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ABSTRACT 1 

Using data from a developing country, the current study develops a copula-based joint modeling 2 

framework to study crash type and driver injury severity as two dimensions of the severity process. 3 

To be specific, a copula-based multinomial logit model (for crash type) and generalized ordered 4 

logit model (for driver severity) is estimated in the study. The data for our analysis is drawn from 5 

Bangladesh for the years of 2000 to 2015. Given the presence of multiple years of data, we develop 6 

a novel spline variable generation approach that facilitates easy testing of variation in parameters 7 

across time in crash type and severity components. A comprehensive set of independent variables 8 

including driver and vehicle characteristics, roadway attributes, environmental and weather 9 

information, and temporal factors are considered for the analysis. The model results identify 10 

several important variables (such as driving under the influence of drug and alcohol, speeding, 11 

vehicle type, maneuvering, vehicle fitness, location type, road class, road geometry, facility type, 12 

surface quality, time of the day, season, and light conditions) affecting crash type and severity 13 

while also highlighting the presence of temporal instability for a subset of parameters. The superior 14 

model performance was further highlighted by testing its performance using a holdout sample. 15 

Further, an elasticity exercise illustrates the influence of the exogenous variables on crash type and 16 

injury severity dimensions. The study findings can assist policy makers in adopting appropriate 17 

strategies to make roads safer in developing countries.     18 

 19 

Keywords: Developing country, Driver injury severity, Crash type, Copula model, Temporal 20 

heterogeneity.  21 
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1 BACKGROUND 1 

Road traffic crashes disproportionately affect low and middle-income countries of the world. It is 2 

estimated that with only 60% of the world's registered vehicles, these countries account for 93% 3 

of the crash fatalities in the world (WHO, 2019). It is not surprising that per-capita death rates in 4 

these countries is more than three times higher than per-capita death rates in high-income countries 5 

(WHO, 2019). While high-income countries have shown some success in reducing the number of 6 

road deaths, low and middle-income countries are still in the initial stages of developing remedial 7 

solutions. The current study contributes to literature on driver injury severity analysis using data 8 

from Bangladesh.  9 

In Bangladesh, a developing country in south-east Asia, 3-5% of national’s gross domestic 10 

products (GDP) are lost due to road traffic crashes (Pervaz et al., 2022; WHO, 2019). The unique 11 

driver behavior, roadway characteristics, traffic composition, traffic flow, and roadway 12 

environment contribute to a fundamentally different system compared to the systems in developed 13 

countries. It is common for roadways designed as limited access facilities to be operated with 14 

severe encroachments due to markets or roadside settlements. Further, heterogenous, and mixed 15 

traffic flow results in complex interactions (compared to developed countries). Compounding the 16 

challenges, the recent economic growth and rising per capita income have induced rapid 17 

motorization in the country while road safety management and interventions have not been 18 

progressed at the same pace.  19 

 20 

1.1 Earlier Research 21 

Road safety research, similar to other developing countries, is hindered in Bangladesh due to 22 

financial constraints and underreporting of crash data. In Bangladesh, police record the crash 23 
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information once a crash occurs and store the data in the Micro-Computer Accident Analysis 1 

Package (MAAP5) database. This database is later shared with different road safety organizations 2 

of the country. As the police reported database provides detailed crash information, several road 3 

safety research have been conducted relying on this database. Most of earlier research efforts using 4 

these data described the crash and casualty characteristics of pedestrians (Hoque and Mahmud, 5 

2010; Pervaz et al., 2016), motorcyclists (Akter and Pervaz, 2019; Pervaz et al., 2020a), bicyclists 6 

(Hoque et al., 2008), children (Hoque et al., 2009), car involved crashes (Ahsan et al., 2011), urban 7 

crashes (Pervaz et al., 2020b; Uddin et al., 2021), highway crashes (Hoque et al., 2020, 2014) and 8 

overall safety situation of the country (Pervaz et al., 2022) employing descriptive analytics. Many 9 

studies also focused on the hazardous road location identification (Hoque and Mahmud, 2009; 10 

Mahmud et al., 2011) and safety ratings of roadways (Hoque et al., 2016). While these studies 11 

identify important crash characteristics and trends, the impacts of different attributes on crashes 12 

cannot be obtained from these studies.  13 

A small set of studies applied statistical and econometric models. In modeling crash 14 

frequency analysis, studies applied Poisson regression (Hadiuzzaman et al., 2016; Sadeek and 15 

Rifaat, 2020) and negative binomial regression models (Hadiuzzaman et al., 2016; Islam et al., 16 

2022) to estimate the impact of roadway, traffic and sociodemographic characteristics on crash 17 

counts. In the realm of injury severity studies, several research efforts were conducted. Researchers 18 

examined crash injury severity (Anowar et al., 2014; Hossain et al., 2022; Kamruzzaman et al., 19 

2014), pedestrian injury severity (Hasanat-E-Rabbi et al., 2022; Saha et al., 2021; Sarkar et al., 20 

2011; Zafri et al., 2020), motorcyclist injury severity (Rahman et al., 2021), unconventional and 21 

transit vehicle occupant severity (Saha et al., 2023, 2022). These efforts considered severity 22 

outcome as a dichotomous variable (usually fatal and non-fatal injury), or a polytomous variable 23 
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(with categorical outcomes including fatal, major injury, minor injury, and no-injury). For 1 

dichotomous variables, as expected, researchers predominantly applied binary probit/logit models 2 

(Hossain et al., 2022; Rahman et al., 2021; Sarkar et al., 2011; Zafri et al., 2020). For polytomous 3 

variable, research efforts mostly applied ordered probit model (Barua and Tay, 2010; Hasanat-E-4 

Rabbi et al., 2022; Kamruzzaman et al., 2014), partial proportional odds model (Anowar et al., 5 

2014; Hasanat-E-Rabbi et al., 2022), and multinomial logit model (Hasanat-E-Rabbi et al., 2022). 6 

Advanced models including latent segmentation-based logit models were also employed for injury 7 

severity analysis (Saha et al., 2023, 2022, 2021). In these advanced studies, the authors captured 8 

the unobserved heterogeneity by estimating differential impacts of a variable in higher-risk and 9 

lower-risk segments while also estimating the heterogeneity in means of a variable within a 10 

segment in the model system.  11 

The significant contributing factors to injury severity outcome reported in these studies are 12 

road user characteristics (such as gender, age, activities, restraint use, alcohol and drug suspicion), 13 

vehicle characteristics (such as single-vehicle, trucks, buses, cars, baby taxies, auto rickshaws, 14 

tractors, non-motorized vehicles, motorcycles and vehicle defects), roadway attributes (such as 15 

rural area, regional roads, city roads, undivided roads, two-way streets, non-intersection, flat roads, 16 

police control, stop control, and dry pavement), environmental and weather factors (such as 17 

weekend, off-peak periods, nighttime, dawn and dusk, night-lighted, night-unlighted, rainy season 18 

and winter season), built environment and land-use characteristics (such as bus stop, distance from 19 

airport, distance from ferry station and mixed-land use), and crash specific characteristics (such as 20 

head-on, rear-end, right-angle, hit-pedestrian, hit-objects, hit-parked-vehicles, and sideswipe crash 21 

types).  22 
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1.2 Study Context 1 

The review has highlighted the breadth of research examining injury severity in Bangladesh. Yet, 2 

there are several important issues that need to be addressed in the modeling efforts. The research 3 

on severity analysis assumes the entire parameter space to remain the same across the entire 4 

population of crash records. While literature has developed latent class models that address this 5 

limitation to some extent, it is possible that some variables (such as crash type) can mediate the 6 

influence of several independent variables (Yasmin et al., 2014a, 2014b).  7 

 The current study proposes a framework that explicitly allows for a crash type specific 8 

injury severity profile. Specifically, we recognize that crash type and severity represent joint 9 

decisions and are modeled as a joint econometric model system with two dimensions (Rana et al., 10 

2010; Yasmin et al., 2014b). The approach allows to accommodate for the influence of observed 11 

and unobserved factors affecting crash type and severity. We employ a joint copula framework 12 

with a multinomial logit model for crash type and generalized ordered logit model for crash 13 

severity. The copula-based approach offers several advantages. First, copula-based approaches 14 

offer the flexibility to link error terms that are not from the same distribution. Second, copula-15 

based approaches allow for an analytical formulation i.e., the probability expressions for the joint 16 

models are closed form expression and can be evaluated analytically (without simulation). Thus, 17 

the model estimation procedures are based on maximum likelihood and are likely to be more 18 

accurate compared to linking approaches that require us to adopt simulation based maximum 19 

likelihood estimation (see Bhat, 2011 for more details). Finally, copula-based approach via the 20 

different copulas offers various dependency structures that span the potential spectrum of 21 

dependencies (see Bhat and Eluru, 2009 and Yasmin and Eluru, 2014b for more details). In our 22 
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analysis, we consider six copula structures including Gaussian copula, the Farlie-Gumbel-1 

Morgenstern (FGM) copula, and set of Archimedean copulas (Frank, Clayton, Joe and Gumbel). 2 

Further, earlier research using data from multiple years has implicitly assumed temporal 3 

stability of parameters. As noted by Mannering (2018), temporal stability needs to be assessed 4 

carefully for multi-year data (Mannering, 2018). The proposed econometric model system 5 

incorporates various spline functional forms that allow for temporal variations in parameter effects 6 

over time (see Eluru and Gayah, 2022). The spline functional form is an improvement on the year 7 

specific dummy effects and allows for easy examination of change in parameter values across 8 

years (Shabab et al., 2024 for a detailed discussion on the spline approach). In the spline approach, 9 

instead of creating year specific dummy variables, we create time variables using the following 10 

approach:  11 

𝑛𝑌𝑒𝑎𝑟1 = 𝑀𝑎𝑥(𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 − 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 + 1, 0) 
(1)  

𝑛𝑌𝑒𝑎𝑟2 = 𝑀𝑎𝑥((𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 − 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 + 1) − 1, 0) 
(2)  

… 
 

𝑛𝑌𝑒𝑎𝑟𝑁 = 𝑀𝑎𝑥((𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 − 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 + 1) − (𝑁 − 1), 0) (3)  

where 𝑌𝑒𝑎𝑟𝑟𝑒𝑐𝑜𝑟𝑑 corresponds to year of the observation, 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 corresponds to the first year of 12 

data (in this study, 𝑌𝑒𝑎𝑟𝑏𝑎𝑠𝑒 = 2000), and 𝑁(1, 2, … , 𝑁) represents the years starting from 2000. 13 

The approach will yield the same number of variables as the year dummy approach. These 14 

variables can be interacted with any independent variable to test the temporal stability of that 15 

variable1. The approach effectively serves as a piecewise linear formulation for each parameter 16 

 
1Our equation system begins with the possibility that all parameters are temporally unstable. We consider the 

interaction of the variable and year splines for the base year to the last year of the data to test this variability based on 

the t-statistics of the parameter values. If the interaction becomes significant for the base year only, then the slope of 
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over the years. For illustration, let’s consider a small dataset with driving under the influence of 1 

drug and alcohol (DUI) variable where DUI is equal to 1 if the driver is found driving under the 2 

influence of drug and alcohol and 0 otherwise. Table 1 presents the dataset for the six-year period 3 

(2000 to 2005) of DUI variable.  4 

 5 

Table 1: Example Dataset for Spline Formulation 6 
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2000 1 1 0 0 0 0 0 1 0 0 0 0 0 

2001 0 2 1 0 0 0 0 0 0 0 0 0 0 

2002 1 3 2 1 0 0 0 3 2 1 0 0 0 

2003 0 4 3 2 1 0 0 0 0 0 0 0 0 

2004 0 5 4 3 2 1 0 0 0 0 0 0 0 

2005 1 6 5 4 3 2 1 6 5 4 3 2 1 

 7 

In the spline formulation approach, we will use a total of six variables (DUI*nYear1 to 8 

