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ABSTRACT 

While several approaches exist for data imputation, these approaches are not commonly applied in 

transportation. The current paper is geared towards assisting transportation researchers and practitioners in 

developing models using datasets with missing data. The study begins with a data simulation exercise 

evaluating different solutions implemented for missing data. The dimensions considered in our analysis 

include: the nature of independent variables, different types of missing variables, different shares of missing 

values, multiple data sample sizes and evaluation of single imputation (SI), multiple imputation (MI) and 

complete case data (CCD) approach. The comparison is conducted by adopting the appropriate inference 

process for MI approach with multiple realizations. From the simulation exercise, we find that the MI 

approach consistently performs better than SI approach. Among various realizations, MI approach with five 

realizations is selected based on our results. The MI approach with five realizations is compared with the 

CCD approach under different conditions using model fit measures and parameter marginal effects. In the 

presence of a small share of missing data, for larger datasets, the results suggest that it might be beneficial 

to develop a CCD model by dropping observations with missing values as opposed to developing 

imputation models. However, when the share of missing data warrants variable exclusion, it is important 

and even necessary that multiple imputation approach be employed for model development. In the second 

part of the paper, based on our findings, we implemented the MI approach for real empirical datasets with 

missing values for four discrete outcome variables.  

 
Keywords: Missing value, Data imputation, Multiple imputation, Data simulation 
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BACKGROUND 

Transportation econometric model development is an important tool for researchers and practitioners across 

domains such as transportation safety, travel behavior, emerging transportation technology adoption, and 

traffic engineering. These econometric models are employed to determine the relationship between a 

dependent variable of interest (or multiple dependent variables) and a suite of independent variables. The 

development of these model systems relies on available data from public and private agencies. A common 

issue faced in the development of these models is related to missing information for independent variables. 

In public or private datasets, several reasons influence data unavailability for independent variables. First, 

in data collection efforts respondents might be unwilling to provide information for certain attributes (such 

as household income). Second, in several empirical contexts, data might be available only for the chosen 

alternative and is unavailable for all other alternatives (such as level of service measures for travel mode). 

Third, in complex data collection efforts such as naturalistic driving data or smartphone data collection, 

data can be missing due to technological issues (such as lost Cell/GPS connection) or privacy concerns 

(such as preserving the privacy of respondents). Finally, missing data can also occur due to respondent 

errors, and data transfer errors.  

Several simplifications are applied to develop models in the presence of missing data in practice. 

First, the records with missing data are excluded from model development exercise. The process might 

seem innocuous in cases where missing data represent a small share (say <2%). However, in cases where 

several independent variables are affected these small percentages across the variables could result in 

substantially larger share of records to be removed. Also, the elimination of records with missing data can 

possibly result in larger standard errors for parameter estimates (1). Second, the variables with missing data 

are excluded from the analysis. The approach is employed when data missing is a significant share of the 

observations (such as above 30%) and/or there is reason to consider that missing data is not a truly random 

occurrence and is closely tied to the dependent variable or other independent variables. In these cases, the 

analyst is introducing misspecification in the model by eliminating the variable. Finally, the researchers can 

address the missing data problem by imputing data for these missing variables and then develop 

econometric models. While there is extensive literature in econometrics proposed and developed by Rubin 

and colleagues to address missing data related issues, we have found majority of transportation modeling 

approaches adopting the preceding two methods (2–8). 

To be sure, research efforts have developed frameworks where imputation techniques were 

considered for model development (9–12). However, these approaches do not always systematically 

consider the potential uncertainty associated with imputation in their framework (as noted by Rubin and 

colleagues). Several approaches consider model development with a single imputation i.e., the missing data 

is imputed only once for each missing record. The imputation is achieved either employing a simple 

approach (such as mean or mode imputation) or a complex approach (such as using a regression model 

approach to generate the missing value). In both approaches a single imputation is considered to represent 

the missing value for the corresponding record and generate a full dataset. However, this process ignores 

the potential uncertainty associated with the imputation process (Rubin and his colleagues in several articles 

discussed this in great detail in (2, 4, 6–8, 13). According to Rubin 1988 (6), approaches that employ single 

imputation and develop econometric models as if the imputed data creates a complete dataset systematically 

underestimate uncertainty in the data. Thus, the models developed with single imputation can result in 

incorrect inferences. Rubin and colleagues proposed techniques to improve inference from missing data 

using Multiple Imputation (MI) i.e., each missing record is expected to have multiple realizations with each 

realization resulting in one complete dataset. However, in these approaches, the complexity increases in 

terms of model inference as each realization results in one model. The analyst will need to employ inference 

approaches to generate parameter estimates (coefficient and standard error) from all imputed datasets.  

The current research effort is geared toward evaluating and offering insights on imputation 

processes for datasets with missing data within a discrete choice modeling framework. Several research 

efforts (such as (14–16)) evaluated various imputation approaches for different types of missing values in 

discrete outcome models. While these studies focused on different approaches, it is also imperative to 

evaluate different dimensions of the problem including different types of missing values, share of missing 
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values and nature of the variable(s) with missing values that require data imputation. In this study, we 

conduct a two-pronged analysis. First, we build on earlier research and evaluate the applicability of the MI 

approach proposed in literature employing a data simulation exercise. A dataset with a known data 

generation process (DGP) will allow us to create missing data with certain assumptions and test how 

different imputation approaches of varying complexity perform in terms of model inference. The 

dimensions considered in our analysis include: (a) the nature of missing independent variables including 

continuous and categorical variables, (b) different types of missing variables (Missing Completely At 

Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR)), (c) different shares 

of missing values, (d) multiple data sample sizes and (e) single imputation (SI) approach, multiple 

imputation (MI) (with varying number of imputation realizations) and complete case data (CCD) approach 

(dropping records with missing values). The comparison of these imputation approaches will allow us to 

identify the complexity appropriate for applied research. Second, based on our findings we implement the 

superior approach in practice for real empirical datasets. In the empirical analysis we consider various 

discrete outcome modeling frameworks addressing four transportation safety variables including (a) crash 

prone segment selection, (b) crash prone intersection selection, (c) crash type and (d) crash severity.  

The remainder of the paper is organized as follows. In the next section, a review of literature 

employing imputation in transportation is described while positioning the current study. The simulation 

experiment, the data generation and model estimation findings are presented in the subsequent section. The 

following section provides a description of empirical datasets with missing data that are employed for model 

development after imputation. Finally, the last section concludes the paper and identifies future directions 

of research.  

 

LITERATURE REVIEW 

Application of MI is very common in econometrics since first proposed by Rubin (8). In several studies 

Rubin and colleagues utilized the MI approach to tackle the issue of survey nonresponses (2, 3, 5–7, 17). 

In recent years, application of MI for missing values is common in different domains of research, such as 

political science (18), medical science (19) and social economics (20).  

Several research studies have examined data imputation approaches in transportation literature. The 

research has mainly proceeded in two directions. The first stream of research is geared towards comparing 

the performance of different imputation techniques in generating missing data. The approaches tested 

include mean/mode imputation or interpolation (10) least squares-based methods (21), latent variable 

approach (9, 22), Fuzzy C-means imputation (23), principal component analysis (24), K-means clustering 

(25), K-nearest neighborhood approach (26), tensor-based traffic volume imputation (27), graph aggregate 

generative adversarial network approach (28), deep learning based algorithms (29), support vector machine 

(11, 21), hot deck approach (30), multivariate imputation using chained equations (31), decision tree 

methodology (32), joint multivariate approaches (33), convolution neural networks (21) and inverse 

probability weighting (34).  

Of particular relevance to the current study, the second stream of research studies focus on using 

imputed data for model development. The dimensions investigated include travel mode choice behavior 

(35), active transportation (36), transportation safety (9, 37), bike-sharing system (38), and parking facility 

(12). In these studies, the number of datasets generated for imputation range from 1 (Single Imputation) to 

100 (Multiple Imputation). The studies cited above that considered more than 1 dataset did employ relevant 

techniques for generating inferences using parameters from all datasets. However, several studies in 

transportation have avoided considering MI approaches because of the inherent complexity. For example, 

Budhwani et al. (11) stated in their study that MI is computationally burdensome with challenges in data 

generation and inference process. 

 

Current Study 

The current study is motivated toward clarifying the value of MI approach for missing data in model 

estimation and employing it for empirical application. The paper employs a two-pronged approach to 

address these objectives. First, the paper employs a data simulation experiment to compare how model 
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parameter retrieval varies with SI and MI approaches. Using a multinomial logit model dependent variable, 

the experimental design explores the influence of missing values in the independent variables along these 

dimensions: (a) type of missing variables including missing completely at random (MCAR), missing at 

random (MAR),  and missing not at random (MNAR) values, (b) for continuous and categorical variables, 

(c) different shares of missing values (10%, 20% and 30%), (d) multiple sample sizes (500, 1000 and 2000). 

The experiment compared the performance of three approaches –SI, MI and CCD (removing missing value 

records). The data simulation results are compared using (a) model fit measures (log likelihood 

improvement) and (b) true parameter retrieval ability as determined from differences in marginal effects 

relative to the true model.  

Second, drawing on the conclusions of the experimental design, the research study employed the 

appropriate method for empirical datasets. The case study consists of four datasets including (a) estimation 

of crash prone segment (MNL model), (b) estimation of crash prone intersection (MNL model), (c) 

estimation of different crash types (MNL model) and (d) estimation of crash severity (ordered logit model). 

