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ABSTRACT 1 

This study explores the dynamic relationship between COVID-19 transmission and transportation 2 

mobility, with an emphasis on understanding the time varying bi-directional interplay across the 3 

different phases of the pandemic. To gain insight into this relationship, we analyzed county-level 4 

data on transmission and mobility patterns from the US over a 74-week period using a 5 

comprehensive list of factors including (a) temporal factors, (b) socio-demographics, (c) health 6 

indicators, (d) health care infrastructure attributes, and (e) spatial factors. For our analysis, we 7 

proposed a simultaneous econometric model system that explicitly accounts for the bi-directional 8 

relationship between COVID-19 transmission and mobility patterns while also accounting for the 9 

influence of common unobserved factors on the two variables. The model results strongly support 10 

our hypothesis that COVID-19 transmission and mobility patterns are interconnected. Further, our 11 

findings show distinct phases of the bi-directional relationship influenced by behavior changes, 12 

vaccine availability and the emergence of new variants. Additionally, we conducted a validation 13 

exercise on a hold-out sample to assess the robustness of our model. The results confirm the 14 

superiority of the simultaneous model system with enhanced interpretability and prediction 15 

capability. By analyzing data from several weeks for COVID-19 pandemic, our study provides 16 

valuable insights into the evolving dynamics and potential strategies for future pandemics. 17 

 18 

Keywords: COVID-19 transmission, mobility patterns, bi-directional relationship, simultaneous 19 

model20 
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INTRODUCTION 1 

Coronavirus disease 2019 (COVID-19) pandemic has affected the mental and physical health of 2 

people across the world significantly taxing the social, health and economic systems (1). The 3 

multiple surges of COVID-19 cases in US, Europe and various countries around the world have 4 

burdened social, health and economic systems. While the number of COVID cases have 5 

substantially reduced post-Omicron, it appears that COVID will continue to burden health systems 6 

as we enter the endemic stage. The focus of the current research effort is on understanding the 7 

evolving time-varying bi-directional relationship between COVID-19 transmission and 8 

transportation mobility.  9 

In March 2020, when COVID-19 was declared a pandemic, it was a major shock to the world 10 

population affecting work schedules, transportation mobility and nearly every facet of life. In the 11 

initial months of the pandemic, following social distancing guidelines and stay-at-home orders 12 

transportation mobility significantly reduced. A large section of the population voluntarily 13 

followed public health guidance to alter their social interaction and mobility patterns. However, as 14 

the pandemic continued to persist, there have been changes in behavior influencing mobility 15 

patterns. The changes in behavior can be described along two directions. First, the share of the 16 

population that reduced their mobility started to go down. Second, even among the population 17 

altering their behavior, the difference (or reduction) in mobility relative to early-pandemic levels 18 

were reducing. These changes have ebbed and flowed with local and global COVID-19 case 19 

numbers in the region over time. In this research, we hypothesize that as the pandemic continued, 20 

there were multiple phases in how the relationship between COVID and transportation mobility 21 

evolved.  22 

The initial phase of the pandemic is characterized by large abrupt shifts in mobility patterns. 23 

Several research efforts analyzing US data found the effectiveness of social distancing measures 24 

in mitigating COVID-19 transmission (2–10). For example, Glaeser et al. 2022 (7)  conducted an 25 

analysis across five cities in the United States and found that a 10% decrease in mobility tended to 26 

decrease the COVID -19 transmission rate  by 19%. Similarly, Harris, 2022 (10) analyzed data 27 

from 111 counties in the US and found that every 1% decline in mobility during Week 1 could 28 

reduce COVID-19 transmission by 0.63% by the end of Week 3. In a related vein, some research 29 

efforts have utilized stay-at-home orders as a proxy for reduced mobility. For instance, Friedson 30 

et al., 2020 (3) found that the imposition of stay at home orders in California resulted in a reduction 31 

of about 200 COVID-19 cases per 100K population and about 1,600 fewer deaths. Inoue and 32 