DUI*nYear6) to capture the change of the slope of the DUI variable effect over time in the model. 9 

For example, if the estimates for DUI variable are found to be 0.30 (for DUI*nYear1), -0.45 (for 10 

 
the effect of the variable will not change for the rest of the years which implies that the variable is truly linear over 

time. If the variable shows significant effect for base year and another year, let’s say for the fourth year, then the 

variable slope remains the same up to the third year and from the fourth year, the slope of the effect will change. If 

the analyst wants to consider a temporally invariable effect, the analyst can simply introduce the variable of interest 

directly in the model. 
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DUI*nYear3), and 0.25 (for DUI*nYear6) for the year 2000, 2002 and 2005 respectively, the net 1 

estimate of DUI variable by year is as follows: 2 

• For the year 2000, the estimate is 0.30,  3 

• For the year 2001, the estimate is 0.60 (0.30*2), 4 

• For the year 2002, the estimate is 0.45 (0.30*3-0.45), 5 

• For the year 2003, the estimate is 0.30 (0.30*4-0.45*2), 6 

• For the year 2004, the estimate is 0.15 (0.30*5-0.45*3), 7 

• For the year 2005, the estimate is 0.25 (0.30*6-0.45*4+0.25), 8 

The illustration described above shows how the spline variables allow for flexible evaluation of 9 

changes in parameter effects over time.  10 

In summary, the current research effort contributes to safety literature both 11 

methodologically and empirically. In terms of methodology, we formulate a copula-based temporal 12 

multinomial (MNL)-generalized ordered logit (GOL) model to jointly estimate crash type and 13 

severity sustained by drivers in motor vehicle crashes. The study examines six copula structures - 14 

Gaussian, Farlie-Gumbel-Morgenstern (FGM), Frank, Clayton, Joe, and Gumbel to consider a 15 

wide range of dependency structures. We also accommodate for the potential heterogeneity across 16 

drivers in the dependency effect of crash type and injury severity within the proposed model 17 

system. In terms of empirical analysis, using police reported crash data from Bangladesh for the 18 

years 2000 to 2015, the study focuses on injury severity sustained by drivers in motor vehicle 19 

crashes. We use six crash types (head-on, rear-end, right-angle, sideswipe, single-vehicle and hit-20 

parked-vehicle crashes) and four severity levels (fatal, grievous, simple and no injury) as our 21 

dependent variable categories. A comprehensive set of exogenous variables including driver and 22 
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vehicle characteristics, roadway attributes, environmental and weather information, and temporal 1 

factors is considered for the analysis of the models. 2 

 3 

2 METHODOLOGY  4 

The focus of our study is to jointly model the crash type and injury severity outcome of drivers in 5 

motor vehicle crashes using a copula-based joint multinomial logit (MNL)-generalized ordered 6 

logit (GOL) modeling framework. For the current study, we followed the methodology presented 7 

by Yasmin et al. (2014b). The econometric frameworks for both components are described in the 8 

following sections. 9 

 10 

2.1 The Crash Type Model Component 11 

Let 𝑞 (𝑞 = 1,2, … … , 𝑄) be the indices to represent drivers and 𝑘 (𝑘 = 1,2, … … , 𝐾) represents 12 

crash types (here, k = 1 for head-on, k = 2 for rear-end, k = 3 for right-angle, k = 4 for sideswipe, 13 

k = 5 for single-vehicle, and k = 6 for hit-parked-vehicle crashes). Let 𝑗 be the index for the discrete 14 

outcome that corresponds to the injury severity level 𝑗 (𝑗 = 1,2, … … , 𝐽) of driver 𝑞. In this study, 15 

𝑗 takes four severity levels: 𝑗 = 1 for no injury, 𝑗 = 2 for simple injury, 𝑗 = 3 for grievous injury, 16 

and 𝑗 = 4 for fatal injury. In the joint framework, the modeling of crash type is undertaken using 17 

the multinomial logit structure. Thus, the propensity of a driver 𝑞 involving in a specific crash type 18 

𝑘 takes the form of: 19 

𝑢𝑞𝑘
∗ = 𝛽𝑘𝑥𝑞𝑘 + ξ𝑞𝑘 (4)  

where, 𝑥𝑞𝑘 is a column vector of exogenous variable, 𝛽𝑘 is a row vector of unknown 20 

parameters specific to crash type 𝑘 and 𝜉𝑞𝑘 is an idiosyncratic error term (assumed to be standard 21 
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type-I extreme value distributed) capturing the effects of unobserved factors on the propensity 1 

associated with crash type 𝑘. A driver 𝑞 is assumed to be involved in a crash type 𝑘 if and only if 2 

𝑞 is associated with the maximum propensity among all 𝑘 crash types, that is if the following 3 

condition holds: 4 

𝑢𝑞𝑘
∗ > max

𝑙=1,2,…,𝑘,   𝑎𝑛𝑑 𝑙≠𝑘
𝑢𝑞𝑙

∗  (5)  

The condition demonstrated in equation 5 can be expressed as a series of binary outcome 5 

models for each crash type 𝑘 (Lee, 1983). Let 𝜂𝑞𝑘 be a dichotomous variable with 𝜂𝑞𝑘 = 1 if a 6 

driver 𝑞 ends up in a crash type 𝑘 and 𝜂𝑞𝑘 = 0 otherwise. Thus, we can define a stochastic term 7 

𝑣𝑞𝑘 as follows: 8 

𝑣𝑞𝑘 = ξ𝑞𝑘 − { max
𝑙=1,2,…,𝑘,   𝑙≠𝑘

𝑢𝑞𝑙
∗ } (6)  

The reader would note that in this study the 𝑣𝑞𝑘 term is specified following Portoghese et 9 

al. (2011) which is different than Lee’s transformation (please see Yasmin et al., 2014b for detailed 10 

description). 11 

By substituting the right side for 𝑢𝑞𝑘
∗  from equation 4 in equation 5, we can write: 12 

𝜂𝑞𝑘 = 1  if  𝛽𝑘𝑥𝑞𝑘 + 𝑣𝑞𝑘 > 0 (7)  

In equation 7, the probability expression of crash type is dependent on the distributional 13 

assumption of 𝑣𝑞𝑘, which in turn depends on the distributional assumption of 𝜉𝑞𝑘. Thus, an 14 

assumption of independent and identical Type 1 Gumbel distribution for 𝜉𝑞𝑘 results in a logistic 15 

distributed 𝑣𝑞𝑘. Consequently, the probability expression for the corresponding crash type can be 16 

expressed as follows: 17 
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𝛬𝑘(𝛽𝑘𝑥𝑞𝑘) = 𝑃𝑟(𝑣𝑞𝑘 > −𝛽𝑘𝑥𝑞𝑘) =
∑ 𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑙)𝑙≠𝑘

𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑘) + ∑ 𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑙)𝑙≠𝑘
 (8)  

 1 

2.2 The Injury Severity Model Component 2 

In the joint model framework, the modeling of driver injury severity is undertaken using 3 

generalized ordered logit (GOL) specification. In the traditional ordered logit (OL) model, the 4 

discrete injury severity levels (𝑦𝑞𝑘) are assumed to be associated with an underlying continuous 5 

latent variable (𝑦𝑞𝑘
∗ ). This latent variable is typically specified as the following linear function:   6 

𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜀𝑞𝑘 ,   𝑦𝑞𝑘 = 𝑗𝑘, 𝑖𝑓 𝜏𝑘,𝑗−1 < 𝑦𝑞𝑘

∗ < 𝜏𝑘,𝑗 (9)  

where, 𝑦𝑞𝑘
∗  is the latent injury risk propensity for driver 𝑞 if he/she was involved in a crash 7 

type 𝑘,  𝑧𝑞𝑘 is a vector of exogenous variables, 𝛼𝑘 is a row vector of unknown parameters and 𝜀𝑞𝑘 8 

is a random disturbance term assumed to be standard logistic. 𝜏𝑘,𝑗 (𝜏𝑘,0 = −∞ , 𝜏𝑘,𝐽 = ∞) 9 

represents the threshold associated with severity level 𝑗 for crash type 𝑘, with the following 10 

ordering conditions: (−∞ < 𝜏𝑘,1 < 𝜏𝑘,2 <  … … … < 𝜏𝑘,𝐽−1 < +∞).  11 

GOL is a flexible form of the traditional OL model that relaxes the restriction of constant 12 

threshold across population. The GOL model represents the threshold parameters as a linear 13 

function of exogenous variables (Eluru et al., 2008; Srinivasan, 2002). In order to ensure the 14 

ordering of observed discrete injury severity levels, we employ the following parametric form 15 

followed by Eluru et al. (2008): 16 

𝜏𝑘,𝑗 = 𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) (10)  
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where, Ԍ𝑘𝑗 is a set of explanatory variables associated with the 𝑗𝑡ℎ threshold (excluding a 1 

constant), 𝛿𝑘𝑗 
′ is a vector of parameters to be estimated and ɸ𝑘𝑗 is a parameter associated with 2 

injury severity level 𝑗. The remaining structure and probability expressions are similar to the OL 3 

model. For identification reasons, we need to restrict one of the 𝛿𝑗 
′ vectors to zero. 4 

Given these relationships across the different parameters, the resulting probability 5 

expressions for driver 𝑞 sustaining an injury severity level 𝑗 in a crash type 𝑘 take the following 6 

form: 7 

𝑃𝑟(𝑦𝑞𝑘 = 𝑗𝑘) = 𝛬𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘) − 𝛬𝑘(𝜏𝑘,𝑗−2

+ 𝑒𝑥𝑝(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘) 

(11)  

where, Λk(. ) is the standard logistic cumulative distribution function. The probability 8 

expression of equation 11 represents the independent injury severity model for a crash type 𝑘.  9 

 10 

2.3 The Joint Model: A Copula-based Approach 11 

The crash type and the injury severity component discussed in previous two subsections can be 12 

brought together in the following equation system: 13 

𝜂𝑞𝑘 = 1  if  𝛽𝑘𝑥𝑞𝑘 > −𝑣𝑞𝑘 

𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜀𝑞𝑘 ,   𝑦𝑞𝑘 = 1[𝜂𝑞𝑘 = 1]𝑦𝑞𝑘

∗  

(12)  

The notation 1[𝜂𝑞𝑘 = 1] represents an indicator function taking the value 1 if 𝜂𝑞𝑘 = 1 and 0 14 

otherwise. 15 

However, the level of dependency between the underlying crash type outcome and the 16 

injury severity level of driver depends on the type and extent of dependency between the stochastic 17 
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terms 𝑣𝑞𝑘 and 𝜀𝑞𝑘. These dependencies (or correlations) are explored in the current study by using 1 

a copula-based approach. A copula is a mathematical device that identifies dependency among 2 

random variables with pre-specified marginal distribution (please see Bhat and Eluru, 2009; 3 

Trivedi and Zimmer, 2007 for a detailed description of the copula approach). In other words, it is 4 

a multivariate distribution function defined over the unit cube that links uniformly distributed 5 

marginals (Eluru et al., 2010). In constructing the copula dependency, the random variables 6 

(𝑣𝑞𝑘 and 𝜀𝑞𝑘) are transformed into uniform distributions by using their inverse cumulative 7 

distribution functions, which are then coupled or linked as a multivariate joint distribution function 8 

by applying the copula structure. Let us assume that 𝛬𝑣𝑘(. ) and 𝛬𝜀𝑘(. ) are the marginal 9 

distribution of 𝑣𝑞𝑘 and 𝜀𝑞𝑘, respectively and 𝛬𝑣𝑘,𝜀𝑘(. , . ) is the joint distribution of 𝑣𝑞𝑘 and 𝜀𝑞𝑘. 10 

Subsequently, a bivariate distribution 𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) can be generated as a joint cumulative 11 

probability distribution of uniform [0, 1] marginal variables 𝑈1 and 𝑈2 as below: 12 

𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) = 𝑃𝑟(𝑣𝑞𝑘 < 𝑣, 𝜀𝑞𝑘 < 𝜀) 

