the results show two significant 

correlation parameters particular for non-incapacitating and serious crashes.  

 

4.3 Predictive Performance Evaluation 

To demonstrate the applicability of our proposed approach, we conducted a comparison exercise 

by evaluating the prediction performances of the models. Specifically, we evaluated the 

performance of four models: year specific model, year indicator pooled model, spline indicator 

pooled model, and spline indicator pooled model with unobserved heterogeneity by employing 

mean absolute percentage error (MAPE) and root mean square values (RMSE) (Bhowmik et al., 

2018, 2019) for all four severity levels over the 9-year period on a holdout sample (sample size = 

3699 TAZs). A lower MAPE/RMSE indicates better predictive performance, as it represents the 

model's ability to closely approximate the observed data. Table 4 and Table 5 provide the results 

of the MAPE and RMSE measures. The MAPE and RMSE tables also include two composite 

indicators. The first indicator counts the instances in which a model system offers improved results 

across the years. The second indicator presents the average error across the years. 

The MAPE table highlights that our proposed model significantly outperforms the other 

comparable models as illustrated by comparison across the years and the values from count and 

average values. For the MAPE measure, the proposed spline indicator pooled models (with and 

without heterogeneity) outperform the other models. The spline indicator pooled model with 

unobserved heterogeneity provides a superior fit in all 36 possible cases. In the RMSE comparison, 

the proposed spline model with unobserved heterogeneity does not offer as clear an improvement 

as was the case in the MAPE comparison. However, across the different injury severities, spline 

models (with and without unobserved heterogeneity) offer an improved fit 23 times out of 36 

possible cases. We can observe that spline models offer improvement in less severe injury 

categories while performing slightly worse in more severe categories. The reader would note that 

the increase in error is small and is achieved with a substantially lower number of parameters.
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Table 4: Prediction Comparison of Models (MAPE) 

Injury Severity  Years 

2
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1
1
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2
0
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1
7
 

2
0

1
8
 

2
0
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Count (# of 

times a 

model 

offered best 

fit across 

the years) 

Average 

across years 

No Injury 

YSNB 1.46 1.35 1.23 1.28 1.29 1.26 1.30 1.36 1.16 0 1.30 

YIPNB 1.47 1.41 1.28 1.28 1.26 1.28 1.29 1.33 1.14 0 1.30 

SIPNB 1.40 1.35 1.31 1.30 1.22 1.29 1.29 1.36 1.16 0 1.30 

MSIPNB 1.18 1.26 1.14 1.15 1.16 1.10 1.12 1.18 1.04 9 1.15 

Minor Injury 

YSNB 0.82 1.06 0.84 0.87 1.02 1.00 0.96 1.05 1.00 0 0.96 

YIPNB 0.82 1.07 0.84 0.89 1.03 1.04 0.98 1.07 0.95 0 0.97 

SIPNB 0.70 0.96 0.80 0.95 1.03 1.09 0.99 0.90 0.84 0 0.92 

MSIPNB 0.68 0.91 0.72 0.78 0.87 0.83 0.82 0.87 0.82 9 0.81 

Non-

Incapacitating 

Injury 

YSNB 0.85 0.76 0.70 0.73 0.75 0.82 0.82 0.84 0.90 0 0.80 

YIPNB 0.84 0.76 0.71 0.72 0.80 0.80 0.81 0.83 0.93 0 0.80 

SIPNB 0.77 0.72 0.70 0.78 0.76 0.80 0.83 0.84 0.91 1 0.79 

MSIPNB 0.76 0.72 0.66 0.67 0.68 0.75 0.73 0.75 0.80 9 0.72 

Serious Injury 

YSNB 0.48 0.51 0.59 0.73 0.73 0.78 0.70 0.63 0.59 0 0.64 

YIPNB 0.48 0.52 0.60 0.71 0.75 0.75 0.72 0.63 0.59 0 0.64 

SIPNB 0.48 0.62 0.59 0.72 0.76 0.76 0.63 0.57 0.58 0 0.63 

MSIPNB 0.41 0.46 0.51 0.61 0.60 0.62 0.60 0.55 0.51 9 0.54 
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Table 5: Prediction Comparison of Models (RMSE) 