Different categories of independent variables including - roadway and traffic characteristics, crash 

characteristics, vehicle characteristics, environmental characteristics and driver’s demographic 

characteristics are employed in these modeling frameworks.  

 

DATA SIMULATION AND EXPERIMENT 

 

Data Simulation Approach 

The dataset used for the simulation experiment is synthesized using a MNL model with a discrete variable 

of three alternatives and four exogenous variables. The simulation approach is described below: 

Let, the number of alternatives in the simulated data is 𝑚 (𝑚 = 1, 2, 3) can be represented as a, b, 

and c; 𝑥𝑣 are the exogenous variables where 𝑣 = 1, 2, 3, 4; 𝑥1 is a continuous generic variable, 𝑥2 𝑎𝑛𝑑 𝑥3 

are continuous alternative specific variables, and 𝑥4 is a categorical dummy variable. Considering 

alternative – a as the base, the choice of alternative was synthesized using the following utility equations: 

 

𝑈𝑎 = 𝛽2𝑥2𝑎 + 𝛽3𝑥3𝑎 + 𝜀1                                                                                                                                          (1) 

𝑈𝑏 = 𝛽0𝑏 + 𝛽1𝑏𝑥1 + 𝛽2𝑥2𝑏 + 𝛽3𝑥3𝑏 + 𝛽4𝑏𝑥4 + 𝜀2                                                                                              (2) 

𝑈𝑐  = 𝛽0𝑐 + 𝛽1𝑐𝑥1 + 𝛽2𝑥2𝑐 + 𝛽3𝑥3𝑐 + 𝛽4𝑐𝑥4 + 𝜀3                                                                                              (3) 

 

where, 𝜀𝑚 represents the error in the utility equation which is assumed to be independent and identically 

Gumbel-distributed across the dataset. The alternative with the maximum utility was considered as the 

chosen alternative in the simulated data.  

The variable 𝑥3 and 𝑥4, representing a continuous and categorical variable, are selected as the 

variables of interest to evaluate data imputation. Therefore, three different Standard Deviation (SD)–mean 

ratios (0.25, 0.75, and 1.5) and two different means (0.4, 0.6) are considered while simulating variable 𝑥3 

and 𝑥4 respectively. For each SD–mean ratio (or mean) 30 datasets of 500, 1000, 2000, 5000, and 10,000 

samples were simulated. The simulation results across larger sample sizes are found to be consistent. 

Therefore, to conserve space, the results of the 500, 1000 and 2000-observation samples are presented1. 

The performance of the simulation exercise was conducted based on the parameter retrieval examined 

using: (1) absolute parameter bias and (2) asymptotic standard error (see (39) for similar analysis). The 

results of our simulation exercise are presented in Table 1. In the table, the SD-mean ratio of 𝑥3 is 

considered as 1.5 and mean of 𝑥4 is considered as 0.4. The retrieved mean parameter is calculated as the 

mean of estimated parameter of 30 samples. The absolute percentage bias was computed as 

 
1 The readers should recognize that estimating discrete outcome models implicitly assumes that model parameters 

converge asymptotically. However, depending on the characteristics of the dependent and independent variables, the 

sample size requirements for asymptotic convergence and parameter stability could vary substantially. Interested 

readers can explore earlier work on sample size requirements for their specific dataset following guidelines from 

earlier research (see (44–47)).   
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(|
𝑅𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑 𝑚𝑒𝑎𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−𝑇𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑇𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
| ∗ 100). The asymptotic standard error was computed as the 

standard error of parameter values across the samples. The values presented in Table 1 clearly illustrate that 

the simulation exercise retrieves the parameters with small bias and very small standard errors. The 

simulation experiment was extended for random parameters MNL model by introducing a random 

parameter for 𝛽2 that follows a standard normal error term.  

TABLE 1 Summary of data simulation 

Variables 
Assumed 

mean 

Assumed 

standard 

deviation 

Assumed 

parameter  

Retrieved 

mean 

parameter 

Absolute 

percentage 

bias 

Asymptotic 

standard 

error 

Intercept: b NA NA -1.200 -1.192 0.635 0.070 

Intercept: c NA NA 1.000 1.069 6.923 0.049 

𝑥1 1.50 0.50 
1.000 1.005 0.504 0.039 

0.500 0.476 4.863 0.024 

𝑥2𝑎 1.20 0.50 

-0.500 -0.506 1.195 0.010 𝑥2𝑏 0.70 0.20 

𝑥2𝑐 1.60 1.20 

𝑥3𝑎 1.50 2.25 

-1.300 -1.327 2.100 0.008 𝑥3𝑏 2.50 3.75 

𝑥3𝑐 1.00 1.50 

𝑥4 0.4 NA 
-1.000 -1.031 3.084 0.050 

-1.800 -1.841 2.300 0.041 

 

Comparison Between Single and Multiple Imputation 

The data simulated is employed to compare the performance of SI and MI. We examine the percentage 

error in true parameter retrieval across the two approaches. From the full datasets of different sample sizes 

(500, 1000 and 2000), we create missing variables for continuous variable (𝑥3) and categorical variable 

(𝑥4) randomly, completely randomly and in non-random fashion2 (see (40) for different types of missing 

values) at different percentages (10, 20 and 30). Then, within the datasets with missing records, we impute 

the missing values for continuous and categorical variables based on equations 4 and 5 below: 

 

𝑥𝑣̃ =  𝜇𝑣 +  𝜎𝑣 ∗ 𝑥𝑛𝑜𝑟𝑚                                                                                                                                                (4)   

 

𝑥𝑣̃ = {
 1                𝑖𝑓 𝑥𝑢𝑛𝑖𝑓  ≤  𝜇𝑣 

0               𝑖𝑓 𝑥𝑢𝑛𝑖𝑓  >  𝜇𝑣
                                                                                                                             (5) 

 

where, 𝑥𝑣̃ is the imputed data, 𝜇𝑣 and 𝜎𝑣 are the mean and standard deviation of the non-missing cases of 

the variable 𝑥𝑣; 𝑥𝑛𝑜𝑟𝑚 is a random variable that follows a standard normal distribution 𝑁(0,1) and 𝑥𝑢𝑛𝑖𝑓 

is a uniformly distributed random number in a range [0,1].  

 

 
2 In the simulation experiment, missing completely at random (MCAR) were created by removing specific percentages 

of values from the variable of interest randomly. Missing at random (MAR) data were created in two distinct 

approaches for continuous and categorical variables. For the cases of missing in continuous variable, MAR data were 

created by removing the specific percentages from an ascendingly ordered variable. On the other hand, for the cases 

of missing in categorical variable, MAR data were created by removing specific percentages of values from the largest 

category of the variable of interest. Missing not at random (MNAR) were created by removing the specific percentages 

of values of the variable of interest that correspond to the largest category of the dependent variable.  
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For SI, the parameter inference is straight forward as parameters from one dataset are randomly selected. 

For MI, the parameters retrieved from different number of simulated datasets (5, 10, 15 and 30) are 

compared. MI estimates need to be updated from the parameters from all datasets as follows. 

 

𝛼𝑣̅̅ ̅ =
∑ 𝛼𝑣𝑟

𝑅
𝑟=1

𝑅
                                                                                                                                                              (6) 

𝜇𝑣 =  𝛾𝑣̅ + {(𝑅 + 1)/𝑅} ∗ 𝛿𝑣                                                                                                                                     (7) 

 

where, 𝛼𝑣̅̅ ̅ is the inference imputation estimate for variable 𝑣; 𝛼𝑣𝑟 is the estimate of variable 𝑣 at 𝑟𝑡ℎ 

imputation; 𝜇𝑣 is the associated variance-covariance; 𝛾𝑣̅ is the within-imputation variability, which is equal 

to (∑ 𝛾𝑣𝑟)𝑅
𝑟=1 /𝑅; and 𝛿𝑣is the between-imputation variability, which is equal to (∑ (𝛼𝑣𝑟 −𝑅

𝑟=1 𝛼𝑣̅̅ ̅)(𝛼𝑣𝑟 −
𝛼𝑣)̅̅ ̅̅̅′)/(𝑅 − 1) (see (3) for more description). Now, if 𝛽𝑣 is the true parameter of variable 𝑣 estimated by 

using the simulated dataset before creation of missing cases, the computation of error 𝜔 in parameter 

retrieval will be as follows: 

 

𝜔 = |
𝛼𝑣̅̅ ̅̅ −𝛽𝑣

𝛽𝑣
| ∗ 100%                                                                                                                                                   (8)   

 

The parameter retrieval errors of MCAR, MAR and MNAR imputation at different SD-mean ratio for 

continuous variables and different means for categorical variables offer a similar trend. Therefore, in the 

interest of space, we only present the error percentages for two cases with variable 𝑥3 with a SD-mean ratio 

of 0.75 and variable 𝑥4 with a mean 0.6 in Table 2. From Table 2, we can see that as the share of missing 

values increases the parameter retrieval worsens as expected. Among the various samples presented we can 

also see that the mean error across parameters is the largest for SI (with 1 dataset) and becomes quite stable 

for 5 and above. Further, a comparison between the single and multiple imputations across different sample 

sizes is presented in Figure 1. It is noticeable in the figure that, in the case of datasets with 1000 or 2000 

records, multiple imputation performs slightly better in parameter retrieval than the single imputation. 

However, for a very smaller dataset (N = 500), multiple imputation significantly outperforms single 

imputation. The result supports earlier literature and suggests the adoption of MI with 5 datasets as a 

reasonable solution for modeling exercises.  