= [𝛬𝑣𝑘
−1(𝑈1) < 𝑣, 𝛬𝜀𝑘

−1(𝑈2) < 𝜀 ]  

= [𝑈1 < 𝛬𝑣𝑘(𝑣), 𝑈2 < 𝛬𝜀𝑘(𝜀) ] 

(13)  

The joint distribution (of uniform marginal variable) in equation 13 can be generated by a 13 

function 𝐶𝜃𝑞(. , . ) (Sklar, 1973), such that: 14 

𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) = 𝐶𝜃𝑞(𝑈1 = 𝛬𝑣𝑘(𝑣), 𝑈2 = 𝛬𝜀𝑘(𝜀)) (14)  

where 𝐶𝜃𝑞(. , . ) is a copula function and 𝜃𝑞 the dependence parameter defining the link 15 

between 𝑣𝑞𝑘 and 𝜀𝑞𝑘. It is important to note here that the level of dependence between crash type 16 
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and injury severity level can vary across drivers. Therefore, in the current study, the dependence 1 

parameter 𝜃𝑞 is parameterized as a function of observed crash attributes as follows: 2 

𝜃𝑞 = 𝑓𝑛(𝛾𝑘𝑠𝑞𝑘) (15)  

where, 𝑠𝑞𝑘 is a column vector of exogenous variable, 𝛾𝑘 is a row vector of unknown 3 

parameters (including a constant) specific to crash type 𝑘 and 𝑓𝑛 represents the functional form of 4 

parameterization. Based on the dependency parameter permissible ranges, alternate 5 

parameterization forms for the six copulas are considered in our analysis. For Gaussian, Farlie-6 

Gumbel-Morgenstern (FGM) and Frank Copulas we use 𝜃𝑞 = 𝛾𝑘𝑠𝑞𝑘, for the Clayton copula we 7 

employ 𝜃𝑞 = 𝑒𝑥𝑝 (𝛾𝑘𝑠𝑞𝑘), and for Joe and Gumbel copulas we employ 𝜃𝑞 = 1 + 𝑒𝑥𝑝 (𝛾𝑘𝑠𝑞𝑘). 8 

 9 

2.4 Estimation Procedure 10 

The joint probability that the driver 𝑞 gets involved in a crash type 𝑘 and sustaining injury severity 11 

level 𝑗, from equation 8 and 11, can be written as:  12 

𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘) 

= 𝑃𝑟 {(𝛽𝑘𝑥𝑞𝑘 > −𝑣𝑞𝑘), (
(𝜏𝑘,𝑗−2 + exp(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 

′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘)

< 𝜀𝑞𝑘 < (𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘)

)}   

= 𝑃𝑟 ((𝛽𝑘𝑥𝑞𝑘 > −𝑣𝑞𝑘), (𝜀𝑞𝑘 < 𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘))

−  𝑃𝑟 ((𝛽𝑘𝑥𝑞𝑘 > −𝑣𝑞𝑘), (𝜀𝑞𝑘

< 𝜏𝑘,𝑗−2 + 𝑒𝑥𝑝(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘))    

(16)  
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= 𝛬𝜀𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘) − 𝛬𝜀𝑘(𝜏𝑘,𝑗−2 + 𝑒𝑥𝑝(ɸ𝑘,𝑗−1 +

𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘) − (𝑃𝑟[𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <  (𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 +

𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘)] − 𝑃𝑟[𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <  (𝜏𝑘,𝑗−2 + 𝑒𝑥𝑝(ɸ𝑘,𝑗−1 +

𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘)] ) 

The joint probability of equation 16 can be expressed by using the copula function in 1 

equation 14 as: 2 

𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)

= 𝛬𝜀𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 
′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘)

−  𝛬𝜀𝑘(𝜏𝑘,𝑗−2 + 𝑒𝑥𝑝(ɸ𝑘,𝑗−1 + 𝛿𝑘,𝑗−1 
′ Ԍ𝑘,𝑗−1) − 𝛼𝑘𝑧𝑞𝑘)

−  [𝐶𝜃𝑞(𝑈𝑞,𝑗
𝑘 , 𝑈𝑞

𝑘) − 𝐶𝜃𝑞(𝑈𝑞,𝑗−1
𝑘 , 𝑈𝑞

𝑘)]  

(17)  

where 𝑈𝑞,𝑗
𝑘  = 𝛬𝜀𝑘(𝜏𝑘,𝑗−1 + 𝑒𝑥𝑝(ɸ𝑘𝑗 + 𝛿𝑘𝑗 

′ Ԍ𝑘𝑗) − 𝛼𝑘𝑧𝑞𝑘), 𝑈𝑞
𝑘 = 𝛬𝑣𝑘(−𝛽𝑘𝑥𝑞𝑘)  3 

Thus, the likelihood function with the joint probability expression in equation 17 for crash 4 

type and driver injury severity outcomes can be expressed as: 5 

𝐿 = ∏ [∏ ∏{𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)}
 𝜔𝑞𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1

]

𝑄

𝑞=1

  (18)  

where, 𝜔𝑞𝑘𝑗 is dummy with 𝜔𝑞𝑘𝑗 = 1 if the driver q sustains crash type k and an injury severity 6 

level of 𝑗 and 0 otherwise. All the parameters in the model are then consistently estimated by 7 

maximizing the logarithmic function of 𝐿. The parameters to be estimated in the model are: 𝛽𝑘 in 8 

the MNL component, 𝛼𝑘 and 𝜏𝑘,𝑗, ɸ𝑘𝑗, 𝛿𝑘𝑗 
′  in GOL component, and finally 𝛾𝑘 in the dependency 9 

component. In our analysis we employ six different copulas structure - the Gaussian copula, the 10 
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Farlie-Gumbel-Morgenstern (FGM) copula, and set of Archimedean copulas including Frank, 1 

Clayton, Joe and Gumbel copulas (a detailed discussion of these copulas is available in Bhat and 2 

Eluru, 2009). We use the GAUSS matrix programming software to run the models (Aptech, 2015). 3 

 4 

3 DATA DESCRIPTION 5 

The data for our analysis are compiled from the Micro-Computer Accident Analysis Package 6 

(MAAP5) database preserved in the Accident Research Institute (ARI) of Bangladesh University 7 

of Engineering and Technology (BUET). We focus on the injury severity outcome sustained by 8 

drivers involved in a road crash. A total of 60,465 driver level records were obtained for the years 9 

2000 to 2015. Crashes involving hit-pedestrian and other non-motorized vehicles are excluded 10 

during the analysis as driver injury severity distribution is greatly influenced by these crash types. 11 

For instance, preliminary analysis found that nearly 98% of drivers do not sustain any injury during 12 

hit-pedestrian crashes. We also disregard crashes that involve more than two motor vehicles. After 13 

cleaning and processing the data, a total of 35,261 driver injury records were retained for the 14 

analysis. This study considers 10,000 records randomly for model estimation while setting aside 15 

the remaining 25,261 records for validation purposes. This study considers six crash types 16 

including head-on (HO), rear-end (RE), right-angle (RA), sideswipe (SS), single-vehicle (SV) and 17 

hit-parked-vehicle (HPV) as the dependent variable for crash type analysis and four severity levels 18 

including fatal injury (FI), grievous injury (GI), simple injury (SI) and no injury (NI) for severity 19 

analysis. Regarding the crash types, it is worthwhile to mention that the hit-parked-vehicle crash 20 

type includes crashes that occur due to the collisions between a moving vehicle and a vehicle that 21 

is parked predominantly on the street/roadside or stopped for passenger boarding/alighting or 22 

goods loading/unloading activities. The single-vehicle crashes include run-off-road, overturned, 23 
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and hit-object crashes. For independent variables, a comprehensive set of exogenous variables 1 

including driver and vehicle characteristics (such as restraint use, driving under influence of drug 2 

and alcohol, speeding, vehicle type, maneuvering, vehicle fitness, and defect), roadway attributes 3 

(such as location, road class, presence of divider, road geometry, surface condition, and traffic 4 

control system), environmental and weather factors (such as time of the day, season, light and 5 

weather conditions), and temporal factors (such as year-spline variables) is considered for model 6 

estimation. The sample share of the variables considered for the final model estimation is presented 7 

in Table A.1 in the Appendix section. 8 

 9 

4 EMPIRICAL ANALYSIS 10 

 11 

4.1 Model Specification and Overall Measures of Fit 12 

The empirical analysis of the current study involves a series of model estimation. First, we 13 

developed a multinomial logit (MNL) to model six crash types and ordered logit (OL) to model 14 

driver injury severity for each crash type. Second, we estimated the temporal instability of the 15 

variables by using year splines and the interaction of year splines with other exogenous variables 16 

in both MNL and OL model systems. Next, we parametrized the thresholds to relax the monotonic 17 

effect of the OL models and developed generalized ordered logit (GOL) models. Third, with these 18 

independent model results, we build a joint model with six different copula structures: 1) Gaussian, 19 

2) FGM, 3) Frank, 4) Clayton, 5) Joe, and 6) Gumbel. Fourth, based on the significance of copula 20 

dependence parameter for each crash type, copula models that allow for different dependency 21 

structures for different crash types and injury severity combinations were estimated. Further, we 22 

parametrized dependence parameter in our model system.  23 
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The alternative copula models estimated are non-nested and hence, cannot be tested using 1 

the traditional log-likelihood ratio test (Yasmin et al., 2014b). We employ the Bayesian Information 2 

Criterion (BIC) to determine the best model among all copula models. The BIC for a given 3 

empirical model is equal to: 4 

𝐵𝐼𝐶 =  − 2𝐿𝐿 + 𝑁𝑝 𝑙𝑛(𝑄) (19)  

where LL is the log-likelihood value at convergence, Np is the number of parameters, and Q is the 5 

number of observations. The model with the lower BIC value is the preferred model. The BIC 6 

values of the estimated models are shown in Table 2.  7 

 8 

Table 2: Comparison of the Estimated Models 9 

Model Log-likelihood 

No. of 

Parameters 

BIC 

MNL and OL models -21,756.61 115 44,572.41 

MNL and OL models with temporal 

heterogeneity 

-21,280.59 152 43,961.14 

MNL and GOL models with temporal 

heterogeneity (Independent copula) 

-21,262.90 155 43,953.40 

Gaussian copula -21,260.90 155 43,949.40 

FGM copula -21,261.10 155 43,949.80 

Frank copula -21,260.20 155 43,948.00 

Clayton copula -21,262.90 155 43,953.40 

Joe copula -21,264.40 154 43,947.19 

Gumbel copula -21,264.90 154 43,948.19 
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Model Log-likelihood 

No. of 

Parameters 

BIC 

Joe-Frank copula -21,259.80 155 43,947.20 

Joe-Frank-FGM copula -21,259.80 155 43,947.20 

Gumbel-Frank copula -21,262.10 154 43,942.59 

Gumbel-Frank copula with 

parameterized dependency 

-21,256.30 155 43,940.20 

 1 

Table 2 demonstrates that the MNL-OL models (separate model system) considering 2 

temporal heterogeneity outperform the models without considering temporal heterogeneity. This 3 

finding underscores that the effects of the several exogenous variables are not stable over time 4 

both on crash type and injury severity analysis. Further, MNL-GOL models outperform the MNL-5 

OL models in terms of BIC value. The comparison exercise among copula models shows that with 6 

exclusively a single copula dependency structure, all the copula structures except Clayton offer 7 

better performance than independent model as shown in Table 2. The copula parameters for head-8 

on and hit-parked-vehicle crash types were found statistically insignificant in all copula structures. 9 

The copula parameters for rear-end and right-angle crash types were observed to be significant in 10 