Injury 

Severity 
Year 
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Count (# of 

times a 

model 

offered best 

fit across the 

years) 

Average 

across years 

No Injury 

YSNB 23.20 25.80 26.70 30.38 30.52 28.75 31.62 33.51 33.86 0 29.37 

YIPNB 23.02 24.45 26.72 28.21 30.14 28.71 33.17 34.87 33.68 1 29.22 

SIPNB 22.92 26.18 27.23 28.48 30.06 29.40 31.98 33.31 33.51 1 29.23 

MSIPNB 23.17 24.64 25.81 27.48 29.01 28.29 30.48 32.29 32.40 7 28.17 

Minor Injury 

YSNB 4.63 5.87 5.62 6.34 6.74 6.83 7.25 7.90 8.39 2 6.62 

YIPNB 4.60 5.45 5.68 6.31 6.67 6.88 7.19 8.01 8.41 3 6.58 

SIPNB 4.82 5.49 5.75 6.13 6.81 6.88 7.17 7.77 8.32 3 6.57 

MSIPNB 4.75 5.60 6.06 6.31 6.89 6.96 7.21 7.80 8.16 1 6.64 

Non-

Incapacitating 

Injury 

YSNB 3.66 3.28 3.37 3.51 3.78 3.93 3.80 4.18 4.54 3 3.78 

YIPNB 3.70 3.25 3.37 3.50 3.80 3.97 3.84 4.22 4.47 1 3.79 

SIPNB 3.68 3.24 3.36 3.52 3.75 3.96 3.84 4.19 4.49 2 3.78 

MSIPNB 3.79 3.23 3.43 3.57 3.75 3.99 3.83 4.14 4.46 4 3.80 

Serious 

Injury 

YSNB 1.15 1.32 1.63 2.43 2.73 2.27 1.99 1.75 1.58 5 1.87 

YIPNB 1.15 1.33 1.63 2.43 2.71 2.27 1.96 1.76 1.58 6 1.87 

SIPNB 1.15 1.33 1.63 2.42 2.74 2.27 1.98 1.74 1.59 5 1.87 

MSIPNB 1.21 1.37 1.73 2.54 2.93 2.35 2.00 1.78 1.61 0 1.95 
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Finally, incorporating unobserved heterogeneity within spline model improves the prediction 

further, particularly for property damage and minor injury crashes while the prediction 

performance dropped slightly for non-incapacitating injury and serious injury crashes. The reader 

would note that this small drop in prediction performance is not unexpected. In multivariate model 

development, in the presence of a very small number of variables, adding an independent variable 

might improve the model for all dependent variables. However, adding a small number of 

unobserved heterogeneity variables (3-4) in a model with over 100 variables, it is not surprising 

that there are some trade-offs in predictive performance across dependent variables 

The traditional year specific framework (YSNB) and the spline model with unobserved 

effects are also compared by conducting a correct classification analysis. Using observed crash 

counts for each severity level, the holdout sample zones (3699) were divided into four quartiles 

based on the crash numbers. Similarly, using the predicted counts from the YSNB and MSIPNB 

models, we created the four quartiles again, and the percentage of correctly classified TAZs within 

each group was calculated. The error margin for prediction window is extended to 20% of the 

mean. Suppose if the range is [20-30], we use the 20% of the mean value (5) and build a 

corresponding crash bin as [15-35]. If prediction from the model for [20-30] falls within [15-35] 

we label it as correct and false otherwise.  

 

 
 

Figure 3. Classification Comparison for Two Models (YSNB and MSIPNB) 

  

It is evident from Figure 3 that the proposed framework outperformed the traditional model 

in 15 out of 20 instances. Further, as the parameter variation trends are estimated, the proposed 

spline model has the potential to forecast crashes for future years. We tested the model for 

predicting crash frequencies across the different severity levels for the year 2021. The spline model 
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with unobserved heterogeneity was able to predict crash frequency class around 55-78% on 

average across different severity levels of crashes. 