 

TABLE 2 Comparison between single and multiple imputation in retrieving true parameter 

Variable 

characteristics 

No of 

repetitions 
Measure 

Parameter value 
Mean 

error 
𝜷𝟏𝒃 𝜷𝟏𝒄 𝜷𝟐 𝜷𝟑 𝜷𝟒𝒃 𝜷𝟒𝒄 

True value 0.99 0.48 -0.50 -1.30 -1.00 -1.77 

Case 1: MCAR in continuous variable 

Standard 

deviation/mean 

= 0.75 and 

10% missing 

value in 

variable 𝑥3 

 

1 (SI) 
𝛼̅ 0.85 0.42 -0.45 -1.03 -0.88 -1.59 

13.23 
𝜔 13.84 12.48 10.06 20.93 12.02 10.04 

5 
𝛼̅ 0.86 0.43 -0.45 -1.04 -0.90 -1.60 

12.31 
𝜔 13.41 10.73 9.82 20.28 9.97 9.66 

10 
𝛼̅ 0.86 0.43 -0.45 -1.04 -0.90 -1.60 

12.16 
𝜔 13.37 10.34 9.80 20.13 9.72 9.59 

15 
𝛼̅ 0.86 0.43 -0.45 -1.04 -0.90 -1.60 

12.11 
𝜔 13.09 10.32 9.81 19.94 9.84 9.66 

30 
𝛼̅ 0.86 0.43 -0.45 -1.04 -0.90 -1.60 

12.08 
𝜔 13.01 10.30 9.82 19.92 9.74 9.69 

Standard 

deviation/mean 

= 0.75 and 

20% missing 

1 (SI) 
𝛼̅ 0.75 0.38 -0.41 -0.85 -0.83 -1.49 

21.13 
𝜔 23.85 19.60 16.42 34.57 16.48 15.82 

5 
𝛼̅ 0.77 0.39 -0.41 -0.83 -0.83 -1.47 

21.21 
𝜔 21.59 18.40 17.10 36.20 16.90 17.09 

10 𝛼̅ 0.78 0.39 -0.41 -0.84 -0.83 -1.47 20.86 
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value in 

variable 𝑥3 

 

𝜔 21.28 18.03 17.00 35.59 16.43 16.80 

15 
𝛼̅ 0.78 0.40 -0.41 -0.84 -0.83 -1.48 

20.78 
𝜔 21.18 17.82 16.93 35.31 16.70 16.74 

30 
𝛼̅ 0.78 0.39 -0.41 -0.84 -0.83 -1.48 

20.85 
𝜔 21.47 18.09 16.89 35.21 16.74 16.71 

Standard 

deviation/mean 

= 0.75 and 

30% missing 

value in 

variable 𝑥3 

 

1 (SI) 
𝛼̅ 0.70 0.37 -0.39 -0.71 -0.78 -1.40 

26.98 
𝜔 28.83 23.68 21.00 45.56 21.71 21.11 

5 
𝛼̅ 0.71 0.37 -0.39 -0.68 -0.77 -1.39 

27.53 
𝜔 28.43 23.01 21.66 47.98 22.36 21.70 

10 
𝛼̅ 0.71 0.37 -0.39 -0.68 -0.78 -1.39 

27.30 
𝜔 28.07 22.57 21.87 47.65 22.18 21.47 

15 
𝛼̅ 0.71 0.37 -0.39 -0.69 -0.78 -1.39 

27.27 
𝜔 28.17 22.39 21.83 47.41 22.27 21.54 

30 
𝛼̅ 0.71 0.37 -0.39 -0.69 -0.78 -1.39 

27.29 
𝜔 28.32 22.72 21.86 47.27 22.09 21.49 

Case 2: MAR in continuous variable 

Standard 

deviation/mean 

= 0.75 and 

10% missing 

value in 

variable 𝑥3 

 

1 (SI) 
𝛼̅ 0.79 0.38 -0.42 -0.96 -0.80 -1.47 

20.16 
𝜔 20.00 21.11 16.00 26.24 20.60 17.03 

5 
𝛼̅ 0.81 0.40 -0.42 -1.00 -0.81 -1.49 

18.11 
𝜔 17.89 17.73 14.57 23.07 19.58 15.84 

10 
𝛼̅ 0.81 0.40 -0.42 -1.00 -0.80 -1.49 

18.12 
𝜔 17.86 17.55 14.59 23.04 19.81 15.87 

15 
𝛼̅ 0.81 0.40 -0.42 -1.00 -0.80 -1.49 

18.24 
𝜔 17.92 17.96 14.62 23.09 19.92 15.92 

30 
𝛼̅ 0.81 0.40 -0.42 -1.00 -0.80 -1.49 

18.24 
𝜔 17.98 17.93 14.65 22.94 19.98 15.95 

Standard 

deviation/mean 

= 0.75 and 

20% missing 

value in 

variable 𝑥3 

 

1 (SI) 
𝛼̅ 0.70 0.35 -0.39 -0.81 -0.76 -1.38 

26.75 
𝜔 28.80 26.94 21.12 37.49 24.14 21.99 

5 
𝛼̅ 0.71 0.36 -0.39 -0.80 -0.76 -1.38 

26.66 
𝜔 27.92 25.60 21.19 38.36 24.73 22.15 

10 
𝛼̅ 0.72 0.36 -0.39 -0.81 -0.76 -1.38 

26.66 
𝜔 27.66 25.64 21.31 38.22 24.95 22.20 

15 
𝛼̅ 0.71 0.36 -0.39 -0.80 -0.75 -1.38 

26.83 
𝜔 28.15 25.79 21.41 38.28 25.10 22.24 

30 
𝛼̅ 0.71 0.36 -0.39 -0.81 -0.75 -1.38 

26.80 
𝜔 27.93 25.86 21.39 38.11 25.27 22.26 

Standard 

deviation/mean 

= 0.75 and 

30% missing 

value in 

variable 𝑥3 

 

1 (SI) 
𝛼̅ 0.66 0.34 -0.37 -0.67 -0.73 -1.32 

31.63 
𝜔 33.35 28.87 25.39 48.61 27.71 25.85 

5 
𝛼̅ 0.67 0.35 -0.37 -0.66 -0.72 -1.32 

31.42 
𝜔 32.55 27.97 25.10 49.10 28.11 25.68 

10 
𝛼̅ 0.67 0.34 -0.37 -0.66 -0.72 -1.32 

31.65 
𝜔 32.63 28.28 25.19 49.42 28.56 25.80 

15 
𝛼̅ 0.67 0.34 -0.37 -0.66 -0.72 -1.32 

31.78 
𝜔 32.72 28.54 25.33 49.67 28.66 25.79 

30 
𝛼̅ 0.67 0.34 -0.37 -0.66 -0.72 -1.32 

31.82 
𝜔 32.72 28.54 25.38 49.55 28.89 25.84 

Case 3: MNAR in continuous variable 

Standard 

deviation/mean 

= 0.75 and 

10% missing 

1 (SI) 
𝛼̅ 0.88 0.44 -0.46 -1.11 -0.86 -1.63 

10.72 
𝜔 11.05 8.87 6.77 14.59 14.81 8.21 

5 
𝛼̅ 0.89 0.45 -0.46 -1.14 -0.91 -1.65 

8.67 
𝜔 9.55 7.46 6.57 12.65 9.04 6.73 

10 𝛼̅ 0.90 0.45 -0.46 -1.15 -0.92 -1.66 8.22 
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value in 

variable 𝑥3 

 

𝜔 9.20 7.47 6.26 11.87 8.16 6.35 

15 
𝛼̅ 0.90 0.45 -0.46 -1.15 -0.92 -1.66 

8.14 
𝜔 9.19 7.64 6.19 11.64 7.99 6.21 

30 
𝛼̅ 0.90 0.45 -0.46 -1.15 -0.92 -1.66 

8.23 
𝜔 9.16 7.66 6.30 11.74 8.16 6.34 

Standard 

deviation/mean 

= 0.75 and 

20% missing 

value in 

variable 𝑥3 

 

1 (SI) 
𝛼̅ 0.82 0.41 -0.44 -1.02 -0.84 -1.58 

15.11 
𝜔 17.04 14.34 10.73 21.49 16.02 11.03 

5 
𝛼̅ 0.81 0.41 -0.44 -0.99 -0.83 -1.56 

16.41 
𝜔 17.96 14.64 12.05 24.22 17.35 12.24 

10 
𝛼̅ 0.81 0.41 -0.44 -1.00 -0.83 -1.56 

16.15 
𝜔 17.84 14.33 11.93 23.62 17.08 12.12 

15 
𝛼̅ 0.81 0.41 -0.44 -1.00 -0.83 -1.56 

16.07 
𝜔 17.80 14.45 11.93 23.23 16.93 12.11 

30 
𝛼̅ 0.81 0.41 -0.44 -1.00 -0.83 -1.56 

15.91 
𝜔 17.63 14.24 11.73 22.97 16.84 12.08 

Standard 

deviation/mean 

= 0.75 and 

30% missing 

value in 

variable 𝑥3 

 