Okimoto, 2023 (9) further supported these findings by demonstrating that the declaration of a State 33 

of Emergency (SOE) and stay-at-home orders significantly curtailed the COVID-19 transmission 34 

rate, underscoring the effectiveness of mobility restrictions in controlling the spread of the virus. 35 

On the other hand, several studies have focused on understanding the impact of COVID-19 on 36 

people's mobility or travel behavior(2, 11, 12). For instance, Engle et al., 2020 (2) found that 37 

people are altering their travel patterns in response to COVID-19 transmission. Specifically, the 38 

study found that a 0.003% increase in the COVID-19 transmission rate leads to a 2.3% reduction 39 

in mobility. Hao et al.2022 (12) examined the impact of the pandemic on human mobility patterns 40 

in New York State by comparing visits to Points-Of-Interest (POIs) in 2019 and 2020. Their study 41 

observed an average reduction rate of 40% in overall mobility, with variations ranging from a 34% 42 

decrease in visits to service shops such as travel agencies, furniture stores, and sporting goods 43 

stores, to a more pronounced reduction of 60% in other types of travel, including air travel, freight, 44 

and other transportation sectors. Similarly, Panik et al. 2023 (11) explored the impact of COVID-45 

19 on travel behavior across 404 counties in the United States from April to September 2020 and 46 
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found a significant decrease in overall mobility, particularly in urban areas. While research studies 1 

have focused on examining the uni-directional impact of mobility on COVD-19 transmission and 2 

vice-versa1, it is plausible to consider the potential for a two-way relationship between COVID-19 3 

transmission and transportation mobility. In regions with higher transmission rates, local agencies 4 

were likely to impose (or re-impose) stricter guidelines prompting individuals to reduce their travel 5 

during the high incidence period and cause a potential lowering of transmission rates.  6 

As the pandemic persisted through 2021, transportation mobility recovered at varying rates 7 

during differ time periods. The behavioral response to emerging COVID waves has also varied 8 

across population groups. For example, months into the pandemic, younger adults were less likely 9 

to adhere to public health guidelines compared to their older counterparts. These changes in 10 

behavior were further accentuated with wide availability of vaccines. As vaccination rates 11 

increased, there was more openness among the vaccinated population to increase their social 12 

interactions and return to early-pandemic mobility patterns. Further, while large parts of the 13 

population are attempting to return to some sort of normalcy, a small but significant share of the 14 

population that is either unvaccinated due to vaccine unavailability for children, immuno-15 

compromised or worried about COVID impacts continue to alter their mobility patterns. In 16 

summary, the post-pandemic mobility trends are a result of the interaction across these various 17 

population segments.  18 

In our proposed research effort, the emphasis is on understanding this multi-phased 19 

relationship between COVID-19 transmission rate and mobility patterns. The development of 20 

model frameworks that examine the influence of factors affecting the uni-directional impact (the 21 

impact of transmission on mobility or the impact of mobility on transmission) while useful might 22 

lead to inaccurate or misleading conclusions on the influence of various independent variables. 23 

For instance, a traditional modeling approach may suggest that increased mobility leads to higher 24 

transmission, but it fails to capture the influence of the feedback where higher transmission 25 

subsequently reduces mobility. To be sure, addressing the bi-directional relationship between 26 

COVID-19 transmission and mobility presents a complex scenario for modeling and analysis. 27 

Specifically, to address this endogeneity and capture the bi-directional relationship, simulation 28 

based simultaneous modeling techniques can be employed. In this approach, transmission and 29 

mobility are simultaneously modeled allowing us to account for interconnectedness across these 30 

dependent variables. The approach allows us to obtain more accurate estimates of the impact of 31 

various factors affecting these dependent variables. Further, the simultaneous framework allows 32 

us to incorporate the influence of common unobserved factors that affect these variables. The 33 

consideration of these interactions between the dependent variables allows us to represent  the 34 

dynamics of the pandemic comprehensively. The approach by quantifying the bi-directional 35 