 

5 CONCLUSION 

Multivariate frameworks effectively handle the influence of observed and unobserved factors 

across multiple dependent variables for a single instance of data. However, the recent pooled 

multivariate crash severity prediction models are unable to identify specific parameters exhibiting 

statistically discernible differences over time and lack a process for future model application. The 

current research proposed a novel approach, labelled the mixed spline indicator pooled model, that 

offered a significant enhancement of current approaches to capture temporal instability. The 

proposed entails carefully creating additional independent variables that allow us to measure 

parameter slope changes over time and can be easily integrated into existing methodological 

frameworks. The modeling exercise is conducted using the Traffic Analysis Zone (TAZ) level 

crash records from Central Florida for the years 2011 to 2019 considering a comprehensive set of 

exogenous variables.  

 In the empirical analysis, we estimated a series of models including the Year Specific 

Negative Binomial model (YSNB), the year indicator pooled negative binomial model (YIPNB), 

and the spline indicator pooled negative binomial model (SIPNB), to address the dimensionality 

challenges of 36 dependent variables representing different severity levels over nine years. The 

comparison exercise revealed the superior performance of the pooled models, which demonstrated 

significantly lower Bayesian Information Criterion (BIC) values compared to the traditional year 

specific NB models. Among the pooled approaches, the SIPNB model exhibited considerable 

enhancement in data fit relative to the YIPNB model, highlighting the benefits of the additional 

flexibility introduced by the spline framework. Notably, the best-performing spline model 

incorporated unobserved heterogeneity along two dimensions: severity level correlation across 

each year and temporal correlations across severity levels. The prediction performances of four 

models were also assessed. The results demonstrated that the proposed spline model consistently 

outperformed its counterparts in terms of predictive accuracy across all dimensions. Moreover, a 

correct classification analysis revealed that the proposed framework consistently outperformed the 

traditional year specific model in the majority of the instances. The findings support the 

applicability and potential of the spline model in forecasting crashes for future years, with the 

model achieving an average prediction accuracy of around 55-78% across different severity levels 

of crashes in the year 2021. Overall, our research highlights the effectiveness of the mixed spline 

indicator pooled model in providing a parsimonious specification with improved data fit. By 

addressing the limitations of previous approaches, our proposed model holds promise for 

advancing the analysis of data from multiple instances, identifying variation in parameter effects 

and improving the accuracy of temporal predictions.  

To be sure, the study is not without limitations. In our analysis, we considered all motorized 

vehicle crashes in the study region and classified them by severity level. The approach implicitly 

ignores the impact of crash type on crash frequency and severity. It might be interesting to consider 

an approach that accommodates for crash type within the modeling framework (see an example 

model system from Bhowmik et al., 2021b). Of course, such a consideration would rapidly 

increase the number of dependent variables (from 36 in our study to 36 * # of crash types) and 

would be significantly more challenging.  
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Appendix 

 

Table A1: Year Specific Negative Binomial Model (YSNB) Results 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Constant 

No Injury 0.404 0.400 0.388 0.542 0.566 0.759 0.786 0.823 0.949 

Minor Injury  -1.200 -1.260 -1.362 -1.089 -0.819 -0.924 -0.767 -0.619 -0.643 

Non-Incapacitating -0.716 -1.111 -1.343 -1.323 -0.887 -0.949 -0.883 -1.255 -0.906 

Serious Injury -2.181 -2.337 -2.338 -1.993 -1.817 -1.572 -1.802 -2.237 -2.391 

Roadway Characteristics 

The proportion of arterial road 

No Injury 0.494 0.160 0.503 0.389 0.353 0.162 0.169 0.216 0.237 

Minor Injury  0.423 0.186 0.474 0.305 0.303 0.251 0.190 0.243 0.279 

Non-Incapacitating 0.540 0.160 0.412 0.363 0.460 0.267 0.238 0.215 0.207 

Serious Injury 0.555 -- 0.722 0.546 0.625 0.385 0.237 0.165 0.280 

The proportion of divided road 

No Injury 0.338 0.463 -- -- -- 0.344 0.337 0.306 0.277 

Minor Injury  0.427 0.545 -- 0.183 0.182 -- 0.254 0.357 0.348 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Intersection density 