Joe and Gumbel structures while for sideswipe crash type, all the copula structures except Clayton 11 

showed significant copula parameters. For single-vehicle crash type, the FGM structure offered 12 

significant copula parameters for our dataset. We also tested the performance of combinations such 13 

as Joe-Frank, Joe-Frank-FGM and Gumbel-Frank copula structures and found that Gumbel-Frank 14 

combination offered improved BIC (lower) compared to other copula structures. Further, we 15 

parametrized the dependency parameter in the Gumbel-Frank copula structure and found that 16 
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parameterization provides improved BIC (lower) compared to the unparameterized Gumbel-Frank 1 

structure. Therefore, the Gumbel-Frank copula with parameterized dependence was selected in our 2 

study. 3 

 4 

4.2 Estimation Results 5 

In this section, we present the results of the Gumbel-Frank copula model with parametrized 6 

dependency. Table 3 and Table 4 show the crash type component and injury severity component 7 

respectively. The copula parameters are presented in the last row panel of Table 4. For ease of 8 

presentation, the crash type component and injury severity component are discussed separately. 9 

The results of the independent models are shown in Table A.2 and Table A.3 in the Appendix 10 

section.  11 

 12 

Crash Type Component  13 

The coefficients in the crash type component (Table 3) represent the effects of exogenous variables 14 

on each crash type relative to the base category head-on crash type. A positive (negative) sign of a 15 

coefficient for a crash type in Table 3 signifies that an increase in the variable is likely to result in 16 

a higher (lower) likelihood of that crash type relative to the head-on crash type. The impacts of the 17 

variables are discussed by variable characteristics separately in the following sections. 18 
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Table 3: MNL (Crash Type) Model Component in the Gumbel-Frank Copula Model with Parameterized Dependence (Base: 1 

Head-on) 2 

Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant -0.623 -15.609 -4.074 -27.233 -1.425 -31.575 -1.067 -19.371 -1.991 -26.618 

Driver Characteristics 

DUI suspicion (Base: Not DUI suspect)           

DUI suspect* -- -- -- -- -- -- 0.239 5.320 -- -- 

DUI suspect* nYear4 -- -- -- -- -- -- -0.308 -4.903 -- -- 

Vehicle Characteristics  

Vehicle type (Base: 4-wheeler light vehicles)           

Bus -- -- -- -- -- -- 0.023 2.930 -- -- 

Truck -- -- -- -- -- -- -0.050 -5.519 0.133 2.068 

Truck*nYear4 -- -- -- -- -- -- -- -- -0.282 -1.889 

Truck*nYear7 -- -- -- -- -- -- -- -- 0.345 1.956 

Truck*nYear10 -- -- -- -- -- -- -- -- -0.281 -2.182 

Motorcycle -- -- -- -- -- -- -0.672 -5.737 -0.086 -3.816 

Motorcycle*nYear4 -- -- -- -- -- -- 0.688 4.442 -- -- 
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Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Motorized 3-wheelers -0.058 -5.209 -0.108 -2.154 -0.052 -3.517 -0.068 -4.849 -0.072 -3.219 

Informal vehicles 0.017 1.740 -- -- 0.025 2.120 -- -- -- -- 

Vehicle maneuvering (Base: Straight and others)           

Overtaking -- -- -- -- 0.301 4.325 -- -- -- -- 

Overtaking*nYear4 -- -- -- -- -0.333 -3.545 -- -- -- -- 

Crossing -- -- 0.129 4.198 -- -- -- -- -- -- 

Turning -- -- -- -- -- -- 0.028 2.352 -- -- 

Fitness certificate (Base: Not present)           

Present -0.012 -2.423 -0.043 -2.584 -- -- -- -- -0.028 -2.893 

Roadway Characteristics 

Location type (Base: Rural area)           

Urban area 0.169 5.215 -- -- -- -- -0.082 -2.869 -- -- 

Urban area*nYear4 -0.186 -4.231 -- -- -- -- -- -- -- -- 

Urban area*nYear7 -- -- -- -- -- -- 0.290 3.003 -- -- 

Urban area*nYear10 -- -- -- -- -- -- -0.549 -3.693 -- -- 

Urban area*nYear13 -- -- -- -- -- -- 0.397 2.129 -- -- 
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Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Road class (Base: National highways)           

Feeder roads 0.029 3.156 -- -- -- -- 0.296 7.109 -- -- 

Feeder roads*nYear4 -- -- -- -- -- -- -0.380 -6.202 -- -- 

Village roads -- -- -- -- -- -- 0.047 4.020 -0.076 -2.559 

City roads 0.027 3.037 0.569 6.089 -- -- 0.048 3.175 -- -- 

City roads*nYear4 -- -- -0.611 -4.825 -- -- -- -- -- -- 

Presence of divider (Base: Not divided)           

Divided 0.533 13.080 0.430 4.543 0.179 3.286 -- -- 0.071 5.301 

Divided*nYear4 -0.579 -10.266 -0.453 -3.508 -0.170 -2.288 -- -- -- -- 

Road geometry (Base: Straight and slope)           

Curve section -0.073 -6.106 -- -- -- -- -- -- -0.116 -3.886 

Facility type (Base: Not at intersection)           

Intersection -- -- 0.542 7.274 0.263 6.991 -- -- 0.027 2.657 

Intersection*nYear4 -- -- -0.597 -5.903 -0.301 -5.961 -- -- -- -- 

Surface quality (Base: Good)           

Rough -- -- -- -- -- -- 0.057 3.862 -- -- 
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Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Road features (Base: None/narrowing/restricted)           

Bridge and culvert -- -- -- -- -- -- 0.041 2.471 -- -- 

Environmental and Weather Characteristics 

Time of the day (Base: Other than late night))           

Late night -- -- -- -- -- -- 0.338 9.063 0.052 4.966 

Late night*nYear4 -- -- -- -- -- -- -0.423 -7.952 -- -- 

Light condition (Base: Daylight, dawn and dusk)           

Night lighted 0.026 2.425 -- -- -- -- -- -- 0.040 2.252 

Night not lighted -- -- -- -- -- -- 0.033 3.077 0.188 2.807 

Night not lighted*nYear4 -- -- -- -- -- -- -- -- -0.201 -2.114 

Note: “*” Represents the effect of the variable for the base year 2000 (nYear1*DUI suspect). If the interaction of a variable becomes significant for the base year 1 

only, then the slope of the effect of that variable will not change for the rest of the years which implies that the variable impact is linear. For this variable, the 2 

coefficient (estimate for “nYear1*variable”) is the mean effect for the base year, for the second year the mean effect will be 2*coefficient, for the third year the 3 

mean effect will be 3*coefficient, and so on; “--” Represents the variables are not significant at 90% confidence level. 4 
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Driver characteristics 1 

Among driver characteristics considered, only driving under influence (drug and alcohol) variable 2 

offers a significant impact in the crash type model. Specifically, we observe that a driver under 3 

influence of drug and alcohol is likely to be involved in a single-vehicle crash. The finding might 4 

appear counter-intuitive on first glance. Given that we are considering crash type conditional on a 5 

crash, the finding implies that driving under the influence is likely to increase the probability of 6 

single vehicle crashes relative to other crash types. This could be because drivers under the 7 

influence of drugs and alcohol are less alert, likely to react slower and have a lower ability to 8 

control the vehicles. Similar findings are also reported in many studies from developed countries 9 

(Bham et al., 2012; Hyun et al., 2021). The results also show that the effect of this variable is not 10 

stable over the years and the negative sign of the variable “DUI suspect*nYear4” implies that the 11 

slope of the impact reduces in the 4th year (in the year 2003). The net impact of the variable for the 12 

year 2000 is 0.239 while the impact for 2003 is 0.648 (0.239*4-0.308). As we discussed earlier, 13 

we tested for varying impact in a piece-wise linear manner and for this variable, we found only 14 

one change in the slope. 15 

 16 

Vehicle characteristics 17 

Several vehicle characteristics were tested in the model. With regards to vehicle type, buses show 18 

a positive impact on single-vehicle crashes compared to 4-wheeler light vehicles. The results can 19 

be explained by driver’s fatigue and lax regulation around late-night driving and break 20 

requirements for bus drivers in developing countries. Trucks are found to be associated with 21 

reduced propensity for single-vehicle crashes and higher propensity for hit-parked-vehicle crashes. 22 

On-street and roadside truck parking/loading/unloading activities, truck parking along the medians 23 
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and dividers, particularly on national and regional highways are common in Bangladesh and are 1 

likely to be responsible for higher involvement of trucks in hit-parked-vehicle crashes. For hit-2 

parked-vehicle crashes, the impact of the truck variable is found to be unstable over the years. For 3 

this crash type, we found changes in the slope of the truck impact in the years 2003, 2006 and 4 

2009. Motorcycles are found to be less likely to be involved in single-vehicle and hit-parked-5 

vehicle crashes compared to 4-wheeler light vehicles. For single-vehicle crashes, this variable 6 

positively changes the slope of the impact in the year 2003. Motorized 3-wheelers have negative 7 

effects on all crash types compared to 4-wheeler light vehicles. The results also show that informal 8 

vehicles increase the likelihood of rear-end and sideswipe crash types. These informal vehicles are 9 

mostly locally built vehicles that are likely to offer substandard safety features and are operated at 10 

lower speed. The differential speeds of these vehicles and other high-speed vehicles might trigger 11 

the rear-end and sideswipe crash types.  12 

As expected, with respect to the vehicle maneuvering, the findings indicate that overtaking 13 

increases the sideswipe crash type and crossing increases the right-angle crash type while turning 14 

increases the single-vehicle crashes compared to the straight and other maneuvers. However, the 15 

slope of the effect of overtaking maneuvering is found to be reduced in the year 2003 for sideswipe 16 

crashes. The change cannot be attributed to something definitively. The change can possibly be 17 

attributed to several road safety interventions in Bangladesh including but not limited to, 18 

dissemination of driver education, road geometric and operational improvement of the roads in 19 

this time frame and possible advocacy efforts of Accident Research Center. In addition, the variable 20 

representing fitness certificate (associated with vehicle fitness for roadway usage) presents a 21 

negative impact on the likelihood of rear-end, right-angle and hit-parked-vehicle crashes.  22 

 23 
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Roadway characteristics 1 

The impact of the location type indicates that with respect to rural area, crashes in urban areas are 2 

more likely to be rear-end crashes and less likely to be single-vehicle crashes. These findings are 3 

intuitive as divided roadways, higher intersection density, and stop-and-go situations in congested 4 

flows are some common features of urban areas of Bangladesh. The results also indicate that the 5 

effect of the urban area variable exhibits temporal instability for both crash types. For rear-end 6 

crashes, the impact decreases in the year 2003 while for single-vehicle crashes, the impact changes 7 

in the years 2006, 2009 and 2012.  8 

With respect to road class, the results show that feeder roads have a higher likelihood of 9 

being rear-end and single-vehicle crash types compared to the national and regional highways. 10 

However, the effect on the single-vehicle crash type is not stable over time and the effect changes 11 

in the year 2003. The village roads also increase the likelihood of single-vehicle crashes while 12 

decrease the likelihood of hit-parked-vehicle crashes. City roads increase the likelihood of rear-13 

end, right-angle and single-vehicle crashes compared to national highways while showing 14 

temporal instability for right-angle crashes. These results can be attributed to design deficiencies, 15 

narrower roads, and roadside linear settlements along the roadways across the country.  16 

The results also suggest that divided roads have a higher likelihood of all crash types, 17 

except for single-vehicle crashes. Further, the slope of the impact is found to be lower in the year 18 

2003 for rear-end, right-angle and sideswipe crashes. Crashes that occur on curve sections are less 19 

likely to be rear-end and hit-parked-vehicle crash types compared to straight and slope/grade 20 

sections. This is expected as drivers are more likely to stop and park the vehicles on straight section 21 

compared to curve section, thus, likelihood of being rear-end and hit-parked-vehicle crash types is 22 
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lower. All these findings are in general consistent with many studies (Bham et al., 2012; Intini et 1 

al., 2020; Ye et al., 2008). 2 

With respect to road facility type, crashes that occur at intersections are more likely to be 3 

right-angle, sideswipe and hit-parked-vehicle types compared to non-intersection locations (as 4 

found in Pervaz et al., 2024; Rana et al., 2010). This is quite expected as intersections have more 5 

crossing, passenger boarding/alighting, parking, and vendor activities compared to non-6 

intersections across the country. The results also indicate that the effect of this variable is not stable 7 

over time on the right-angle and sideswipe crashes and the effect decreases starting from the year 8 