interplay between transmission and mobility will allow us to develop useful policy tools that target 36 

both variables, leading to more informed and efficient decision-making. 37 

In our research, the simultaneous framework is built upon data compiled at the county level 38 

in the US. Specifically, we address these questions: 39 

1. What is the relationship between county level COVID-19 transmission rate and mobility 40 

patterns?  41 

2. How has the relationship evolved from March 2020 to August 2021?  42 

 
1 It is beyond the scope of our paper to extensively review the vast literature concerning uni-directional models that 

separately analyze the impacts of COVID-19 on mobility and mobility's effects on COVID-19 transmission. (Please 

see (31, 32) for detailed literature review). 
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3. What will the long-term influence of COVID-19 on mobility patterns be as it becomes 1 

endemic (like Flu)? 2 

The proposed spatio-temporal analysis of county level dependent variables is undertaken 3 

using an exhaustive database of transmission rates, mobility patterns and a comprehensive list of 4 

county level variables including socio-demographics, health indicators, health care infrastructure 5 

attributes and spatial and temporal factors. The research employs data from March 25th, 2020, to 6 

August 24th  2021 for the dependent variables (COVID-19 transmission rate and population 7 

mobility) on a weekly basis. The proposed research develops a simultaneous econometric model 8 

system that allows for the bi-directional impact across the two dependent variables while 9 

controlling for the influence of common unobserved factors affecting the two variables. The 10 

framework will also specifically allow for variation of the impact over time by considering various 11 

phases of the pandemic in the US such as (a) initial part of the pandemic, (b) first wave, (c) second 12 

wave, and (d) vaccination phase.  13 

The insights gained from this paper remain highly relevant and critical for future public health 14 

preparedness, even though the immediate crisis of the COVID-19 pandemic has largely passed. 15 

During the pandemic, we observed an interconnected bi-directional relationship between COVID-16 

19 transmission and people's mobility. Increased mobility led to higher transmission rates in 17 

subsequent weeks. The increased transmission rates prompted a reduction in mobility in the 18 

following periods, possibly due to public responding to the increase and the implementation of 19 

various  health measures by local agencies. The resulting reduction in mobility contributed to a 20 

lower transmission rates. The cycle continues with a relaxation in restrictions and a subsequent 21 

increase in mobility as people felt safer and less restricted. The overall relationship is underscoring 22 

the connected impacts of mobility and transmission, highlighting a complex feedback loop that 23 

earlier research typically overlooked by focusing only on unidirectional effects. Such insights are 24 

crucial for developing more effective public health strategies that can dynamically respond to 25 

changes in pandemic conditions. Recognizing this, we developed a simultaneous econometric 26 

model system in our study that offers a robust framework for understanding the bidirectional 27 

impacts of mobility and COVID-19 transmission. By capturing this interplay, the model provides 28 

more accurate forecasts and insights. As we anticipate future pandemics potentially related to 29 

COVID-19 variants or other novel pathogens (13), the demonstrated need for models that account 30 

for such bidirectional influences becomes increasingly pertinent. This paper serves as a reference 31 

for future research and policy development, aiming to enhance our preparedness and response 32 

strategies for upcoming public health challenges. 33 

The remainder of the paper is organized as follows. The next section (Data) provides details 34 

about data source, preparation of the dependent and independent variables, and descriptive analysis 35 

results. The details of econometric framework used in the study are discussed in the 36 

Methodological Framework section. The model estimation results, validation outcomes and 37 

elasticity effects are presented in the Empirical Analysis section. The final section concludes the 38 

paper with a summary of findings and some future research directions. 39 

 40 

DATA 41 

In our analysis, we study two per capita dependent variables: (a) COVID-19 weekly transmission 42 

rate and (b) weekly mobility trends (sourced from exposure data). The COVID-19 transmission 43 

data is sourced from Center for Systems Science and Engineering (CSSE) Coronavirus Resource 44 