1 (SI) 
𝛼̅ 0.73 0.39 -0.42 -0.90 -0.78 -1.50 

21.45 
𝜔 25.52 19.73 14.81 31.32 22.10 15.21 

5 
𝛼̅ 0.74 0.39 -0.42 -0.85 -0.78 -1.49 

22.21 
𝜔 25.45 18.52 16.11 34.96 22.08 16.16 

10 
𝛼̅ 0.74 0.39 -0.41 -0.86 -0.78 -1.49 

22.04 
𝜔 25.20 18.53 16.23 34.28 21.92 16.10 

15 
𝛼̅ 0.74 0.39 -0.42 -0.86 -0.78 -1.49 

21.96 
𝜔 24.83 18.58 16.16 34.01 22.01 16.20 

30 
𝛼̅ 0.74 0.39 -0.42 -0.86 -0.78 -1.49 

21.93 
𝜔 24.89 18.35 16.08 33.83 22.25 16.21 

Case 4: MCAR in categorical variable 

Mean = 0.60 

and 10% 

missing value 

in variable 𝑥4 

 

1 (SI) 
𝛼̅ 0.98 0.47 -0.49 -1.29 -1.01 -1.65 

3.56 
𝜔 1.59 4.28 1.53 0.84 6.51 6.59 

5 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.98 -1.64 

3.26 
𝜔 1.17 3.21 1.49 0.86 5.64 7.19 

10 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.98 -1.65 

3.21 
𝜔 1.21 3.34 1.43 0.86 5.35 7.06 

15 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.97 -1.64 

3.27 
𝜔 1.27 3.49 1.44 0.86 5.44 7.13 

30 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.97 -1.65 

3.19 
𝜔 1.23 3.29 1.43 0.84 5.31 7.03 

Mean = 0.60 

and 20% 

missing value 

in variable 𝑥4 

 

1 (SI) 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.99 -1.51 

5.60 
𝜔 2.38 5.85 2.66 1.66 6.54 14.52 

5 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.93 -1.50 

5.94 
𝜔 2.22 5.37 2.50 1.74 8.74 15.04 

10 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.93 -1.51 

5.80 
𝜔 2.09 5.39 2.43 1.73 8.32 14.87 

15 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.93 -1.51 

5.76 
𝜔 2.09 5.37 2.39 1.70 8.26 14.76 

30 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.93 -1.51 

5.79 
𝜔 2.11 5.31 2.36 1.69 8.51 14.74 

Mean = 0.60 

and 30% 

missing value 

in variable 𝑥4 

1 (SI) 
𝛼̅ 0.96 0.46 -0.48 -1.27 -0.92 -1.36 

8.45 
𝜔 2.97 6.76 3.84 2.58 11.23 23.34 

5 
𝛼̅ 0.96 0.46 -0.48 -1.27 -0.85 -1.35 

8.73 
𝜔 2.62 5.47 3.59 2.63 14.48 23.59 
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10 

𝛼̅ 0.96 0.46 -0.48 -1.27 -0.86 -1.36 
8.65 

𝜔 2.60 5.59 3.55 2.61 14.15 23.40 

15 
𝛼̅ 0.96 0.46 -0.48 -1.27 -0.85 -1.35 

8.73 
𝜔 2.64 5.48 3.57 2.59 14.59 23.50 

30 
𝛼̅ 0.96 0.46 -0.48 -1.27 -0.86 -1.36 

8.63 
𝜔 2.59 5.52 3.55 2.57 14.22 23.34 

Case 5: MAR in categorical variable 

Mean = 0.60 

and 10% 

missing value 

in variable 𝑥4 

 

1 (SI) 
𝛼̅ 0.97 0.47 -0.49 -1.29 -0.83 -1.51 

6.69 
𝜔 1.63 3.36 1.85 1.42 16.89 14.98 

5 
𝛼̅ 0.97 0.47 -0.49 -1.29 -0.84 -1.53 

6.07 
𝜔 1.35 2.95 1.53 1.30 15.82 13.48 

10 
𝛼̅ 0.97 0.47 -0.49 -1.29 -0.84 -1.53 

5.95 
𝜔 1.25 2.72 1.52 1.26 15.55 13.37 

15 
𝛼̅ 0.97 0.47 -0.49 -1.29 -0.85 -1.54 

5.82 
𝜔 1.24 2.64 1.49 1.22 15.25 13.05 

30 
𝛼̅ 0.97 0.47 -0.49 -1.29 -0.85 -1.54 

5.85 
𝜔 1.24 3.01 1.48 1.20 15.21 12.96 

Mean = 0.60 

and 20% 

missing value 

in variable 𝑥4 

 

1 (SI) 
𝛼̅ 0.96 0.46 -0.48 -1.27 -0.69 -1.30 

11.93 
𝜔 2.77 5.88 3.00 2.46 30.66 26.81 

5 
𝛼̅ 0.97 0.47 -0.48 -1.27 -0.71 -1.32 

11.24 
𝜔 2.21 4.92 2.84 2.31 29.85 25.28 

10 
𝛼̅ 0.97 0.47 -0.48 -1.27 -0.70 -1.32 

11.23 
𝜔 2.02 4.55 2.87 2.30 30.34 25.29 

15 
𝛼̅ 0.97 0.47 -0.48 -1.27 -0.70 -1.33 

11.14 
𝜔 2.03 4.51 2.88 2.26 30.07 25.12 

30 
𝛼̅ 0.97 0.47 -0.48 -1.28 -0.70 -1.33 

11.14 
𝜔 2.10 4.75 2.83 2.22 30.14 24.82 

Mean = 0.60 

and 30% 

missing value 

in variable 𝑥4 

 

1 (SI) 
𝛼̅ 0.95 0.46 -0.48 -1.26 -0.58 -1.10 

16.48 
𝜔 3.66 7.48 4.11 3.47 42.45 37.70 

5 
𝛼̅ 0.96 0.46 -0.48 -1.26 -0.59 -1.13 

15.85 
𝜔 3.16 6.69 4.06 3.33 41.79 36.08 

10 
𝛼̅ 0.96 0.46 -0.48 -1.26 -0.59 -1.13 

15.87 
𝜔 2.99 6.51 4.09 3.34 42.13 36.13 

15 
𝛼̅ 0.96 0.46 -0.48 -1.26 -0.59 -1.13 

15.73 
𝜔 3.05 6.27 4.15 3.31 41.66 35.94 

30 
𝛼̅ 0.96 0.46 -0.48 -1.26 -0.59 -1.13 

15.83 
𝜔 3.12 6.67 4.15 3.31 41.82 35.92 

Case 6: MNAR in categorical variable 

Mean = 0.60 

and 10% 

missing value 

in variable 𝑥4 

 

1 (SI) 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.98 -1.67 

2.70 
𝜔 1.29 3.27 1.06 0.93 3.71 5.94 

5 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.97 -1.64 

2.91 
𝜔 1.15 3.11 1.20 1.04 3.50 7.46 

10 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.97 -1.64 

2.91 
𝜔 1.15 3.24 1.25 1.03 3.35 7.47 

15 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.97 -1.63 

3.02 
𝜔 1.19 3.29 1.34 1.08 3.32 7.91 

30 
𝛼̅ 0.98 0.47 -0.49 -1.29 -0.97 -1.63 

3.07 
𝜔 1.21 3.42 1.40 1.09 3.34 7.96 

Mean = 0.60 

and 20% 

missing value 

in variable 𝑥4 

1 (SI) 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.94 -1.51 

5.83 
𝜔 2.45 5.63 2.49 2.08 7.68 14.67 

5 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.94 -1.48 

5.91 
𝜔 2.30 5.12 2.58 2.17 6.57 16.70 
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10 

𝛼̅ 0.97 0.46 -0.48 -1.28 -0.93 -1.48 
5.81 

𝜔 2.23 5.00 2.56 2.13 6.57 16.36 

15 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.93 -1.48 

5.91 
𝜔 2.25 4.99 2.66 2.16 6.71 16.69 

30 
𝛼̅ 0.97 0.46 -0.48 -1.28 -0.93 -1.47 

5.96 
𝜔 2.26 5.02 2.72 2.19 6.57 16.97 

Mean = 0.60 

and 30% 

missing value 

in variable 𝑥4 

 

1 (SI) 
𝛼̅ 0.96 0.46 -0.48 -1.27 -0.91 -1.33 

8.73 
𝜔 3.35 7.35 3.58 2.98 10.40 24.71 

5 
𝛼̅ 0.96 0.45 -0.48 -1.26 -0.91 -1.30 

8.90 
𝜔 3.41 7.16 3.70 3.07 9.14 26.90 

10 
𝛼̅ 0.96 0.45 -0.48 -1.26 -0.91 -1.31 

8.76 
𝜔 3.29 7.04 3.65 3.04 9.28 26.27 

15 
𝛼̅ 0.96 0.45 -0.48 -1.26 -0.91 -1.30 

8.89 
𝜔 3.30 7.06 3.80 3.08 9.35 26.77 

30 
𝛼̅ 0.96 0.46 -0.48 -1.26 -0.91 -1.30 

8.84 
𝜔 3.26 7.04 3.87 3.09 9.00 26.80 
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Figure 1 Comparison between single and multiple imputations across sample sizes
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Comparison between imputed data and complete case data model 

After establishing that MI with 5 imputations offers improved results relative to SI approach, we focus on 

the comparison of the MI with CCD. In multiple empirical contexts, researchers develop a model with CCD 

by either dropping all records with missing values (row elimination) or dropping the variable completely 

(column elimination). The most common approach to missing data employs either a row elimination or 

column elimination approach. In contexts with a small share of missing values (<2%), it is common to 

employ row elimination while column elimination is employed when data for a variable is missing for a 

large share (>20% missing). The current exercise is designed to examine when MI approaches are more 

useful compared to using CCD approaches. The MI and CCD model performances are compared based on 

log-likelihood improvement and parameter retrieval error. The log-likelihood (LL) improvement is 

computed as follows:  

 

𝐿𝐿 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  𝐿𝐿𝑄3 − 𝐿𝐿𝑄2                                                                                                                          (9) 

 

where, 𝐿𝐿𝑄2 and 𝐿𝐿𝑄3 are the log-likelihood of the CCD model and imputed data model respectively. The 

reader would note that comparing MI and CCD approach with row elimination offers a challenge due to 

the difference in the number of records across the dataset. To address this, we evaluate the model fit using 

CCD parameters on the full dataset. As the CCD model is developed on a subset of records (after removing 

missing records), the LL from this model is not directly comparable to an imputation model generated on 

the full sample. So, we use the CCD model and predict the model outcome for all records in the full dataset 

to generate an equivalent log-likelihood. This eliminates the difference in number of records and provides 

a way to see how effective CCD is on the full dataset. The CCD case with column elimination does not 

require any adaptation.  