No Injury -- -- -0.094 -0.079 -0.102 -0.168 -0.177 -0.145 -0.133 

Minor Injury  -- -- -0.094 -0.071 -0.131 -0.176 -0.168 -0.173 -0.139 

Non-Incapacitating -- -- -0.068 -0.079 -0.074 -0.127 -0.131 -0.102 -0.111 

Serious Injury -- -- -- -- -- -- -- -- -- 

Average speed 

No Injury -- -- -0.124 -0.150 -0.213 -0.152 -0.196 -0.168 -0.209 

Minor Injury  -- -- -0.130 -0.107 -0.244 -0.137 -0.221 -0.251 -0.204 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 

AADT 

No Injury 0.089 0.112 0.203 0.210 0.221 0.197 0.212 0.188 0.186 

Minor Injury  0.089 0.123 0.240 0.210 0.224 0.233 0.229 0.220 0.200 

Non-Incapacitating 0.066 0.133 0.171 0.197 0.135 0.177 0.158 0.162 0.155 

Serious Injury 0.068 0.136 0.109 0.122 0.124 0.101 0.094 0.122 0.142 

Percentage of heavy vehicles 

No Injury -0.042 -0.037 -0.044 -0.045 -0.032 -0.039 -0.022 -0.014 -0.011 

Minor Injury  -0.038 -0.022 -0.047 -0.049 -0.022 -0.036 -0.013 -- -- 

Non-Incapacitating -0.019 -0.025 -0.03 -0.042 -0.033 -0.044 -0.024 -- -0.017 
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Serious Injury -0.016 -0.039 -0.018 -0.049 -0.054 -0.047 -- -- -0.015 

Land Use Attributes 

The proportion of retail area 

No Injury 1.657 2.134 2.038 1.969 2.224 2.010 1.926 1.931 2.015 

Minor Injury  1.505 1.729 1.602 1.568 1.779 1.782 1.587 1.592 1.617 

Non-Incapacitating 0.985 1.418 1.371 1.122 1.359 1.164 1.223 1.412 1.247 

Serious Injury 0.544 0.955 1.079 0.984 0.980 0.756 0.743 0.972 0.690 

The proportion of residential area 

No Injury -- -- 0.274 -- 0.518 0.528 0.446 0.392 0.494 

Minor Injury  0.268 -- 0.348 -- 0.345 0.459 0.315 0.298 0.312 

Non-Incapacitating -- 0.250 0.222 -- 0.279 0.212 0.252 0.377 -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

The proportion of institutional area 

No Injury -- -- -- -- 0.926 1.084 1.034 0.989 1.132 

Minor Injury  -- -- 0.951 -- 1.146 1.119 0.746 0.788 1.115 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 

TAZ population density 

No Injury 0.117 0.096 0.101 0.124 0.088 0.064 0.072 0.070 0.056 

Minor Injury  0.117 0.091 0.083 0.120 0.085 0.078 0.085 0.075 0.067 

Non-Incapacitating 0.097 0.059 0.077 0.092 0.075 0.068 0.072 0.058 0.082 

Serious Injury 0.102 0.063 0.064 0.098 0.077 0.069 0.051 0.047 0.043 

Proportion of NMT 

No Injury 0.079 0.078 0.075 0.045 0.075 0.094 0.104 0.124 0.142 

Minor Injury  0.080 0.067 0.067 -- 0.065 0.070 0.105 0.111 0.138 

Non-Incapacitating 0.055 0.046 -- -- 0.064 0.062 -- 0.091 0.066 

Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 

No Injury 0.960 0.755 0.737 0.742 0.760 0.737 0.753 0.790 0.743 

Minor Injury  0.555 0.646 0.493 0.516 0.563 0.549 0.485 0.526 0.516 

Non-Incapacitating 0.486 0.481 0.460 0.497 0.543 0.520 0.465 0.465 0.464 

Serious Injury 0.332 0.585 0.632 0.900 0.933 0.896 0.671 0.559 0.483 
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Table A2: Year Indicator Pooled Negative Binomial Model (YIPNB) Results 