Center at Johns Hopkins University (14). The mobility data is sourced from PlaceIQ which is based 45 

on smartphone movement data within and across the counties in US (15). From the movement 46 
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data, for each smartphone device visiting a location, the total number of distinct devices visiting 1 

that location at that particular time is calculated (15). These distinct devices will serve as exposure 2 

for the particular device. Similarly, one can compute the exposure for all the devices residing in a 3 

county per week and finally compute the weekly average exposure at the county level. In our 4 

analysis, exposure is employed as a surrogate for mobility.  5 

For the current research effort, we confined our attention to the counties of United States with 6 

at least 100 COVID-19 cases. With this requirement, a total of 1,986 counties across 51 States are 7 

included in the analysis. The counties considered for analysis represent approximately 97% of the 8 

total population and 98% of the total confirmed COVID-19 cases in the US. Figure 1 represents 9 

the weekly pattern as well as the 3-week moving average for COVID-19 transmission rate and 10 

Mobility of the selected counties. The reader would note that in the figure, week 1 starts from 11 

January 31st , 2020 and week 82 ends on August 24th , 2021. The figure clearly highlights the 12 

effect of COVID-19 on population mobility and vice-versa as well as demonstrating how the 13 

relationship evolved over the different phases of the pandemic.  For instance, as the COVID-19 14 

cases started to be detected in the US in beginning of March (7th and 8th week), we can see a sudden 15 

drop in weekly mobility in the mid of March (10th and 11th week). Similarly, reduced social 16 

interactions in the mid of March lead to a steady decline in COVID-19 transmission rate by the 17 

end of March (week 15th and 16h). However, with increasing familiarity with COVID around Fall 18 

2020, we observe a weakened relationship between the COVID-19 transmission and mobility 19 

patterns. Interestingly, the mobility characteristics in Fall 2020 actually exceed the initial baseline 20 

(pre covid mobility in January 2020). The trends after wide vaccine availability are quite intuitive 21 

illustrating a steady decline in the virus transmission rate while mobility gradually increased over 22 

time. However, from July 2021, the COVID-19 cases again started to rise as a new strain of 23 

COVID-19 were discovered (Delta). Despite the new wave of the COVID-19 transmission, weekly 24 

mobility was on the rise for some time before presenting a steady decline at the end of August. 25 

The overall trend in the figure clearly supports our hypothesis of a multi-phase relationship 26 

between COVID-19 transmission and population weekly mobility patterns over the different 27 

phases of the pandemic. The trend will be evaluated across the following multiple phases: (a) early 28 

part of the pandemic (March 2020 through June 2020), (b) first wave (July 2020 through October 29 

2020), (c) second wave (November 2020 through February 2021), and (d) vaccination availability 30 

(March 2021 through August 2021).  31 

In terms of independent variables, we consider a comprehensive set of  factors affecting 32 

COVID-19 and the mobility trends including (a) temporal factors: indicator variables representing 33 

different phases of the pandemic; (b) socio-demographics: distribution by age, gender, race, 34 

income, education status, income inequality and employment;  (c) health indicators: percentage of 35 

population suffering from cancer, cardiovascular disease, hepatitis, Chronic Obstructive 36 

Pulmonary Disease (COPD); diabetes, obesity, Human Immunodeficiency Virus (HIV), heart 37 

disease, kidney disease, asthma; drinking and smoking habits, (d) health care infrastructure 38 

attributes: hospitals per capita, ICU beds per capita, COVID-19 testing measures and covid 39 

vaccination measures (like when the vaccination starts and what is the rate); and (e) spatial factors: 40 

regional location, tourism status and airport density. Further, both the COVID-19 transmission and 41 

mobility trends will be used as an independent variable in the other equation. An exhaustive list of 42 

these variables are presented in Table 1. The reader would note that out of 1,986 counties, we 43 

randomly selected 1,755 counties as our estimation sample and the remaining 231 counties were 44 

set aside for the validation exercise.   45 

 46 
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 1 
Figure 1: Weekly COVID-19 Transmission Rate and Mobility Trends in US (1,986 counties) 2 