2003.  9 

With regards to surface quality, crashes that occur on the rough surface are more likely to 10 

be single-vehicle crashes. Similarly, crashes on bridge-culverts are more likely to be single-vehicle 11 

crashes.  12 

 13 

Environmental and weather characteristics 14 

With respect to the time of the day, late nighttime shows a positive impact on single-vehicle and 15 

hit-parked-vehicle crashes compared to other times of the day (see Intini et al., 2020 for similar 16 

finding). This might be attributable to lower visibility and driver impairment due to fatigue at late 17 

night. For single-vehicle crashes, the slope of the effect is found to be reduced in the year 2003. 18 

The results indicate that nighttime even in the presence of light has a positive impact on 19 

rear-end and hit-parked-vehicle crashes while nighttime without lighting has a positive impact on 20 

single-vehicle and hit-parked-vehicle crashes compared to the daylight condition. The results are 21 

intuitive and might be attributed to the reduced visibility during these conditions (Bham et al., 22 

2012). For hit-parked-vehicle crashes, the variable shows temporal change in the year 2003. 23 
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Injury Severity Component  1 

The results of the severity component of the joint model are presented in Table 4. A positive 2 

(negative) sign for a coefficient in Table 4 signifies that an increase in the variable is likely to result 3 

in higher (lower) severity in the crash type. The impacts of the variables are discussed in the 4 

following sections. 5 

 6 

Driver characteristics 7 

With respect to driver characteristics, speeding increases the severity of drivers in head-on and hit-8 

parked-vehicle crashes. This finding is very much expected and has been established in safety 9 

literature for both developed and developing country contexts (Abdel-Aty, 2003; Abegaz et al., 10 

2014; Paleti et al., 2010). For head-on crashes, the variable changes the slope of the effect in the 11 

year 2006.  12 

 13 

Vehicle characteristics 14 

Vehicle type variables significantly impact driver severity. The results indicate that bus drivers are 15 

likely to sustain a less severe injury in all crash types except right-angle compared to the drivers 16 

of 4-wheeler light vehicles. However, the slope of the effect is found to be higher from the year 17 

2003 for rear-end and sideswipe crashes. Trucks have a negative effect on the driver injury severity 18 

for all crash types except right-angle (as found in Rana et al., 2010). The reduced severity 19 

propensity can be attributed to the vehicle size, capacity against structural deformation and 20 

stability. Further, the variable shows temporally unstable effect for the years 2003 and 2006 for 21 

head-on crashes while for the year 2003 for rear-end crashes. 22 

 23 
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Table 4: GOL (Injury Severity) Model Component in the Gumbel-Frank Copula Model with Parameterized Dependence  1 

Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Threshold between NI-SI 0.491 7.016 2.292 19.939 1.697 4.630 -0.935 -2.761 1.619 16.838 1.514 8.367 

Threshold between SI-GI 0.896 15.193 2.705 9.639 1.936 2.993 -0.578 -5.609 2.338 3.679 1.966 4.663 

Threshold between GI-FI 1.779 2.581 3.875 2.230 3.886 2.734 0.007 2.707 3.001 3.313 2.758 1.527 

Driver Characteristics 

Speeding related (Base: Not speeding)             

Speeding* 0.075 4.010 -- -- -- -- -- -- -- -- 0.045 1.752 

Speeding *nYear7 -0.130 -3.539 -- -- -- -- -- -- -- -- -- -- 

Vehicle Characteristics 

Vehicle type (Base: 4-wheeler light vehicles)             

Bus -0.100 -7.565 -0.976 -5.881 -- -- -0.290 -2.877 -0.055 -2.752 -0.136 -2.687 

Bus*nYear4 -- -- 1.125 5.147 -- -- 0.327 2.499 -- -- -- -- 

Truck -0.475 -6.288 -0.434 -4.308 -- -- -0.096 -3.151 -0.044 -1.860 -0.131 -3.694 

Truck*nYear4 0.709 4.385 0.428 3.158 -- -- -- -- -- -- -- -- 

Truck*nYear7 -0.253 -2.184 -- -- -- -- -- -- -- -- -- -- 

Pick-up -- -- -- -- -- -- 0.044 1.775 -- -- -- -- 
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Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Motorcycle 0.752 11.415 1.269 15.011 0.438 8.095 0.143 6.501 0.952 6.134 0.182 3.863 

Motorcycle*nYear4 -0.722 -8.099 -1.602 -8.639 -- -- -- -- -1.138 -5.209 -- -- 

Motorcycle*nYear7 -- -- 0.428 2.878 -- -- -- -- -- -- -- -- 

Motorized 3-wheelers 0.094 6.853 0.141 5.864 -- -- 0.052 2.732 -- -- 0.120 3.104 

Informal vehicles 0.061 4.022 0.733 5.936 -- -- 0.036 2.034 -- -- -- -- 

Informal vehicles*nYear4 -- -- -0.870 -5.159 -- -- -- -- -- -- -- -- 

Informal vehicles*nYear16 -- -- 1.373 2.127 -- -- -- -- -- -- -- -- 

Threshold between SI-GI -- -- -- -- -- -- -0.315 -1.867 -- -- -- -- 

Threshold between GI-FI   -0.063 -2.690 -- -- -- -- -- -- -- -- 

Vehicle maneuvering (Base: Straight and 

others) 

            

Turning -- -- -- -- -- -- -- -- 0.098 4.467 -- -- 

Fitness certificate (Base: Not present)             

Present -- -- -- -- -0.175 -2.668 -- -- -- -- -- -- 

Roadway Characteristics 

Location type (Base: Rural area)             
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Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Urban area -0.026 -2.324 -- -- -- -- -0.025 -2.132 -- -- -- -- 

Road class (Base: National highways)             

Regional highways -0.057 -4.972 -- -- -- -- -- -- -- -- -- -- 

Feeder roads -0.079 -5.314 -0.037 -1.694 -- -- -- -- -- -- -- -- 

Village roads -0.103 -6.536 -0.111 -2.661 -- -- -- -- -- -- -- -- 

City roads -0.060 -3.324 -0.041 -2.563 -0.127 -1.822 -- -- -- -- -- -- 

Surface quality (Base: Good)             

Rough -0.065 -2.483 -- -- -- -- -- -- -- -- -- -- 

Environmental and Weather Characteristics 

Time of the day (Base: Other than late night)             

Late night 0.020 1.685 0.032 2.017 -- -- -- -- -- -- 0.223 3.595 

Late night*nYear7 -- -- -- -- -- -- -- -- -- -- -0.254 -1.989 

Threshold between GI-FI -0.045 -2.740 -- -- -- -- -- -- -- -- -- -- 

Season of the year (Base: Summer)             

Rainy -- -- -- -- -- -- -- -- 0.037 1.827 -- -- 

Light condition (Base: Daylight, dawn/dusk)             
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Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Night lighted -- -- -- -- 0.211 2.212 -- -- -- -- -- -- 

Night not lighted -- -- -- -- -- -- -- -- 0.042 1.929 -- -- 

Weather condition (Base: Clear)             

Rain 0.067 3.997 -- -- -- -- -- -- -- -- -- -- 

Fog and wind 0.059 2.522 -- -- -- -- -- -- 0.119 2.530 -- -- 

Copula Parameters 

Copula type None Gumbel Gumbel Frank None None 

Constant -- -- 1.232 24.949 1.007 88.976 -6.786 -3.073 -- -- -- -- 

Divided roads -- -- 1.198 2.201 -- -- -- -- -- -- -- -- 

Note: “*” Represents the effect of the variable for the base year 2000 (nYear1*Speeding). If the interaction of a variable becomes significant for the base year only, 1 

then the slope of the effect of that variable will not change for the rest of the years which implies that the variable impact is linear. For this variable, the coefficient 2 

(estimate for “nYear1*variable”) is the mean effect for the base year, for the second year the mean effect will be 2*coefficient, for the third year the mean effect 3 

will be 3*coefficient, and so on; “--” Represents the variables are not significant at 90% confidence level; NI=No injury, SI=Simple injury, GI=Grievous injury, 4 

FI=Fatal injury. 5 
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The results further indicate that drivers in pick-ups are likely to sustain severe injuries when 1 

involved in sideswipe crashes. This finding is interestingly different than the effect reported in the 2 

research for developed countries (Marcoux et al., 2018; Yasmin et al., 2014a). Further, motorcycle 3 

drivers are likely to sustain severe injuries for all crash types (Ye et al., 2008). However, the 4 

variable shows temporal instability for head-on, rear-end and single-vehicle crashes. Motorized 3-5 

wheeler drivers are likely to experience higher risk for severity for all crash types except right-6 

angle and single-vehicle crashes. The informal vehicle drivers are prone to increased severity 7 

propensity for head-on, rear-end and sideswipe crash types. The variable shows temporally varying 8 

effect for rear-end crashes. The results also show that informal vehicles influence the threshold 9 

between grievous and fatal injury for rear-end crashes and the threshold between simple and 10 

grievous injury for sideswipe crashes. The negative signs on the thresholds indicate that this 11 

variable further exacerbates the driver injury severity in these crash types. All these findings could 12 

be attributable to lower resisting capacity, lack of safety features such as seat belt, higher exposure 13 

and vulnerability of drivers compared to 4-wheeler light vehicles (Abegaz et al., 2014; Anowar et 14 

al., 2014).  15 

With respect to vehicle maneuvers, turning movement increases the likelihood of driver 16 

injury severity for single-vehicle crashes compared to other maneuvers. Further, vehicles with 17 

proper fitness decrease the severity in right-angle crashes.    18 

 19 

Roadway characteristics 20 

Drivers injured in urban areas are likely to sustain less severe injuries in head-on and sideswipe 21 

crashes compared to the rural areas. This is plausible as operating speed is lower in urban areas of 22 

Bangladesh. The similar effect was found in developed countries (Abdel-Aty, 2003). 23 
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The results also indicate that crashes on regional highways are associated with lower 1 

severity for head-on crashes compared to the national highways. Feeder roads, village roads and 2 

city roads present reduced severity risk for head-on and rear-end crashes compared to national 3 

highways. City roads are also associated with lower severity for right-angle crashes. All these 4 

findings could be associated with lower operating speed in the regional, feeder, village and city 5 

roads compared to national highways. Similar findings were reported in previous studies (Anowar 6 

et al., 2014; Kamruzzaman et al., 2014; Rahman et al., 2021).   7 

The results also show that crashes on rough surfaces decrease the driver injury severity in 8 

a head-on crash compared to good and smooth surface conditions.  9 

 10 

Environmental and weather characteristics  11 

With regards to the time of the day, crashes during late nighttime period are likely to increase 12 

driver injury severity risk for head-on, rear-end and hit-parked-vehicle crashes. The variable shows 13 

temporally heterogenous effect for hit-parked-vehicle crashes. The results also indicate that late 14 

night variable shifts the threshold between grievous and fatal injury towards left further 15 

exacerbating the driver injury severity in head-on crashes. These results are intuitive as the volume 16 

of traffic is likely low and operating speeds are likely higher during this period (see Barua and Tay, 17 

2010; Marcoux et al., 2018; Pervaz et al., 2023; Yasmin et al., 2014a for similar results on severity). 18 

Among the seasonal effects, rainy season increases the likelihood of severity for single-vehicle 19 

crashes. 20 

Crashes occurring during nighttime even with light increases the severity of right-angle 21 

crashes while absence of light increases the likelihood of the driver injury severity for single-22 

vehicle crashes.  23 
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With respect to weather factors, findings indicate that rainy and foggy conditions increase 1 

the likelihood of severe crashes in head-on crashes while foggy condition increases the severity 2 

for single-vehicle crashes compared to clear weather conditions (as found in Anowar et al., 2014; 3 