 

The parameter retrieval of the CCD and imputed data models are calculated as follows:  

 

𝜑𝑄2 =  𝑎𝑏𝑠 (
(𝛽𝑣,𝑄2 −  𝛽𝑣,𝑄1)

𝛽𝑣,𝑄1
) ∗ 100                                                                                                                 (10) 

𝜑𝑄3 =  𝑎𝑏𝑠 (
(𝛽𝑣,𝑄3 −  𝛽𝑣,𝑄1)

𝛽𝑣,𝑄1
) ∗ 100                                                                                                                 (11) 

 

where, 𝜑𝑄2 and 𝜑𝑄3 are the errors in parameter retrieval by the CCD and imputed data model respectively, 

𝛽𝑣,𝑄1, 𝛽𝑣,𝑄2, and 𝛽𝑣,𝑄3 are the vectors of parameters of 𝑣 variables for original data, CCD, and imputed data 

model respectively. The simulation analysis and experiment were conducted using RStudio software. 

Average log-likelihood (LL) improvements are shown in Figure 2 and 3, and percentage error in 

parameter retrieval is presented in Table 3. In generating the results, we tested several possible variations 

of the independent variables (SD/mean or mean). However, as all of the different variations offered similar 

results, we present results for only one variation. Table 3 presents the results for SD/mean = 0.75 for 

continuous variable and mean = 0.6 for categorical variable. The results for missing values created in a 

random manner (MAR) in both continuous and categorical data are shown in the table.  

 Several observations can be drawn from Figure 2 and 3 and Table 3. For continuous variables, we 

observe that CCD model with row elimination provides better model fit than imputed data model. On the 

other hand, CCD model with column elimination consistently underperforms the imputed model. For 

categorical variables, it can be observed in Figure 3 that for the MCAR and MNAR cases, with the increase 

in missing share the imputed model performs better than the CCD (by row elimination) model. In terms of 

column elimination, across all scenarios, imputed data models outperform CCD models. The model fit 

improvement of the imputed data model over CCD model across different sample sizes are shown in Figure 

4. It can be observed that the difference of log-likelihood between the two models are found to increase 

with an increase in sample size.  



14 

 

Further, to assess the variation of imputation bias with varying sample sizes, the parameter retrieval 

efficiency of the imputed data model was compared with that of the CCD model considering different 

sample sizes and the outcomes are shown in Figure 5. It is noticeable that, in the cases of categorical 

variable, across all three types of missing values, multiple imputation provides less biased parameters. 

However, in the case of continuous variable, data imputation performs better for the case of MCAR in a 

smaller dataset (N=500) and MNAR in a smaller dataset with large share of missing values.  

In addition to comparing model fit and parameter retrieval efficiency measures, it is also useful to 

examine how marginal effects of the variables vary across the models from different datasets. A comparison 

between the efficiency of the CCD model and the imputed data model in retrieving the marginal effects of 

the original data model are summarized in Figure 6. The results offer interesting insights. For continuous 

variables, we observe that complete case data models perform better than imputed data models for the MAR 

scenarios. However, with increasing sample size, the difference between complete case data and imputed 

data models becomes small. In the MCAR context, imputed data model outperforms CCD model for smaller 

dataset with small share of missing values while in the MNAR scenario, the differences between CCD and 

imputed models are small. For categorical variables, we observe that imputed data models consistently 

outperform CCD models. For larger samples, both approaches offer very similar errors. These results offer 

important implications for empirical research. From our analysis, we notice that when the sample sizes are 

1000 and above, CCD approach performs slightly better than the multiple imputation approach for 

continuous variables at all three missing percentages. For categorical variables, multiple imputation offers 

better results relative to CCD approach for all three missing percentages. However, the differences become 

smaller for datasets with more than 1000 records. Hence, for large datasets (>1000 records), it might be 

beneficial to simply develop a CCD model with row elimination as opposed to developing imputation 

models. However, when the share of missing data warrants column elimination, it is important and even 

necessary that multiple imputation approach be employed for model development. Finally, the parameter 

retrieval efficiency of the imputed data model and the CCD (both by row and column elimination) model 

in the random parameters MNL framework is evaluated in our study. The percentages error in parameter 

retrieval of the fixed parameters MNL model and random parameters MNL model are presented in Table 4 

and 5 for all the scenarios. The new parameter in the random parameters MNL model is considered based 

on one additional mixing parameter (standard deviation of 𝛽2). The results indicate a consistency in findings 

identified in the previous analysis across all scenarios considered in our experiment. The behavior of the 

imputed data model and the CCD model in both modeling frameworks is very similar. It can be observed 

that, for both cases, the CCD model with row elimination provides better performance than the imputed 

data model while the CCD model with column elimination consistently underperforms the imputed model. 

This implies that the conclusions drawn from our simulation experiment with fixed parameters MNL model 

are reliable for random parameter variants of the frameworks.   

 

TABLE 3 Comparison between imputed data and complete case data model in retrieving true 

parameter 

𝜷 

Percentage error in coefficient retrieval at different percentage of missing values 

True 

parameter 

Imputed data 

model parameter 

CCD model 

parameter 

Error in 

imputed model 

Error in CCD 

model 

Row elimination or imputation for MAR in continuous variable 

SD/mean = 0.75 and 10% missing value 

β1b 0.99 0.81 0.98 17.89 5.59 

β1c 0.48 0.40 0.48 17.73 10.08 

β2 -0.50 -0.42 -0.49 14.57 2.86 

β3 -1.30 -1.00 -1.30 23.07 1.13 

β4b -1.00 -0.81 -0.98 19.58 5.39 

β4c -1.77 -1.49 -1.77 15.84 2.59 

Mean error 18.11 4.60 
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SD/mean = 0.75 and 20% missing value 

β1b 0.99 0.71 0.99 27.92 8.67 

β1c 0.48 0.36 0.48 25.60 13.57 

β2 -0.50 -0.39 -0.49 21.19 3.67 

β3 -1.30 -0.80 -1.30 38.36 1.77 

β4b -1.00 -0.76 -0.97 24.73 8.22 

β4c -1.77 -1.38 -1.76 22.15 3.80 

Mean error 26.66 6.62 

SD/mean = 0.75 and 30% missing value 

β1b 0.99 0.67 0.99 32.55 12.43 

β1c 0.48 0.35 0.48 27.97 23.99 

β2 -0.50 -0.37 -0.50 25.10 4.53 

β3 -1.30 -0.66 -1.30 49.10 2.12 

β4b -1.00 -0.72 -0.99 28.11 13.65 

β4c -1.77 -1.32 -1.78 25.68 7.27 

Mean error 31.42 10.66 

Column elimination or imputation for MAR in continuous variable 

SD/mean = 0.75 and 10% missing value 

β1b 0.99 0.81 0.56 17.89 43.35 

β1c 0.48 0.40 0.31 17.73 34.08 

β2 -0.50 -0.42 -0.33 14.57 33.57 

β3 -1.30 -1.00 0.00 23.07 100.00 

β4b -1.00 -0.81 -0.68 19.58 32.25 

β4c -1.77 -1.49 -1.22 15.84 31.49 

Mean error 18.11 45.79 

SD/mean = 0.75 and 20% missing value 

β1b 0.99 0.71 0.56 27.92 43.35 

β1c 0.48 0.36 0.31 25.60 34.08 

β2 -0.50 -0.39 -0.33 21.19 33.57 

β3 -1.30 -0.80 0.00 38.36 100.00 

β4b -1.00 -0.76 -0.68 24.73 32.25 

β4c -1.77 -1.38 -1.22 22.15 31.49 

Mean error 26.66 45.79 

SD/mean = 0.75 and 30% missing value 

β1b 0.99 0.67 0.56 32.55 43.35 

β1c 0.48 0.35 0.31 27.97 34.08 

β2 -0.50 -0.37 -0.33 25.10 33.57 

β3 -1.30 -0.66 0.00 49.10 100.00 

β4b -1.00 -0.72 -0.68 28.11 32.25 

β4c -1.77 -1.32 -1.22 25.68 31.49 

Mean error 31.42 45.79 

Row elimination or imputation for MAR in categorical variable 

Mean = 0.6 and 10% missing value 

β1b 0.99 0.97 0.99 1.35 5.77 

β1c 0.48 0.47 0.47 2.95 9.00 

β2 -0.50 -0.49 -0.49 1.53 2.29 

β3 -1.30 -1.29 -1.30 1.30 0.65 
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β4b -1.00 -0.84 -1.00 15.82 4.51 