 3 

Table 1 Descriptive Statistics of the Dependent and Independent Variables 4 

Variables Source Mean Min/Max 
Sample 

Size 

Dependent Variables 

Ln (COVID case per 100 people) CSSE a 4.235 0.000/9.297 129,870 

Ln (Daily Average Exposure) CEIb 4.544 1.574/6.824 129,870 

Independent Variables 

Demographic Characteristics 

Young people percentage ACSc 22.403 7.155/35.987 1755 

Senior people percentages ACS 17.558 6.724 /56.944 1755 

Hispanic percentage ACS 10.015 0.653/96.322 1755 

African American percentage ACS 9.720 0.113/76.331 1755 

Female percentage ACS 50.348 37.041/56.145 1755 

Employment Rate per 100K population ACS 10.689 9.878/11.061 1755 

Income inequality ratio (80th /20th percentile) CHRRd 4.540 2.987/9.148 1755 

Health Indicators 

Asthma % for >= 18 years CDC 9.417 7.400/12.300 1755 

Ln (number of cardiovascular patients per 1000 

Medicare beneficiaries) 
CHRR 4.119 3.157/4.891 

1755 

Hepatitis C Cases per 100K population CDCe 1.064 0.000/5.600 1755 

Ln (HIV rate per 100K population) CDC 4.780 0.723/7.859 1755 

Ln (cancer rate per 100K population) CDC 6.119 5.489/6.436 1755 

Health Infrastructure Attribute 

Testing rate, 5 days lag CTPf 8.431 0.000/12.015 3,700 

Spatial factors 

West region USA map 0.120 0.000/1.000 1755 

Mid-West region USA map 0.108 0.000/1.000 1755 

North-East region USA map 0.308 0.000/1.000 1755 
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Top 10 tourist state CHRR 0.252 0.000/1.000 1755 

Number of airports per 100k population CHRR 1.269 0.000/24.927 1755 
a = Center for Systems Science and Engineering Coronavirus Resource Center at Johns Hopkins University (16); b= 1 
COVID Exposure Indices (15); c =American Community Survey; d = County Health Rankings & Roadmaps; e= 2 
Central for Disease Control  System; f= Center for Systems Science and Engineering Coronavirus Resource Center at 3 
Johns Hopkins University (17). 4 

 5 

METHODOLOGY 6 

The focus of the current study is to jointly model COVID-19 transmission and mobility trends. 7 

The two dependent variables: (a) COVID-19 weekly transmission rate and (b) weekly average 8 

mobility are continuous in nature and lend themselves to a system of linear regression models. The 9 

reader would note that we have repeated measures across each county (T weeks for each county) 10 

and the traditional linear regression model is not appropriate to study data with such repeated 11 

observations (18, 19). Hence, we employ a joint linear mixed modeling approach that builds on 12 

the linear regression model while incorporating the influence of repeated observations from the 13 

same county as well as captures the simultaneity between the two dependent variables. A brief 14 

description of the proposed simultaneous panel linear mixed model is provided below: 15 

Let q = 1, 2, …, Q (Q =1,755) be an index to represent each county, and t = 1, 2, …, T (T 16 

=74) be an index to represent the weeks for which data (cases and mobility) was collected. The 17 

general form of the joint mixed linear regression model has the following structure: 18 

 19 

𝑦𝑞𝑡
∗ =  𝛼𝑋 +  𝜌𝑐𝑞𝑡 + 𝛿𝑞 + 𝜂𝑞𝑡 + 𝜀𝑞 + 𝜉𝑞𝑡              (1) 20 

𝑧𝑞𝑡
∗ =  𝛽𝑋 +  𝑛𝑣𝑞𝑡 + 𝛿𝑞 +  𝜂𝑞𝑡 + 𝜏𝑞 + 𝜀𝑞𝑡                  (2) 21 

where 𝑦𝑞𝑡
∗  is the first dependent variable representing the new COVID 19 cases per 100K 22 

population per week, and 𝑧𝑞𝑡
∗  represents the weekly average mobility at a county level. 𝑋 is the 23 

vector of independent variables. As consistent with earlier studies (19, 20), we believe that 24 

mobility will have a lagged effect on COVID-19 transmission i.e. total exposure to virus in the 25 

current week is likely to manifest as cases in the subsequent weeks. Similarly, COVID-19 26 

transmission will have a lagged effect on the weekly mobility into the future weeks (1 or 2 weeks). 27 