Yasmin et al., 2014a). This could be due to the reduced visibility, longer reaction time, and slippery 4 

road surface in these weather conditions.  5 

 6 

4.3 Dependence Effect 7 

The estimated Gumbel-Frank copula-based joint MNL-GOL model provides the best fit while 8 

incorporating the correlation between the crash types and injury severity outcome of the drivers. 9 

An examination of the copula parameters presented in the last row panel of Table 4 highlights the 10 

presence of common unobserved factors affecting crash type and injury severity for rear-end, right-11 

angle and sideswipe crash types. Our study did not find any statistically significant impact of 12 

dependency parameter for head-on and hit-parked-vehicle crash types (please note that the 13 

dependence for single-vehicle crashes was found significant in FGM copula, however we selected 14 

the Gumbel-Frank copula model due to the best model fit). The positive correlations for rear-end 15 

and right-angle crash types indicate that the unobserved factors that increase the likelihood of rear-16 

end, and right-angle crash types also increase the injury severity of the drivers involved in those 17 

crashes. On the other hand, the negative sign of copula parameter for sideswipe crash type indicates 18 

that the unobserved factors that increase the likelihood of sideswipe crash type decrease the injury 19 

severity of the drivers involved in this crash type. We attempted to parameterize the dependency 20 

as a function of several exogenous variables in our model system. For rear-end crash type, the 21 

copula dependency is characterized by an additional exogenous variable – divided roads. The 22 

variables added in the dependency structure allow for dependency to vary across the dataset.  23 
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4.4 Predictive Performance of the Model 1 

To demonstrate the performance of the developed model, we undertake a validation exercise using 2 

the holdout dataset. The exercise consists of two steps. First, we compare the performance of the 3 

developed copula model with the independent model by using BIC values. In this step, we 4 

randomly divided the 25,261 observations of the holdout dataset into five distinct validation 5 

datasets (four datasets with 5,000 observations each and a dataset with 5,261 observations). The 6 

BIC (LL) values of the selected copula model in the validation datasets are 22,937.33 (-10,808.58), 7 

22,719.18 (-10,699.51), 22,740.56 (-10,710.20), 22,867.32 (-10,773.58), 24,073.99 (-11,372.97) 8 

and 23,067.71 (-10,872.97) respectively while the values for the independent model are 22,943.55 9 

(-10,811.70), 22,719.10 (-10,699.47), 22,753.96 (-10,716.90), 22,888.17 (-10,784.00), 24,105.79 10 

(-11,388.87) and 23,082.15 (-10,880.19). These values highlight that our developed model shows 11 

superior performance (lower BIC) in the four datasets while a very close performance in a dataset. 12 

In the second exercise, we compare the observed aggregate shares with the predicted shares across 13 

crash type component and injury severity component as shown in Fig. 1. 14 

From the figure, it is clear that the predictions offered by our developed model are very 15 

close to observed shares across all comparisons. 16 



 

39 

 

 1 

Fig. 1: Predictive performance of the Gumbel-Frank copula model with parameterized 2 

dependency 3 

 4 

4.5 Elasticity Analysis  5 

The model results shown in Table 3 and Table 4 do not provide the true magnitude of the effects 6 

of the exogenous variables on the likelihood of crash type as well as driver injury severity in the 7 

crashes. To illustrate the true magnitude of the variables impact, we compute the aggregate level 8 

“elasticity effects” for the exogenous variables following the methodology formulated by Eluru 9 

and Bhat (2007). The procedure involves computing the aggregate probability for each crash type 10 

and severity while modifying the exogenous variable of interest. For any indicator exogenous 11 

variable, the elasticity is computed by changing the value of the variable to one for the subsample 12 

of observations for which the variable takes a value of zero and to zero for the subsample of 13 
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observations for which the variable takes a value of one. Subsequently, the shifts in expected 1 

aggregate shares in the two subsamples are summed after reversing the sign of the shifts in the 2 

second subsample (please see Eluru and Bhat, 2007; Marcoux et al., 2024 for a detailed 3 

discussion). The computed elasticity results for crash type component and severity component are 4 

presented in Table 5 and Table 6, respectively. The reader would note that for the severity 5 

component, we present the elasticity effects only for the lowest and highest injury severity levels 6 

(no-injury and fatal injury) across all crash types to conserve on space. 7 

Table 5 shows the elasticity results of the variables for the crash type component. For this 8 

component, the computed elasticity can be interpreted as the percentage change in the likelihood 9 

of a crash type due to a change in the exogenous variable of interest. For instance, the aggregate 10 

elasticity 32.11% for DUI suspect variable for single-vehicle crash type can be interpreted as the 11 

likelihood of a driver being involved in a single-vehicle crash under the influence of drug/alcohol 12 

is about 32.11% higher than the likelihood of a driver being involved in single-vehicle crash when 13 

he/she is not under the influence of drug/alcohol (while other characteristics remain unchanged). 14 

The effects of all the variables presented in Table 5 can be interpreted in a similar manner for crash 15 

type component. Alternatively, Table 6 shows the elasticity results of the variables on driver injury 16 

severity component. For this component, the computed elasticity can be interpreted as the 17 

percentage change in the likelihood of an injury severity level for a crash type due to a change in 18 

the exogenous variable of interest. For instance, the aggregate elasticity 14.49% for speeding 19 

variable for fatal injury in a head-on crash can be interpreted as the likelihood of a speeding driver 20 

being fatally injured in a head-on crash is about 14.49% higher than the likelihood of a non-21 

speeding driver being fatally injured while other characteristics being equal. The effects of all the 22 

variables presented in Table 6 can be interpreted in a similar manner for injury severity component.  23 
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Several insights can be drawn from the elasticity results presented in Table 5 and Table 6. 1 

First, the magnitudes of the elasticity for a variable are different across crash types and severities 2 

which reinforces the importance of conducting crash type specific injury severity analysis. Second, 3 

the most significant variables positively affecting crash types are city road, crossing maneuver, 4 

intersection location, divided road, overtaking maneuver, late nighttime driving, driving in dark 5 

unlighted conditions, rough road surface, driving under the influence of alcohol and drug and 6 

motorized three-wheeler vehicles (as shown in Table 5). Third, the most significant variables 7 

increasing fatal injury likelihood are informal vehicles, motorcycles, motorized three-wheelers, 8 

foggy and windy weather, turning movement, late nighttime driving, nighttime irrespective of 9 

lights, and rainy weather (as shown in Table 6). Fourth, roadway, vehicle, driver and road 10 

environmental attributes affect the crash type component while vehicle and road environmental 11 

attributes affect the injury severity component significantly.  12 

The insights from the elasticity results can contribute to understanding the road safety 13 

situation and facilitate adopting appropriate interventions to improve road safety in the country. 14 

Road geometric improvement, installation of effective traffic control systems, intersection 15 

improvement policies such as providing dedicated/exclusive turning lanes, signal and signage 16 

improvement, installation of resting facilities for nighttime drivers, roadway lighting improvement 17 

schemes, maintaining safety standards and fitness of the vehicles, continuous monitoring and 18 

targeted enforcement, effective real time messaging and advanced warning systems, improvement 19 

of driving behavior for yielding to the signals and signages, improvement of road user behavior 20 

through large-scale road safety awareness campaigns, and traffic education could be suitable 21 

solutions for addressing the crash types and driver injury severities in the country. 22 
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Table 5: Results of the Elasticity Analysis for Crash Type Component 1 

Variables %Head-on %Rear-end 

%Right-

angle 

%Sideswipe 

%Single-

vehicle 

%Hit-

parked-

vehicle 

Driver Characteristics 

DUI suspicion (Base: Not DUI suspect)       

DUI suspect* -5.87 -5.17 -4.72 -5.55 32.11 -6.20 

Vehicle Characteristics  

Vehicle type (Base: 4-wheeler light vehicles)       

Bus -2.52 -2.05 -1.64 -2.45 13.40 -2.47 

Truck 3.50 2.58 1.96 3.36 -27.54 28.71 

Motorcycle 19.31 16.47 13.58 18.65 -83.89 -34.81 

Motorized 3-wheelers 28.09 -14.22 -34.26 -13.04 -20.64 -23.75 

Informal vehicles -5.62 6.04 -6.16 13.43 -4.89 -5.86 

Vehicle maneuvering (Base: Straight and others)       

Overtaking -10.13 -9.83 -11.39 74.44 -9.95 -9.93 

Crossing -2.33 -3.55 138.98 -3.08 -2.02 -2.78 

Turning -3.22 -2.63 -2.10 -3.14 17.16 -3.17 

Fitness certificate (Base: Not present)       



 

43 

 

Variables %Head-on %Rear-end 

%Right-

angle 

%Sideswipe 

%Single-

vehicle 

%Hit-

parked-

vehicle 

Present 3.94 -4.00 -24.09 4.35 3.54 -16.81 

Roadway Characteristics 

Location type (Base: Rural area)       

Urban area -6.10 30.91 -13.06 -6.88 -33.23 -6.86 

Road class (Base: National highways)       

Feeder roads -12.98 7.69 -12.95 -13.06 35.82 -13.96 

Village roads -3.47 -2.42 -1.82 -3.24 32.54 -43.33 

City roads -13.29 4.85 151.03 -14.39 21.62 -13.97 

Presence of divider (Base: Not divided)       

Divided -45.59 82.70 48.83 2.74 -44.54 0.89 

Road geometry (Base: Straight and slope)       

Curve section 16.07 -28.41 20.59 17.60 14.32 -48.27 

Facility type (Base: Not at intersection)       

Intersection -10.25 -11.54 122.50 48.19 -10.14 9.30 

Surface quality (Base: Good)       

Rough -7.08 -5.80 -4.63 -6.90 37.71 -6.96 
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Variables %Head-on %Rear-end 

%Right-

angle 

%Sideswipe 

%Single-

vehicle 

%Hit-

parked-

vehicle 

Road features (Base: None/narrowing/restricted)       

Bridge and culvert -4.82 -3.94 -3.15 -4.69 25.66 -4.73 

Environmental and Weather Characteristics 

Time of the day (Base: Other than late night))       

Late night -11.72 -10.53 -9.31 -11.38 48.70 30.20 

Light condition (Base: Daylight, dawn and dusk)       

Night lighted -6.80 10.96 -7.73 -7.25 -6.05 24.92 

Night not lighted -6.58 -5.91 -5.09 -6.51 17.10 44.42 

 1 

  2 
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Table 6: Results of the Elasticity Analysis for Injury Severity Component 1 

Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

Driver Characteristics 

Speeding related (Base: Not speeding)             

Speeding* -6.28 14.49 -- -- -- -- -- -- -- -- -5.72 27.36 

Vehicle Characteristics 

Vehicle type (Base: 4-wheeler light vehicles)             

Bus 21.16 -47.58 12.85 -83.99 -- -- 41.47 -30.73 5.93 -31.81 14.93 -63.38 

Truck 24.11 -52.57 9.81 -69.77 -- -- 45.10 -33.41 4.65 -25.01 16.28 -73.27 

Pick-up -- -- -- -- -- -- -18.30 15.11 -- -- -- -- 

Motorcycle -71.54 239.29 -38.01 295.35 -48.97 402.21 -52.61 49.38 -47.76 406.01 -30.60 181.42 

Motorized 3-wheelers -22.69 59.37 -11.45 114.20 -- -- -21.39 17.78 -- -- -18.85 100.87 

Informal vehicles -14.21 36.59 -22.49 277.00 -- -- -15.24 26.32 -- -- -- -- 

Vehicle maneuvering (Base: Straight and 

others) 

            

Turning -- -- -- -- -- -- -- -- -13.41 81.72 -- -- 
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Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