 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Constant 

No Injury 0.606 -- -- -- -- -- -- -- -- 

Minor Injury  -1.314 -- -- -- 0.595 0.627 

Non-Incapacitating -1.003 -0.659 -0.907 -1.286 -- -0.783 -0.478 -0.620 -- 

Serious Injury -2.254 -- -- -- -- 0.799 -- -- 

Roadway Characteristics 

The proportion of arterial road 

No Injury 0.417 -0.301 -- -- -0.172 -0.239 -0.196 

Minor Injury  0.329 -0.151 -- -- -- -0.209 -0.157 -- -- 

Non-Incapacitating 0.289 -- -- -- -- -- -- -- -- 

Serious Injury 0.533 -0.401 0.210 -- -- -- -0.314 

The proportion of divided road 

No Injury 0.280 -- -- -- -- -- -- -- -- 

Minor Injury  0.363 -- -0.196 -- -- -- -- 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Intersection density 

No Injury -- -0.074 -0.169 -0.132 

Minor Injury  0.054 -0.139 -0.202 

Non-Incapacitating -- -- -0.064 -0.098 -0.143 -0.124 -0.097 -0.137 

Serious Injury -- -- -- -- -- -- -- -- -- 

Average speed 

No Injury -0.110 -- -- -- -0.084 -- -- -- -- 

Minor Injury  -- -- -- -0.110 -0.197 -0.180 -0.221 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 

AADT 

No Injury 0.108 0.052 0.101 0.091 0.074 

Minor Injury  0.088 0.075 0.099 0.124 

Non-Incapacitating 0.097 0.064 0.099 0.145 0.018 0.110 0.078 0.044 

Serious Injury 0.075 0.049 0.026 0.074 0.086 -- -- 0.053 

Percentage of heavy vehicles 

No Injury -0.040 -- -- -- -- -- 0.017 0.028 

Minor Injury  -0.033 -- -0.019 -- -- -- -0.019 

Non-Incapacitating -0.028 -- -- -- -- -- -- 0.017 -- 

Serious Injury -0.015 -0.025 -- -0.028 -- 0.012 -- 
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Land Use Attributes 

The proportion of retail area 

No Injury 2.043 -- -- -- -- -- -- -- -- 

Minor Injury  1.663 -- -- -- -- -- -- -- -- 

Non-Incapacitating 1.375 -- -- -- -- -- -- -- -- 

Serious Injury 0.858 -- -- -- -- -- -- -- -- 

The proportion of residential area 

No Injury 0.329 -- -- -- -- 0.241 -- -- 0.221 

Minor Injury  0.315 -- -- -- -- -- -- -- -- 

Non-Incapacitating 0.287 -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

The proportion of institutional area 

No Injury -0.427 -- -- 0.961 1.240 1.570 1.367 1.665 

Minor Injury  -- -- 0.952 -- 1.102 0.692 1.193 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 

TAZ population density 

No Injury 0.088 -- -- -- -- -0.021 -- -- -0.023 

Minor Injury  0.114 -0.038 -- -0.037 

Non-Incapacitating 0.078 -0.022 -- -- -- -- -- -- -- 

Serious Injury 0.096 -0.033 -- -- -0.022 -0.053 

Proportion of NMT 

No Injury 0.089 -- -- -- -- -- -- -- -- 

Minor Injury  0.087 -- -- -0.055 -- -- -- -- -- 

Non-Incapacitating 0.057 -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 

No Injury 0.970 -0.173 -0.220 -0.176 -0.221 

Minor Injury  0.527 0.124 -- -- -- -- -- -- -- 

Non-Incapacitating 0.468 -- -- -- -- -- -- -- -- 

Serious Injury 0.339 0.276 0.572 0.341 0.219 0.150 
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Table A3: Spline Indicator Pooled Negative Binomial Model (SIPNB) Results 

 