In our analysis, we will test for different lag variables for both COVID-19 transmission and 28 

mobility including 1-week, 2-week, 3-week, and 4-week lags. The lag variables (lag mobility 29 

indicated by the 𝑐𝑞𝑡 term; and lag COVID-19 transmission data indicated by the 𝑣𝑞𝑡 term)  30 

providing the best model fit will be retained in the final specification. 𝛼, 𝛽, 𝜌, 𝑎𝑛𝑑 𝑛 represent 31 

corresponding model coefficients.  𝛿𝑞 𝑎𝑛𝑑 𝜂𝑞𝑡 captures the common unobserved county and 32 

county-week factors respectively that simultaneously impact the weekly COVID-19 transmission 33 

rate and weekly average mobility at the county level. The correlation parameters are parametrized 34 

as a function of observed attributes as follows: 35 

 36 

𝛿𝑞 = 𝜸𝑞𝒔𝑞                             (3) 37 

𝜂𝑞𝑡 = 𝜶𝒒𝒕𝒛𝑞𝑡                            (4) 38 

 39 

where 𝒔𝑞 and 𝒛𝑞𝑡 are vector of exogenous variables and 𝛾𝑞 and 𝜶𝑞𝑡 are the corresponding vector 40 

of unknown parameters to be estimated. Here, we will explore different indicator variables for 41 

different phases to see how the correlation changes over the phases of the pandemic.  42 

The 𝜀𝑞 , 𝑎𝑛𝑑 𝜏𝑞 term in equation 1 and 2 will be same across each county and thus captures 43 

the dependencies across the repetition for each county for the corresponding dependent variable. 44 
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To account for the repeated dependencies, we used the Autoregressive moving average (ARMA) 1 

structure. The exact functional form of the covariance structure assumed is shown below: 2 

 3 

ƒ𝑦,𝑧  = 𝜎𝑦,𝑧
2

(

 
 

1 𝜙𝑦,𝑧𝜌𝑦,𝑧 … 𝜙𝑦,𝑧𝜌𝑦,𝑧
𝑡−1

𝜙𝑦,𝑧𝜌 1 … 𝜙𝑦,𝑧𝜌𝑦,𝑧
𝑡−2

⋮ ⋮ ⋱ ⋮
𝜙𝑦,𝑧𝜌𝑦,𝑧

𝑡−1 𝜙𝑦,𝑧𝜌𝑦,𝑧
𝑡−2 … 1

)

 
 

 (5) 4 

 5 

where, 𝜎𝑦,𝑧
2  represents the error variance of 𝜉𝑞𝑡 and 𝜀𝑞𝑡 respectively, 𝜙𝑦,𝑧 represents the 6 

common correlation factor across time periods for 𝑦𝑞𝑡 and 𝑧𝑞𝑡, and 𝜌𝑦,𝑧 represents the dampening 7 

parameter that reduces the correlation over time(18). The correlation parameters 𝜀𝑞 , 𝑎𝑛𝑑 𝜏𝑞, if 8 

significant, highlight the impact of county effects on the dependent variables.  𝜉𝑞𝑡 , 𝜀𝑞𝑡 are the 9 

random error term assumed to be normally distributed across the dataset. Then the probability 10 

equation of the joint model can be written as follow: 11 

 12 

𝑃(𝑦𝑞𝑡) = Ψ (𝑦𝑞𝑡
~ )/𝜎𝑦                                                      (6) 13 