Fitness certificate (Base: Not present)             

Present -- -- -- -- 10.27 -68.90 -- -- -- -- -- -- 

Roadway Characteristics 

Location type (Base: Rural area)             

Urban area 5.62 -13.65 -- -- -- -- 11.11 -8.60 -- -- -- -- 

Road class (Base: National highways)             

Regional highways 11.90 -28.38 -- -- -- -- -- -- -- -- -- -- 

Feeder roads 15.90 -37.08 2.40 -21.76 -- -- -- -- -- -- -- -- 

Village roads 19.89 -45.24 6.49 -53.40 -- -- -- -- -- -- -- -- 

City roads 12.40 -29.08 2.71 -24.93 7.71 -57.50 -- -- -- -- -- -- 

Surface quality (Base: Good)             

Rough 13.24 -30.66 -- -- -- -- -- -- -- -- -- -- 

Environmental and Weather Characteristics 

Time of the day (Base: Other than late night)             

Late night -4.52 30.67 -2.24 21.66 -- -- -- -- -- -- -12.14 53.44 
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Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

%No-

Injury 

%Fatal 

Season of the year (Base: Summer)             

Rainy -- -- -- -- -- -- -- -- -4.36 24.75 -- -- 

Light condition (Base: Daylight, dawn/dusk)             

Night lighted -- -- -- -- -15.16 90.42 -- -- -- -- -- -- 

Night not lighted         -5.10 29.14   

Weather condition (Base: Clear)             

Rain -15.61 41.32 -- -- -- -- -- -- -- -- -- -- 

Fog and wind -1.27 3.37 -- -- -- -- -- -- -17.16 113.95 -- -- 

1 
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5 CONCLUSIONS 1 

Road traffic crashes disproportionately affect low and middle-income countries of the world. The 2 

unique driver behavior, roadway characteristics, traffic composition, traffic flow, and roadway 3 

environment contribute to a fundamentally different system compared to the systems in developed 4 

countries. A majority of earlier research examining data from Bangladesh implicitly assumed the 5 

entire parameter space to remain the same across the population while completely disregarding 6 

temporal stability of parameters over time. To address these critical modeling issues, the current 7 

study proposes a joint framework that explicitly models crash type outcomes while allowing for a 8 

crash type specific injury severity profile. The approach takes the form of a copula-based temporal 9 

multinomial (MNL)-generalized ordered logit (GOL) that allows us to accommodate for the 10 

influence of observed and unobserved factors affecting crash type and severity. We also introduce 11 

a novel spline approach for incorporating parameter specific variation over time. These newly 12 

introduced variables can directly be accommodated within any methodological framework. The 13 

study examines six copula structures - Gaussian, Farlie-Gumbel-Morgenstern (FGM), Frank, 14 

Clayton, Joe, and Gumbel to consider a wide range of dependency structures. We employ the 15 

Bayesian Information Criterion (BIC) to determine the best model among all copula models. We 16 

also allow for dependency parameter for crash type and injury severity outcomes to vary across 17 

the dataset. The empirical analysis was conducted using police reported crash data drawn from 18 

Bangladesh for the years 2000 to 2015 focusing on injury severity sustained by drivers in motor 19 

vehicle crashes. We use six crash types (head-on, rear-end, right-angle, sideswipe, single-vehicle 20 

and hit-parked-vehicle crashes) and four severity levels (fatal, grievous injury, simple injury and 21 

no injury) as our dependent variable categories. A comprehensive set of exogenous variables 22 

including driver and vehicle characteristics, roadway attributes, environmental and weather 23 
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information, and temporal factors is considered for the analysis of the models. The empirical 1 

analysis shows that models with temporal heterogeneity outperform the models without temporal 2 

heterogeneity. Among the various copula models, the parameterized Gumbel-Frank copula offers 3 

the best fit. The model specification results reveal multiple temporally varying parameters in both 4 

crash type and severity components. We also conducted a validation exercise using a holdout 5 

sample. The results clearly highlight that the model predictions are closely aligned with observed 6 

values. The results also highlight various novel variables affecting injury severity in Bangladesh. 7 

Further, an elasticity exercise was conducted to illustrate the influence of the exogenous variables 8 

on the crash type and injury severity dimensions. It is worthwhile to mention that this study 9 

provides a valuable insight into crash and injury severity characteristics, and factors contributing 10 

to both dimensions in the context of developing countries.   11 

This research is not without limitations. The empirical analysis was conducted using police 12 

reported crash data of Bangladesh. However, in developing countries where crash event reporting 13 

and data collection challenges exist, the issue of underreporting and reporting bias in police 14 

reported crash data is prevalent. These databases are likely to underreport less severe crashes. 15 

Further, victims of road crashes sometimes compromise and mutually settle financial 16 

compensation with vehicle owners or drivers without reporting to the police to avoid complex legal 17 

proceedings. Due to the lack of adequate officers and trained reporting personnel, data collection 18 

and storing processes are also hampered. Recently, several studies relied on alterative data sources 19 

such as newspaper reported data and hospital data for their analysis (Bhuiyan et al., 2022; Roy et 20 

al., 2021). However, these data might lack details about road attributes, driver, vehicle and weather 21 

information and often misclassify the severity of crashes. Future studies in developing countries 22 

can explicitly consider underreporting and reporting bias in the analysis and compare the results 23 
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with the findings of our study. Further, in our research, we explicitly considered the influence of 1 

unobserved factors affecting crash type and severity using the copula-based approach. The results 2 

clearly highlight the improvement in model fit due to the consideration of these unobserved factors. 3 

However, our model structure does not consider the impact of unobserved factors affecting the 4 

various parameters (beyond temporal factors). The consideration of random parameters within 5 

copula-based approaches can be complex due to the need for simulated likelihood approaches. 6 

Future research efforts can build on our framework to accommodate for random parameters in this 7 

model system (see Bhowmik et al., 2021 for an approach in a different safety context).     8 
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APPENDIX 1 

Table A.1: Sample Share of the Selected Variables (%) 2 

Variables 

Crash Types 

Head-on (3,770) Rear-end (2,809) Right-angle (196) Sideswipe (1,186) Single-vehicle (1,481) Hit-parked-vehicle (558) 

Injury Severity 

Fatal injury 16.84* 9.36 5.10 7.67 5.54 8.24 

Grievous injury 11.67 8.40 9.18 7.59 4.39 7.35 

Simple injury 7.03 4.24 2.04 5.48 7.97 5.91 

No injury 64.46 78.00 83.67 79.26 82.11 78.49 

Driver Characteristics  

Driving Under Influence 

(drug/alcohol) suspicion 

      

DUI suspect 11.99 12.14 10.20 12.31 15.60 8.60 

Not DUI suspect 88.01 87.86 89.80 87.69 84.40 91.40 

Speeding related       

Speeding 48.49 58.17 78.06 50.76 42.47 52.51 

Not speeding 51.51 41.83 21.94 49.24 57.53 47.49 

Vehicle Characteristics 

Vehicle type        
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Variables 

Crash Types 

Head-on (3,770) Rear-end (2,809) Right-angle (196) Sideswipe (1,186) Single-vehicle (1,481) Hit-parked-vehicle (558) 

Bus 22.41 21.25 22.96 21.50 33.90 20.61 

Truck 26.47 24.81 23.47 27.23 25.05 37.10 

4-wheeler light vehicles 17.82 23.07 32.14 19.98 20.19 20.43 

Pick-up 4.35 4.31 6.12 3.63 3.44 4.48 

Motorcycle 10.53 10.64 7.14 11.21 1.96 5.38 

Motorized 3-wheelers 10.69 7.37 4.59 6.16 8.58 6.09 

Informal vehicles 6.21 7.12 3.06 8.01 5.33 4.84 

Others 1.51 1.42 0.51 2.28 1.55 1.08 

Vehicle maneuvering        

Straight 73.82 80.60 79.08 64.00 75.22 54.48 

Overtaking 8.20 3.52 8.16 8.18 9.79 3.94 

Crossing 4.43 1.32 5.61 5.82 1.69 1.25 

Turning 4.83 6.48 3.57 9.87 3.44 3.41 

Others 8.73 8.08 3.57 12.14 9.86 36.92 

Fitness certificate       

Present 55.89 51.90 47.45 55.31 55.23 52.87 

Not present 44.11 48.10 52.55 44.69 44.77 47.13 
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Variables 

Crash Types 

Head-on (3,770) Rear-end (2,809) Right-angle (196) Sideswipe (1,186) Single-vehicle (1,481) Hit-parked-vehicle (558) 

Roadway Characteristics 

Location type       

Urban area 23.42 47.85 75.00 31.45 19.72 34.41 

Rural area 76.58 52.15 25.00 68.55 80.28 65.59 

Road class       

National highways 55.46 42.19 23.98 44.18 47.06 55.02 

Regional highways 15.68 11.50 3.57 17.20 14.79 12.19 

Feeder roads 11.83 11.11 4.59 13.74 17.56 8.60 

Village roads 6.84 3.84 4.08 8.85 9.79 3.23 

City roads 10.19 31.36 63.78 16.02 10.80 20.97 

Presence of divider       

Divided 8.51 34.25 55.61 15.77 8.17 20.43 

Undivided 91.49 65.75 44.39 84.23 91.83 79.57 

Road geometry       

Straight 86.68 93.95 97.45 88.28 83.19 94.98 

Curve 10.16 3.92 2.04 9.02 9.59 3.76 

Slope 1.30 1.03 0.51 0.51 2.36 1.08 
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Variables 

Crash Types 

Head-on (3,770) Rear-end (2,809) Right-angle (196) Sideswipe (1,186) Single-vehicle (1,481) Hit-parked-vehicle (558) 

Others 1.62 0.89 0.00 2.11 3.85 0.00 

Facility type       

Not at intersection 73.74 69.35 26.02 60.62 76.03 65.23 

At intersection 26.26 30.65 73.98 39.38 23.97 34.77 

Surface quality       

Good 96.23 96.97 100.00 95.11 90.41 96.59 

Rough 2.73 2.35 0.00 3.04 6.48 2.69 

Road features       

Bridge-culvert 3.10 2.56 0.00 2.70 4.59 2.51 

None/narrowing/restricted 96.90 97.44 100.00 97.30 95.41 97.49 

Environmental and Weather Characteristics 

Time of the day       

Late night 15.94 17.48 20.41 13.66 25.05 29.75 

Peak morning 13.02 11.14 10.71 12.06 12.02 11.47 

Off-peak morning 20.69 20.86 21.43 22.51 18.84 15.59 

Off-peak evening 24.96 22.18 25.00 24.62 19.99 15.95 

Peak evening 11.46 12.46 9.18 12.48 10.67 9.50 
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Variables 

Crash Types 

Head-on (3,770) Rear-end (2,809) Right-angle (196) Sideswipe (1,186) Single-vehicle (1,481) Hit-parked-vehicle (558) 

Late evening 13.93 15.88 13.27 14.67 13.44 17.74 

Season of the year       

Winter 25.92 26.37 22.96 27.07 26.74 24.37 

Summer 26.45 25.95 30.61 26.89 27.35 27.42 

Rainy 25.97 25.28 26.02 23.61 24.17 24.73 

Autumn  21.67 22.46 20.41 22.43 21.74 23.48 

Light conditions        

Daylight 70.08 67.78 64.80 70.91 61.44 55.73 

Dawn/dusk 14.54 11.75 12.24 13.07 16.41 15.95 

Night lighted 4.91 12.53 21.43 7.00 6.14 10.57 

Night not lighted 10.48 7.94 1.53 9.02 16.00 17.74 

Weather conditions        

Clear 91.03 94.80 96.43 92.75 90.01 94.44 

Rain 5.73 2.78 2.55 4.13 6.28 3.41 

Fog and wind 3.24 2.42 1.02 3.12 3.71 2.15 

Temporal Characteristics  

Year       
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Variables 

Crash Types 

Head-on (3,770) Rear-end (2,809) Right-angle (196) Sideswipe (1,186) Single-vehicle (1,481) Hit-parked-vehicle (558) 