Definition 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Constant 

No Injury 0.486 -0.740 0.363 

Minor Injury  -1.213 1.111 0.209 

Non-Incapacitating -0.911 0.965 

Serious Injury -2.199 1.886 0.538 -0.463 

Roadway Characteristics 

The proportion of arterial road 

No Injury 0.469 -0.784 0.547 -0.269 

Minor Injury  0.489 -0.791 0.510 -0.272 0.081 

Non-Incapacitating 0.548 -0.825 0.272 

Serious Injury 0.537 -0.914 0.845 -0.477 -0.154 0.288 

The proportion of divided road 

No Injury 0.428 -0.539 0.130 

Minor Injury  0.302 -0.793 0.532 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Intersection density 

No Injury -- -0.083 0.085 -0.067 0.058 

Minor Injury  0.055 -0.172 0.099 

Non-Incapacitating -0.017 

Serious Injury -- -- -- -- -- -- -- -- -- 

Average speed 

No Injury -0.033 0.032 -0.028 

Minor Injury  -- -- -0.155 0.144 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Traffic Characteristics 

AADT 

No Injury 0.089 -0.086 

Minor Injury  0.076 -0.079 

Non-Incapacitating 0.068 0.042 -0.104 -0.009 

Serious Injury 0.072 -0.110 0.065 -0.041 0.036 

Percentage of heavy vehicles 

No Injury -0.044 0.048 

Minor Injury  -0.031 0.027 0.020 -0.011 

Non-Incapacitating -0.011 0.017 

Serious Injury -0.018 0.035 -0.050 0.033 0.051 -0.059 
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Land Use Attributes 

The proportion of retail area 

No Injury 1.677 -1.104 -0.621 

Minor Injury  1.590 -1.580 

Non-Incapacitating 1.300 -1.281 

Serious Injury 0.513 -0.552 

The proportion of residential area 

No Injury 0.097 -0.112 

Minor Injury  0.048 

Non-Incapacitating 0.252 -0.245 

Serious Injury -- -- -- -- -- -- -- -- -- 

The proportion of institutional area 

No Injury -0.564 0.828 

Minor Injury  -- 0.379 -0.340 

Non-Incapacitating -- -- -- -- -- -- -- -- -- 

Serious Injury -- -- -- -- -- -- -- -- -- 

Sociodemographic Characteristics 

TAZ population density 

No Injury 0.108 -0.114 

Minor Injury  0.131 -0.185 0.069 -0.025 

Non-Incapacitating 0.075 -0.075 

Serious Injury 0.102 -0.147 0.060 -0.026 

Proportion of NMT 

No Injury 0.060 -0.053 

Minor Injury  0.085 -0.100 0.034 

Non-Incapacitating 0.051 -0.049 

Serious Injury -- -- -- -- -- -- -- -- -- 

Overdispersion Parameter 

No Injury 0.960 -1.161 0.200 

Minor Injury  0.574 -0.582 

Non-Incapacitating 0.477 -0.480 

Serious Injury 0.699 -0.699 
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Note summarizing the number of model estimations 

 

In this section, we briefly summarize the number of model estimations and corresponding 

pair-wise tests required in the Alnawmasi and Mannering, 2023 and Dzinyela et al., 2024 approach 

for temporal stability analysis.  

Consider data is compiled for N years. For each variable, across the years, the number of 

variable impacts is anywhere between 0 (insignificant) and N (significant for every year). 

models. For example, for variable AADT the number of models to be tested for each dependent 

variable are as follows: 

AADT has no impact across all years and/or AADT different across all years (N) [unconstrained 

models by year] NC1 

AADT – different for N-2 years and same for two years [the two common years can be 

anywhere] NC2 

AADT – different for N-3 years and same for three years NC3 

… 

AADT - same across all years – 1 model [Constrained model] NCN 

So, the total number of models to be estimated is NC1+ NC2    …. NCN= 2N - 1 

If N = 10; the number of model estimations for one independent variable is 1023. Now, 

one could argue that, with multiple independent variables and dependent variables (4 in our case), 

the number will definitely be higher.  