 14 

𝑃(𝑧𝑞𝑡) = Ψ (𝑧𝑞𝑡
~ )/𝜎𝑧                         (7) 15 

 16 

where,  𝑦𝑞𝑡
~  = (𝑦𝑞𝑡 − 𝑦𝑞𝑡

∗ )/𝜎𝑦 and 𝑧𝑞𝑡
~  = (𝑧𝑞𝑡 − 𝑧𝑞𝑡

∗ )/𝜎𝑧. 𝑝𝑦𝑞𝑡 and 𝑝𝑧𝑞𝑡 is the probability that county 17 

q in week t has 𝑦𝑞𝑡 COVID-19 tranmission and 𝑧𝑞𝑡 average mobility. Ψ computes the standard 18 

normal probability distribution function. In estimating the model, it is necessary to specify the 19 

structure for 𝜸, 𝝆, 𝜀 𝑎𝑛𝑑 𝜏 represented by Ω. In this paper, it is assumed that these elements are 20 

drawn from independent normal distribution: Ω~𝑁 (0, (𝝅′
𝟐
, 𝜱𝟐, 𝝈𝟐, 𝝂2 )). Thus, conditional on 21 

Ω, the likelihood function across county can be expressed as: 22 

𝐿𝑞 = ∏ [(𝑃(𝑦𝑞𝑡) ×  𝑃(𝑧𝑞𝑡))]
𝐾
𝑘=1                             (8) 23 

where K is the number of repetitions. In our analysis, we estimate the correlation for two repetition 24 

resolutions including (a) correlation for all records at weekly level (N=74 weeks), and monthly 25 

level (M= 18). The flexibility offered by the mixed model for testing dependencies enhances the 26 

model development exercise over its simpler form. Of these two models, we will select the model 27 

that provides the best result in terms of statistical data fit and variable interpretation. The 28 

unconditional log-likelihood function for individual county q is:  29 

𝐿𝑞 = ∫ ∏ [(𝑃(𝑦𝑞𝑡) ×  𝑃(𝑧𝑞𝑡))]
𝐾
𝑘=1

⬚

Ω
𝑑Ω                                    (9) 30 

The full log-likelihood function is estimated as:  31 

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑞)𝑞                          (10) 32 

 33 

 34 
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EMPIRICAL ANALYSIS 1 

Model Fit 2 

The model estimation was conducted using independent variables outlined in the data section. The 3 

reader will note that the covid transmission model was estimated using mobility variables and the 4 

mobility model was estimated using covid transmission variables. The empirical analysis involves 5 

a series of model estimations. First, we developed uni-directional linear regression models (ULRs) 6 

for both COVID-19 weekly transmission rate and the weekly mobility patterns without considering 7 

the bi-directional relationship and the corresponding temporal correlations. Second, we improve 8 

the ULRs by considering the temporal correlations outlined in the methodology section and named 9 

it as uni-directional mixed linear regression model (UMLRs). As discussed earlier, in our data, we 10 

had two level of repetitions: weekly level and monthly level. In our analysis the model capturing 11 

the weekly level dependencies offers the best fit and hence we selected this model for the next 12 

step. In the final step, we develop joint  econometric model that allows for the bi-directional impact 13 

across the two dependent variables while also controlling for the influence of common unobserved 14 

factors affecting the two variables. We called this model joint bi-directional mixed linear model 15 

(JBMLR).  16 

To evaluate the performance of the models, we calculated Bayesian Information Criterion 17 

(BIC). The BIC value for a given empirical model can be calculated as: [–  2 (𝐿𝐿) +  𝐾 ln(𝑄)], 18 

where 𝐿𝐿 is the log-likelihood value at convergence, 𝐾 is the number of parameters and 𝑄 is the 19 

number of observations. The model with the lowest BIC value is the preferred model. The BIC 20 