2000 7.08 10.36 11.73 7.34 8.71 6.99 

2001 5.36 6.16 8.67 6.16 8.04 8.06 

2002 5.97 9.36 10.20 9.36 11.07 9.14 

2003 7.67 8.44 10.20 8.60 10.20 11.47 

2004 6.39 8.26 7.14 6.91 7.43 6.09 

2005 6.68 6.05 9.18 6.75 8.10 4.30 

2006 6.37 5.41 8.16 6.49 6.68 7.71 

2007 8.49 6.51 6.12 9.11 7.70 5.56 

2008 7.32 7.33 7.14 8.85 8.44 8.42 

2009 6.92 7.23 7.65 6.16 4.86 7.89 

2010 6.39 6.51 3.06 4.64 4.93 5.02 

2011 4.91 4.95 3.57 3.96 3.31 3.41 

2012 6.21 4.31 2.04 5.14 3.24 4.84 

2013 5.04 3.49 1.02 3.29 2.57 3.76 

2014 5.07 2.28 1.02 4.22 2.43 3.94 

2015 4.14 3.35 3.06 3.04 2.30 3.41 

*Column percentage  1 
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Table A.2: MNL (Crash Type) Model Estimates with Temporal Heterogeneity (Base: Head-on) 1 

Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant -0.617 -15.193 -4.084 -26.482 -1.451 -31.366 -1.067 -19.648 -1.993 -26.170 

Driver Characteristics 

DUI suspicion (Base: Not DUI suspect)           

DUI suspect* -- -- -- -- -- -- 0.236 5.214 -- -- 

DUI suspect* nYear4 -- -- -- -- -- -- -0.304 -4.780 -- -- 

Vehicle Characteristics  

Vehicle type (Base: 4-wheeler light vehicles)           

Bus -- -- -- -- -- -- 0.023 2.880 -- -- 

Truck -- -- -- -- -- -- -0.049 -5.247 0.135 1.990 

Truck*nYear4 -- -- -- -- -- -- -- -- -0.285 -1.782 

Truck*nYear7 -- -- -- -- -- -- -- -- 0.344 1.851 

Truck*nYear10 -- -- -- -- -- -- -- -- -0.280 -2.132 

Motorcycle -- -- -- -- -- -- -0.655 -5.148 -0.087 -3.767 

Motorcycle*nYear4 -- -- -- -- -- -- 0.664 3.831 -- -- 

Motorized 3-wheelers -0.061 -5.213 -0.114 -2.222 -0.200 -2.532 -0.070 -4.816 -0.073 -3.107 
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Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Motorized 3-wheelers* nYear4 -- -- -- -- 0.206 1.899 -- -- -- -- 

Informal vehicles 0.019 2.031 -- -- 0.025 2.092 -- -- -- -- 

Vehicle maneuvering (Base: Straight and others)           

Overtaking -- -- -- -- 0.300 4.317 -- -- -- -- 

Overtaking*nYear4 -- -- -- -- -0.328 -3.481 -- -- -- -- 

Crossing -- -- 0.129 4.240 -- -- -- -- -- -- 

Turning -- -- -- -- -- -- 0.027 2.253 -- -- 

Fitness certificate (Base: Not present)           

Present -0.013 -2.523 -0.044 -2.337 -- -- -- -- -0.028 -2.897 

Roadway Characteristics 

Location type (Base: Rural area)           

Urban area 0.162 4.872 -- -- -- -- -0.085 -2.990 -- -- 

Urban area*nYear4 -0.179 -3.973 -- -- -- -- -- -- -- -- 

Urban area*nYear7 -- -- -- -- -- -- 0.303 3.049 -- -- 

Urban area*nYear10 -- -- -- -- -- -- -0.571 -3.868 -- -- 

Urban area*nYear13 -- -- -- -- -- -- 0.421 2.393 -- -- 
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Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Road class (Base: National highways)           

Feeder roads 0.038 3.485 -- -- -- -- 0.303 7.241 -- -- 

Feeder roads*nYear4 -- -- -- -- -- -- -0.389 -6.357 -- -- 

Feeder roads*nYear13 -0.179 -1.727 -- -- -- -- -- -- -- -- 

Village roads -- -- -- -- 0.162 2.178 0.050 4.142 -0.072 -2.369 

Village roads*nYear4 -- -- -- -- -0.186 -1.812 -- -- -- -- 

City roads 0.028 3.032 0.566 5.414 -- -- 0.049 3.463 -- -- 

City roads*nYear4 -- -- -0.609 -4.157 -- -- -- -- -- -- 

Presence of divider (Base: Not divided)           

Divided 0.542 13.211 0.442 4.255 0.221 3.976 -- -- 0.070 5.087 

Divided*nYear4 -0.592 -10.489 -0.467 -3.202 -0.227 -2.998 -- -- -- -- 

Road geometry (Base: Straight and slope)           

Curve section -0.073 -6.072 -- -- -- -- -- -- -0.116 -3.934 

Facility type (Base: Not at intersection)           

Intersection -- -- 0.558 7.091 0.256 6.640 -- -- 0.027 2.661 

Intersection*nYear4 -- -- -0.614 -5.688 -0.288 -5.539 -- -- -- -- 
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Variables 

Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Surface quality (Base: Good)           

Rough -- -- -- -- -- -- 0.058 3.842 -- -- 

Road features (Base: None/narrowing/restricted)           

Bridge and culvert -- -- -- -- -- -- 0.039 2.305 -- -- 

Environmental and Weather Characteristics 

Time of the day (Base: Other than late night))           

Late night -- -- -- -- -- -- 0.336 8.981 0.051 4.469 

Late night*nYear4 -- -- -- -- -- -- -0.420 -7.903 -- -- 

Light condition (Base: Daylight, dawn and dusk)           

Night lighted 0.030 2.868 -- -- -- -- -- -- 0.041 2.180 

Night not lighted -- -- -- -- -- -- 0.033 3.019 0.185 2.703 

Night not lighted*nYear4 -- -- -- -- -- -- -- -- -0.197 -2.032 

Note: “*” Represents the effect of the variable for the base year 2000 (nYear1*DUI suspect), If the interaction of a variable becomes significant for the base year 1 

only, then the slope of the effect of that variable will not change for the rest of the years which implies that the variable impact is linear. For this variable, the 2 

coefficient (estimate for “nYear1*variable”) is the mean effect for the base year, for the second year the mean effect will be 2*coefficient, for the third year the 3 

mean effect will be 3*coefficient, and so on; “--” Represents the variables are not significant at 90% confidence level.  4 
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Table A.3: GOL (Injury Severity) Model Estimates with Temporal Heterogeneity  1 

Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Threshold between NI-SI 0.491 7.016 1.405 16.111 1.578 5.197 1.285 10.818 1.619 16.841 1.514 8.352 

Threshold between SI-GI 0.896 15.193 1.810 10.192 1.802 3.078 1.833 4.970 2.338 3.680 1.966 4.662 

Threshold between GI-FI 1.779 2.580 2.953 1.976 3.598 2.376 2.764 0.694 3.001 3.313 2.759 1.522 

Driver Characteristics 

Speeding related (Base: Not speeding)             

Speeding* 0.075 4.011 -- -- -- -- -- -- -- -- 0.045 1.746 

Speeding *nYear7 -0.130 -3.539 -- -- -- -- -- -- -- -- -- -- 

Vehicle Characteristics 

Vehicle type (Base: 4-wheeler light vehicles)             

Bus -0.100 -7.566 -0.886 -5.641 -- -- -0.526 -3.375 -0.054 -2.752 -0.136 -2.687 

Bus*nYear4 -- -- 1.028 4.947 -- -- 0.597 2.821 -- -- -- -- 

Truck -0.475 -6.287 -0.392 -4.309 -- -- -0.165 -4.243 -0.044 -1.861 -0.131 -3.695 

Truck*nYear4 0.709 4.384 0.385 3.126 -- -- -- -- -- -- -- -- 

Truck*nYear7 -0.253 -2.183 -- -- -- -- -- -- -- -- -- -- 

Pick-up -- -- -- -- -- -- 0.067 1.781 -- -- -- -- 
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Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Motorcycle 0.752 11.415 1.188 13.429 0.416 7.935 0.212 9.913 0.952 6.134 0.182 3.862 

Motorcycle*nYear4 -0.722 -8.099 -1.533 -7.733 -- -- -- -- -1.138 -5.208 -- -- 

Motorcycle*nYear7 -- -- 0.477 2.983 -- -- -- -- -- -- -- -- 

Motorized 3-wheelers 0.094 6.853 0.717 6.652 -- -- 0.067 2.392 -- -- 0.120 3.104 

Informal vehicles 0.061 4.023 -0.857 -5.739 -- -- 0.052 2.206 -- -- -- -- 

Informal vehicles*nYear4 -- -- 1.556 2.346 -- -- -- -- -- -- -- -- 

Informal vehicles*nYear16 -- -- 0.717 6.652 -- -- -- -- -- -- -- -- 

Threshold between SI-GI -- -- -- -- -- -- -0.303 -1.870 -- -- -- -- 

Threshold between GI-FI   -0.065 -2.79 -- -- -- -- -- -- -- -- 

Vehicle maneuvering (Base: Straight and 

others) 

            

Turning -- -- -- -- -- -- -- -- 0.098 4.467 -- -- 

Fitness certificate (Base: Not present)             

Present -- -- -- -- -0.161 -2.676 -- -- -- -- -- -- 

Roadway Characteristics 

Location type (Base: Rural area)             
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Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Urban area -0.026 -2.325 -- -- -- -- -0.035 -2.008 -- -- -- -- 

Road class (Base: National highways)             

Regional highways -0.057 -4.972 -- -- -- -- -- -- -- -- -- -- 

Feeder roads -0.079 -5.313 -0.048 -2.165 -- -- -- -- -- -- -- -- 

Village roads -0.103 -6.536 -0.102 -2.350 -- -- -- -- -- -- -- -- 

City roads -0.060 -3.325 -0.064 -4.476 -0.129 -1.919 -- -- -- -- -- -- 

Surface quality (Base: Good)             

Rough -0.065 -2.483 -- -- -- -- -- -- -- -- -- -- 

Environmental and Weather Characteristics 

Time of the day (Base: Other than late night)             

Late night 0.020 1.650 0.036 2.177 -- -- -- -- -- -- 0.223 3.597 

Late night*nYear7           -0.254 -1.990 

Threshold between GI-FI -0.045 -2.740 -- -- -- -- -- -- -- -- -- -- 

Season of the year (Base: Summer)             

Rainy -- -- -- -- -- -- -- -- 0.037 1.830 -- -- 

Light condition (Base: Daylight, dawn/dusk)             



 

72 

 

Variables 

Head-on Rear-end Right-angle Sideswipe Single-vehicle 

Hit-parked-

vehicle 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Night lighted -- -- -- -- 0.203 2.263 -- -- -- -- -- -- 

Night not lighted -- -- -- -- -- -- -- -- 0.042 1.928 -- -- 

Weather condition (Base: Clear)             

Rain 0.067 3.998 -- -- -- -- -- -- -- -- -- -- 

Fog and wind 0.059 2.522 -- -- -- -- -- -- 0.119 2.530 -- -- 

Note: “*” Represents the effect of the variable for the base year 2000 (nYear1*Speeding), If the interaction of a variable becomes significant for the base year only, 1 

then the slope of the effect of that variable will not change for the rest of the years which implies that the variable impact is linear. For this variable, the coefficient 2 

(estimate for “nYear1*variable”) is the mean effect for the base year, for the second year the mean effect will be 2*coefficient, for the third year the mean effect 3 

will be 3*coefficient, and so on; “--” Represents the variables are not significant at 90% confidence level; NI=No injury, SI=Simple injury, GI=Grievous injury, 4 

FI=Fatal injury. 5 