β4c -1.77 -1.53 -1.76 13.48 1.41 

Men error 6.07 3.94 

Mean = 0.6 and 20% missing value 

β1b 0.99 0.97 0.99 2.21 6.28 

β1c 0.48 0.47 0.47 4.92 11.37 

β2 -0.50 -0.48 -0.49 2.84 3.31 

β3 -1.30 -1.27 -1.31 2.31 1.28 

β4b -1.00 -0.71 -0.99 29.85 7.56 

β4c -1.77 -1.32 -1.76 25.28 2.92 

Mean error 11.24 5.45 

Mean = 0.6 and 30% missing value 

β1b 0.99 0.96 0.97 3.16 9.80 

β1c 0.48 0.46 0.47 6.69 17.32 

β2 -0.50 -0.48 -0.49 4.06 5.01 

β3 -1.30 -1.26 -1.31 3.33 1.88 

β4b -1.00 -0.59 -0.99 41.79 11.77 

β4c -1.77 -1.13 -1.76 36.08 3.31 

Mean error 15.85 8.18 

Column elimination or imputation for MAR in categorical variable 

Mean = 0.6 and 10% missing value 

β1b 0.99 0.97 0.93 1.35 5.91 

β1c 0.48 0.47 0.44 2.95 11.18 

β2 -0.50 -0.49 -0.46 1.53 7.97 

β3 -1.30 -1.29 -1.22 1.30 6.22 

β4b -1.00 -0.84 0.00 15.82 100.00 

β4c -1.77 -1.53 0.00 13.48 100.00 

Mean error 6.07 38.55 

Mean = 0.6 and 20% missing value 

β1b 0.99 0.97 0.93 2.21 5.91 

β1c 0.48 0.47 0.44 4.92 11.18 

β2 -0.50 -0.48 -0.46 2.84 7.97 

β3 -1.30 -1.27 -1.22 2.31 6.22 

β4b -1.00 -0.71 0.00 29.85 100.00 

β4c -1.77 -1.32 0.00 25.28 100.00 

Mean error 11.24 38.55 

Mean = 0.6 and 30% missing value 

β1b 0.99 0.96 0.93 3.16 5.91 

β1c 0.48 0.46 0.44 6.69 11.18 

β2 -0.50 -0.48 -0.46 4.06 7.97 

β3 -1.30 -1.26 -1.22 3.33 6.22 

β4b -1.00 -0.59 0.00 41.79 100.00 

β4c -1.77 -1.13 0.00 36.08 100.00 

Mean error 15.85 38.55 
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Figure 2 Log-likelihood improvement by data imputation for missing values in continuous variables 
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Figure 3 Log-likelihood improvement by data imputation for missing values in categorical variables 

 



19 

 

 
Figure 4 Comparison of log-likelihood improvements across sample sizes 
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Figure 5 Comparison of the parameter retrieval efficiency between complete case data and imputed data model 
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Figure 6 Comparison of the marginal effect retrieval efficiency between complete case data and imputed data model
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TABLE 4 Parameter retrieval efficiency of fixed parameters MNL model (Sample size = 2000) 

𝜷 

Percentage error in coefficient retrieval at different percentage of missing values  

True 

parameter 

Imputed data 

model 

parameter 

CCD model 

parameter 

Error in 

imputed model 

Error in CCD 

model 

Case 1a: Row elimination or imputation of MCAR in continuous variable 

β1b 0.99 0.77 1.04 21.59 8.88 

β1c 0.48 0.39 0.50 18.40 7.76 

β2 -0.50 -0.41 -0.52 17.10 5.27 

β3 -1.30 -0.83 -1.34 36.20 3.22 

β4b -1.00 -0.83 -1.05 16.90 8.27 

β4c -1.77 -1.47 -1.83 17.09 4.09 

Mean error 21.21 6.25 

Case 1b: Column elimination or imputation of MCAR in continuous variable 

β1b 0.99 0.77 0.56 21.59 43.35 

β1c 0.48 0.39 0.31 18.40 34.08 

β2 -0.50 -0.41 -0.33 17.10 33.57 

β3 -1.30 -0.83 0.00 36.20 100.00 

β4b -1.00 -0.83 -0.68 16.90 32.25 

β4c -1.77 -1.47 -1.22 17.09 31.49 

Mean error 21.21 45.79 

Case 2a: Row elimination or imputation of MAR in continuous variable 

β1b 0.99 0.71 0.99 27.92 8.67 

β1c 0.48 0.36 0.48 25.60 13.57 

β2 -0.50 -0.39 -0.49 21.19 3.67 

β3 -1.30 -0.80 -1.30 38.36 1.77 

β4b -1.00 -0.76 -0.97 24.73 8.22 

β4c -1.77 -1.38 -1.76 22.15 3.80 

Mean error 26.66 6.62 

Case 2b: Column elimination or imputation of MAR in continuous variable 

β1b 0.99 0.71 0.56 27.92 43.35 

β1c 0.48 0.36 0.31 25.60 34.08 

β2 -0.50 -0.39 -0.33 21.19 33.57 

β3 -1.30 -0.80 0.00 38.36 100.00 

β4b -1.00 -0.76 -0.68 24.73 32.25 

β4c -1.77 -1.38 -1.22 22.15 31.49 

Mean error 26.66 45.79 

Case 3a: Row elimination or imputation of MNAR in continuous variable 

β1b 0.99 0.82 0.99 17.38 4.63 

β1c 0.48 0.41 0.47 14.42 14.70 

β2 -0.50 -0.43 -0.50 12.63 3.22 

β3 -1.30 -0.98 -1.31 24.53 1.39 

β4b -1.00 -0.83 -0.99 17.10 3.77 

β4c -1.77 -1.56 -1.78 12.23 2.56 

Mean error 16.38 5.04 
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Case 3b: Column elimination or imputation of MNAR in continuous variable 

β1b 0.99 0.82 0.56 17.38 43.35 

β1c 0.48 0.41 0.31 14.42 34.08 

β2 -0.50 -0.43 -0.33 12.63 33.57 

β3 -1.30 -0.98 0.00 24.53 100.00 

β4b -1.00 -0.83 -0.68 17.10 32.25 

β4c -1.77 -1.56 -1.22 12.23 31.49 

Mean error 16.38 45.79 

 

TABLE 5 Parameter retrieval efficiency of random parameters MNL model (Sample size = 2000) 

𝜷 

Percentage error in coefficient retrieval at different percentage of missing 

values  

True 

parameter 

Imputed data 

model 

parameter 

CCD model 

parameter 

Error in 

imputed 

model 

Error in 

CCD model 

Case 1a: Row elimination or imputation of MCAR in continuous variable 

β1b 0.94 0.76 0.98 18.94 14.34 

β1c 0.49 0.41 0.48 19.33 10.57 

β2 1.50 1.21 1.55 19.53 3.14 

SD of β2 0.80 0.56 0.80 31.97 7.39 

β3 -1.31 -0.84 -1.34 35.71 2.50 

β4b -0.98 -0.79 -1.02 18.77 10.70 

β4c -1.82 -1.50 -1.86 17.75 4.17 

Mean error 23.14 7.54 

Case 1b: Column elimination or imputation of MCAR in continuous variable 

β1b 0.94 0.76 0.58 18.94 37.28 

β1c 0.49 0.41 0.34 19.33 34.30 

β2 1.50 1.21 1.02 19.53 32.05 

SD of β2 0.80 0.56 0.49 31.97 39.42 

β3 -1.31 -0.84 0.00 35.71 100.00 

β4b -0.98 -0.79 -0.63 18.77 35.34 

β4c -1.82 -1.50 -1.25 17.75 31.25 

Mean error 23.14 44.24 

Case 2a: Row elimination or imputation of MAR in continuous variable 

β1b 0.94 0.70 0.94 26.07 10.41 

β1c 0.49 0.38 0.49 24.78 12.54 

β2 1.50 1.15 1.50 23.23 2.96 

SD of β2 0.80 0.51 0.79 37.80 8.85 

β3 -1.31 -0.80 -1.30 38.45 2.54 

β4b -0.98 -0.72 -0.98 26.35 16.29 

β4c -1.82 -1.41 -1.83 22.59 5.74 

Mean error 28.47 8.48 

Case 2b: Column elimination or imputation of MAR in continuous variable 

β1b 0.94 0.70 0.58 26.07 37.31 

β1c 0.49 0.38 0.34 24.78 34.29 
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β2 1.50 1.15 1.02 23.23 31.94 

SD of β2 0.80 0.51 0.47 37.80 42.73 

β3 -1.31 -0.80 0.00 38.45 100.00 

β4b -0.98 -0.72 -0.63 26.35 35.28 

β4c -1.82 -1.41 -1.25 22.59 31.19 

Mean error 28.47 44.68 

Case 3a: Row elimination or imputation of MNAR in continuous variable 

β1b 0.94 0.81 0.94 14.04 3.42 

β1c 0.49 0.44 0.47 12.28 11.18 

β2 1.50 1.39 1.51 7.35 2.05 

SD of β2 0.80 0.78 0.84 5.12 7.40 

β3 -1.31 -1.07 -1.32 18.05 1.40 

β4b -0.98 -0.86 -0.97 13.04 6.07 

β4c -1.82 -1.65 -1.82 9.23 2.93 

Mean error 11.30 4.92 

Case 3b: Column elimination or imputation of MNAR in continuous variable 

β1b 0.94 0.81 0.58 14.04 37.27 

β1c 0.49 0.44 0.34 12.28 34.32 

β2 1.50 1.39 1.02 7.35 32.09 

SD of β2 0.80 0.78 0.49 5.12 40.45 

β3 -1.31 -1.07 0.00 18.05 100.00 

β4b -0.98 -0.86 -0.63 13.04 35.35 

β4c -1.82 -1.65 -1.25 9.23 31.27 

Mean error 11.30 44.39 

 
EMPIRICAL APPLICATION OF MULTIPLE IMPUTATION 

The research team processed data compiled by the Strategic Highway Research Program-2 (SHRP2) 

including Naturalistic driving data, and Roadway Information Database (RID). The RID crash data from 

2011 through 2013 was used for crash prone segment and intersection selection model.  The data was 

obtained from 6 US cities – Bloomington, State College, Tampa Bay, Buffalo, Durham, and Seattle. The 

dataset contains the record of 857 segment crashes with 73,383 segments, and 129 intersection crashes with 

10,782 intersections. Further, the Crash Report Sampling System (CRSS) database was employed in our 

analysis for crash type and severity model. The database contains a record of 197,092 crashes with 362,596 

vehicles and 361,792 drivers from the entire USA.  

From the data sources, the research team recognized the presence of a large set of variables with 

missing records. Given the unique mechanism employed to collect the data, the research team wanted to 

maximize the consideration of as many records as possible. This was the main motivation for our research 

into MI approaches. In this section, we document our efforts in estimation models for different components 

of SHRP2 and CRSS data with missing records. Drawing on the insights from our data simulation, we 

employ MI approaches for developing models for (a) crash prone segment selection, (b) crash prone 

intersection selection, (c) crash type and (d) crash severity.  

Descriptive statistics of the variables utilized in the models are presented in Figure 7 and 8, and the 

variables with missing cases are listed in Figure 9. The missing values are generated following the Equation 

4 and 5 for continuous and categorical variable respectively. As established in the simulation experiment, 

a multiple imputation approach of five repetitions is utilized for data imputation and subsequent inference. 

Most of the variables with missing values are imputed considering their statistical parameters (mean and 

standard deviation). However, in case of a few variables, the imputation is performed considering their 
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distribution under different categories of another control variable(s). A list of control variables is provided 

in Figure 9. None refers to no control variable for the variable. The data imputation procedures are 

customized for the different levels of the control variables i.e., each attribute level is associated with a 

different rule for data imputation as explained in Figure 10 and 11. 

 

 
Figure 7 Distribution of continuous variables 
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Figure 8 Distribution of categorical dummy variables  
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Figure 9 Variables with missing cases along with the corresponding control variable(s) 

 

 
Figure 10 Data imputation procedure for continuous variable 
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Figure 11 Data imputation procedure for categorical variable 

 

MODEL ESTIMATION RESULT 

 
Model Fit Measure 

The four variables of interest were: (1) crash prone segment, (2) crash prone intersection, (3) crash type, 

and (4) crash severity. Among the four variables of interest, we intended to compare the MI with 5 

realizations to the relevant CCD model. However, due to the presence of a higher percentage of missing 

data, and the presence of small number of relevant independent variables no model considering CCD is 

developed for crash prone segment and intersection selection. So, we estimated the following models: (1) 

crash prone segment selection model using imputed data, (2) crash prone intersection selection model using 

imputed data, (3) crash type model using (a) CCD by column elimination and (b) imputed data, and (4) 

crash severity model using (a) CCD by column elimination, and (b) imputed data. The Bayesian Information 

Criterion (BIC) values of the crash prone segment selection, crash prone intersection selection, crash type, 

and crash severity model employing imputed (CCD) data are respectively as follows: 4,821(N/A), 

584(N/A), 82,196(85,369), and 94,991(95,332). The comparison of BIC values indicates that at any discrete 

choice modeling framework addition of variables through multiple imputation outperforms CCD in terms 

of model fit.  

In the interest of space, we do not describe the results of all models and focus on crash type and 

severity models (see Hoover et al. (41) for preliminary model discussion).  

 

Model Results 

 
Crash Type Model 

The alternatives for the crash type dependent variable include: rearend-, head on-, angle-, sideswipe-, fixed 

object-, non-fixed object- and non-motorized crash. Prior to the estimation of crash type MNL model, three 

independent variables - Intersection location, urban area, rainy weather and cold weather variables – were 

imputed 5 times to obtain 5 dataset realizations. The model parameters from the 5 estimations are 

consolidated to generate inferences and results are presented in Table 6. Interested readers can find the 

crash type model results using the complete case data approach in the appendix (Table A1).  
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Roadway and Traffic Characteristics  

Among the highway and traffic characteristics 6 variables were found to have significant impact in the 

model. The results regarding interstate highways reveal that interstate highways are more likely to 

experience sideswipe crashes and less likely to experience head-on, angle and non-motorized crashes. Crash 

type was also found to be affected by different days of week and hours of day. It is noticeable that, on the 

weekdays the likelihood of rear-end and sideswipe crashes occurring is higher than other crash types. 

Further, in both morning- and evening- peak period the probability of the occurrence of rear-end crash is 

the highest. The reader would note that, the impact of time on the crash type indicates that increased traffic 

volume on the roadways increases the likelihood of occurring rear-end crashes. Intersection is found to 

offer a positive impact on head-on and angle crashes. The result regarding head-on crashes seems to be 

counter-intuitive but a possible reason could be the stoppings of the left-turning vehicles at the left-most 

lane(s), that might collide with the through traffic from the opposite direction (see (39) for similar result). 

Again, rural areas are found to experience less rear-end and sideswipe crashes. However, there are no 

significant differences among the probabilities of head-on, angle, fixed object, non-fixed object and non-

motorized crashes in rural areas.  

 

Environmental Characteristics 

Among the variables regarding environmental characteristics only weather condition was found to offer a 

significant impact. It is noticeable that, on rainy days the likelihood of experiencing crashes with fixed 

object is higher than any other crashes, whereas the probability of occurring crashes with non-fixed object 

is the lowest. On the other hand, cold weather conditions increase the likelihood of experiencing rear-end 

crashes than other crash types. It is also noticeable that there is no difference among the impacts of cold 

weather on head-on, angle, sideswipe, fixed object, non-fixed object, and non-motorized crashes. The 

reader would note that MI approach allowed us to represent the impact of the intersection and weather 

variables.  

 

TABLE 6 Estimation of crash type model (Imputed data model) 

Parameter 

Rearend Head on Angle Sideswipe 
Fixed 

object 

Non-fixed 

object 

Non-

motorized 

Estimate 

(t- value) 

Estimate 

(t- value) 

Estimate 

(t- value) 

Estimate 

(t- value) 

Estimate 

(t- value) 

Estimate 

(t- value) 

Estimate 

(t- value) 

Intercept -- 
-2.10 

(-23.91) 

-0.80 

(-16.66) 

-0.78 

(-20.27) 

0.01 

(0.34) 

-0.63 

(-10.98) 

-0.54 

(-10.55) 

Roadway and Traffic Characteristics 

Interstate highway (base: No) 

Yes -- 
-1.98 

(-7.00) 

-1.79 

(-14.51) 

0.14 

(2.31) 
-- 

-0.40 

(-4.85) 

-1.79 

(-14.63) 

Days of week (base: weekend) 

Weekday -- 
-0.35 

(-4.03) 

-0.16 

(-3.78) 
-- 

-0.63 

(-13.81) 

-0.57 

(-9.53) 

-0.24 

(-4.68) 

Hours of day (base: Off-peak) 

Morning 

peak 
-- 

-0.21 

(-1.92) 

-0.20 

(-3.81) 

-0.20 

(-3.23) 

-0.47 

(-7.59) 

-0.54 

(-6.32) 

-0.43 

(-6.53) 

Evening 

peak 
-- 

-0.26 

(-2.85) 

-0.18 

(-4.06) 

-0.31 

(-5.76) 

-0.82 

(-14.59) 

-0.59 

(-8.29) 

-0.38 

(-7.10) 

Location (base: Urban) 

Rural 
-0.60 

(-16.59) 
-- -- 

-0.54 

(-10.03) 
-- -- -- 

Intersection (base: No) 
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Yes -- 
0.37 

(4.71) 

1.20 

(29.25) 

-0.52 

(-9.40) 

-1.24 

(-21.70) 

-1.41 

(-17.88) 

-0.22 

(-4.75) 

Environmental Characteristics 

Weather condition (base: Clear weather and others) 

Rainy 

weather 
-- -- -- 

-0.22 

(-2.79) 

0.48 

(7.72) 

-0.30 

(-2.77) 

-0.19 

(-2.38) 

Cold 

weather 

0.13 

(3.32) 
-- -- -- -- -- -- 

 

Crash Severity Model 

The outcome levels considered in the ordered logit crash severity model include: no apparent injury, 

possible injury, suspected minor injury and suspected serious injury including fatality. Several 

variables were identified to have large shares of missing values for the crash severity dataset. Prior to 

estimation, the missing records were imputed and five realizations were generated. The model results were 

consolidated to obtain the crash severity estimation results are presented in Table 7. Interested readers can 

view the crash severity model results for complete case data approach in the Appendix (Table A2).  

 

Roadway and Traffic Characteristics 

Several highway and traffic characteristics related attributes were found to be significant in our model. 

Among them, weekdays offered a negative association with crash severity. Again, injury risk is also lower 

during morning and evening peak period. The result implies that, traffic congestion and lower traffic speed 

during weekdays and peak periods tend to lower the injury severity (see (42) for similar result). The model 

result for intersection crashes reveals a higher injury risk propensity to the drivers. Further, the positive 

association of speed limit reflects that injury severity is higher for crashes occurring on high-speed facilities 

(see (43) for similar result).  

 

Crash Characteristics 

The model output regarding the manner of collisions reveals that there is no significant difference among 

the injury severity of rear-end crashes, non-motorized crashes, and crashes with non-fixed objects. The 

results indicate that head-on crashes, angle crashes, and crashes with fixed objects are found to be more 

severe than rear-end crashes, non-motorized crashes, and crashes with non-fixed objects (see (43) for 

similar result). Sideswipe collisions are associated with the least severity.  

 

Vehicle Characteristics 

Only one variable – vehicle type – was found to offer significant impact in the model. Drivers in utility 

vehicles and all types of trucks (light, medium, and heavy) are observed to experience less severe crashes 

than the drivers in automobiles, buses, and other vehicles. The model result follows the trend described in 

earlier literature (43).  

 

Environmental Characteristics 

Several environmental characteristics were tried in this study, however, only weather conditions were 

noticed to have significant impact on crash severity. It was found that crashes in clear weather conditions 

are more severe than crashes in rainy, cloudy, and other weather conditions. The output reflects that higher 

speed of vehicles in clear weather and/or cautious driving in inclement weather are possible explanations 

for this result.    

 

Demographic Characteristics 

Among several demographic characteristics, drivers’ age and gender provided significant impact in the 

model. The result for age indicates that young drivers (age < 25 years old) are less likely to sustain severe 
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injuries compared to drivers from other age categories (see (43)). On the other hand, male drivers are likely 

to sustain severe crashes than female drivers (the finding is documented in earlier literature (42)).   

 

TABLE 7 Estimation of crash severity model (Imputed data model) 

Parameters Coefficient T-value 

Threshold 

a 0.46 9.53 

b 1.62 32.92 

c 2.62 52.45 

Roadway and Traffic Characteristics 

Days of week (base: weekend) 

Weekday -0.17 -7.51 

Hours of day (base: Off-peak) 

Morning peak -0.12 -4.42 

Evening peak -0.11 -4.70 

Intersection (base: No) 

Yes 0.04 1.72 

Speed limit 0.01 14.00 

Crash Characteristics 

Manner of collisions (base: Rear end, crash with non-fixed object, non-motorized crash) 

Head on 1.32 24.94 

Sideswipe -0.85 -24.04 

Crash with fixed object 0.48 11.26 

Angle 0.42 17.99 

Vehicle Characteristics 

Vehicle type (base: automobile, bus, and others) 

Utility vehicles -0.10 -4.05 

Light truck -0.14 -5.48 

Medium and heavy truck -0.58 -9.61 

Environmental Characteristics 

Weather condition (base: Rainy, cloudy and others) 

Clear weather 0.18 7.56 

Demographic Characteristics 

Age (base: Others) 

Less than 25 years old -0.14 -5.79 

Gender (base: Female) 

Male 0.11 5.55 

 

CONCLUSIONS 

The development of transportation econometric model relies on available data from public and private 

agencies. In these datasets, several reasons influence data unavailability for independent variables. The 

elimination of records with missing data can possibly result in larger standard errors for parameter estimates 

of the variables. Further the analyst may introduce a misspecification in the model by eliminating the 

variable with missing data from the analysis. Therefore, the researchers can address the missing data 

problem by imputing data for these missing variables and then develop econometric models. While 
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approaches for imputation are documented in econometric literature, their application in transportation 

research is limited.  

The current study is motivated toward clarifying the value of Multiple Imputation approach for 

missing data in model estimation and employing it for empirical application. The paper employs a data 

simulation experiment comparing the performance of–single imputation, MI with different realizations and 

complete case data (CCD) approach (removing missing value records). The data simulation results are 

compared using (a) model fit measures (log likelihood improvement) and (b) the true parameter retrieval 

ability. From our analysis, we conclude that MI approach with 5 realizations outperforms the SI approach. 

Further, in comparing the MI approach with CCD approach, we notice that when the sample sizes are 1000 

and above, CCD approach performs slightly better than the multiple imputation approach for continuous 

variables at all three missing percentages. For categorical variables, multiple imputation offers better results 

relative to CCD approach for all three missing percentages. However, the differences become smaller for 

datasets with more than 1000 records. Hence, for large datasets (>1000 records), in the presence of a small 

share of missing data, it might be beneficial to simply develop a CCD model by dropping observations with 

missing values as opposed to developing imputation models. However, when the share of missing data 

warrants variable exclusion, it is important and even necessary that multiple imputation approach be 

employed for model development. 

Drawing on the conclusions of the experimental design, the research study employed MI for 

empirical datasets. The case study consisted of four datasets including (a) estimation of crash prone segment 

(MNL model), (b) estimation of crash prone intersection (MNL model), (c) estimation of different crash 

types (MNL model) and (d) estimation of crash severity (ordered logit model). The comparison of BIC 

values indicates that for any discrete choice modeling framework addition of variables through multiple 

imputation outperforms CCD in terms of model fit. 

To be sure, the research conducted is not without limitations. First, in our study our emphasis has 

been on evaluating the impact of imputation on model development and not on the actual data imputation 

procedures. It would be interesting to conduct the analysis with advanced imputation approaches to see if 

the conclusions from our work are reproduced. The consideration of different imputation approaches and 

alternative formulations (such as latent variables approach) will require substantial investigation and need 

to be examined in future research efforts to build on the current study (see (9, 13) for details on these 

approaches). Second, in our analysis we did not consider the potential for missing records in the dependent 

variable and/or independent variables. The simultaneous presence of missing records in dependent and 

independent variables can increase the complexity of the analysis conducted and is an avenue for future 

research. Third, the current research examined the presence of one missing variable – the analysis can be 

extended to multiple missing variables. Fourth, while it was encouraging to see that imputation approaches 

provide similar quality of results in fixed parameters and random parameters MNL models, it is important 

to note that we did not test the impact of mixing on the variable with missing data. We believe this is a 

complex issue beyond the scope of our paper. Finally, the analysis can also be extended to other 

econometric models such as generalized linear models, Bayesian models, and structural equation models. 
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Appendix 

 

TABLE A1 Estimation of crash type model (Complete case data model) 

Parameters 

Rear 

end 
Head on Angular Sideswipe 

Fixed 

object 

Non-fixed 

objects 

Non-

motorized  
Estimate 

(t- value) 
Estimate 

(t- value) 
Estimate 

(t- value) 
Estimate 

(t- value) 
Estimate 

(t- value) 
Estimate 

(t- value) 
Estimate 

(t- value) 

Intercept 
- 

- 

-1.50 

(-13.59) 

0.71 

(13.73) 

-0.79 

(-12.77) 

1.25 

(21.51) 

0.96 

(14.10) 

-0.39 

(-5.40) 

Roadway and Traffic Characteristics 

Number of 

lanes 

- 

- 

-0.11 

(-4.23) 

-0.24 

(-18.98) 

-0.03 

(-1.83) 

-0.44 

(-27.67) 

-0.55 

(-28.08) 

-0.28 

(-13.66) 

Interstate 

highway 

- 

- 

-2.14 

(-8.46) 

-2.39 

(-21.49) 

0.32 

(5.89) 

- 

- 

-0.24 

(-3.34) 

-2.16 

(-11.65) 

Weekdays 
0.15 

(4.00) 

-0.15 

(-1.78) 

- 

- 

- 

- 

-0.55 

(-13.01) 

-0.40 

(-7.75) 

- 

- 

Morning 

peak 

- 

- 

- 

- 

- 

- 

- 

- 

-0.23 

(-4.23) 

-0.50 

(-6.91) 

-0.21 

(-2.61) 

Evening 

peak 

- 

- 

-0.25 

(-2.90) 

-0.20 

(-4.85) 

-0.29 

(-5.67) 

-0.83 

(-15.82) 

-0.71 

(-11.65) 

-0.38 

(-5.67) 

 

TABLE A2 Estimation of crash severity model (Complete case data model) 

Parameters Estimates T-Value 

Thresholds 

a 0.95 23.88 

b 1.90 46.98 

c 2.92 67.85 

Demographic characteristics 

Age (Base: 25 years and more) 

Less than 25 years -0.30 -11.15 

Roadway and Traffic Characteristics 

Base: Other roadways 

Interstate highways 0.24 6.30 

Number of lanes 0.03 4.34 

Days of week (base: weekend) 

Weekday -0.08 -2.90 

Hours of day (base: off-peak) 

Morning peak -0.05 -1.56 

Evening peak -0.15 -5.65 

Crash characteristics 

Manner of collisions (base: Rear end) 

Head on 1.67 31.26 



34 

 

Side swipe -0.39 -9.43 

Angular crash 0.59 22.10 

Crash with fixed objects 1.55 39.10 

Crash with non-fixed objects 0.85 16.99 

Non-motorized crash -2.58 -13.87 

Vehicle characteristics 

Vehicle type (Base: Automobiles, motorcycle and bus 

Utility vehicles -0.31 -11.23 

Light truck -0.52 -16.71 

Medium and heavy truck -1.73 -20.38 
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