(LL) values for the final specifications of the three models are: 1) separate uni-directional linear 21 

regression model system (with 39 parameters): 549525.02 (-274532.91); 2) separate uni-22 

directional mixed linear regression model system (with 41 parameters): 539963.81 (-269740.53); 23 

and 3) joint bi-directional mixed linear regression model system (with 42 parameters): 519432.74 24 

(-259469.11). The comparison exercise highlights two important observations. First, models 25 

incorporating temporal dependencies provides improved performances relative to their simpler 26 

counterparts as evidenced by the lower BIC value. The results demonstrate the effectiveness of the 27 

mixed modeling approach in handling data with repeated measures. Second, the BIC value of the 28 

joint model is  considerably lower than separate mixed linear regression model system offering 29 

support to our hypothesis that a bi-directional relationship between the weekly COVID-19 30 

transmission rate and mobility pattern is likely to exist.  31 

 32 

Model Results 33 

The model fit measures presented in the previous section clearly highlight the superior 34 

performance of the joint bi-directional mixed linear regression model system over its counterparts. 35 

Therefore, in this section, we discuss the effects of variables by variable category obtained from 36 

the joint model only. The reader would note that we tested several variables and functional forms 37 

during the model estimation process. The variables that yielded the best data fit and offered 38 

intuitive parameter interpretations were included in the final specification. The final model was 39 

selected through a systematic process of eliminating all the insignificant variables at a 90% 40 

significance level. The estimation results are presented in Table 2. 41 

 42 

 43 

 44 

 45 

 46 
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Table 2: Joint Bi-Directional Linear Mixed Regression (BLMR) Model Estimation Results 1 

Model/Variable 

Covid Transmission 

Model 
Mobility Model 

Estimates t-statistics Estimates t-statistics 

Constant 1.337 12.029 2.864 77.125 

Temporal Factors (Base: Vaccination Phase) 

Pre pandemic period -1.911 -32.007 -0.800 -102.829 

1st wave 0.480 53.178 -0.428 49.161 

2nd wave 1.630 182.419 -0.180 21.493 

Mobility-related Variables 

Mobility, 2 weeks lag,  

in initial phase of pandemic 
0.204 14.958 -- -- 

Mobility, 2 weeks lag,  

in 1st and 2nd wave of pandemic 
0.471 27.909 -- -- 

Covid-related Variables 

Covid cases, 2 weeks lag,  

in initial phase of pandemic 
-- -- -0.631 -6.56 

Covid case, 2 weeks lag,  

during 1st wave of pandemic 
-- -- -0.453 -19.458 

Covid case, 2 weeks lag,  

during 2nd wave of pandemic 
-- -- -0.297 -18.106 

Covid case, 2 weeks lag,  

during vaccination phase 
-- -- -0.071 -6.762 

Health Care Infrastructure Attributes 

Testing rate, 5 days lag 0.028 12.230 -- -- 

Demographics 

% Young people 0.022 14.388 0.026 53.622 

% Senior people -0.005 -4.951 -0.01 -29.526 

% African American people 0.005 14.692 -0.004 -41.802 

% Hispanic people 0.001 3.819 -0.002 -22.538 

% Female  0.009 4.324 -- -- 

Employment rate per 100K population -- -- 0.103 115.674 

Health Indicators 

No. HIV patients 0.064 12.077 -- -- 

No. Hepatitis C patients 0.012 6.237 -- -- 

Spatial Factors 

Bottom 10 tourist states -0.183 -16.731 -- -- 

South 0.021 1.983 0.706 231.408 

Mid-West 0.085 8.359 0.261 82.541 

No. airport per 100K population 0.171 15.619 0.331 6.821 

Correlation Parameters 
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σ^2 1.912 49.925 1.231 23.841 

ϕ 0.286 102.854 0.331 86.439 

ρ 0.830 12.561 0.497 37.822 

η 0.683 102.236 0.683 102.236 

 1 

COVID Transmission Model 2 

Constant: The constant does not have any substantive interpretation after adding other independent 3 

variables. 4 

 5 

Temporal Factors: In the COVID transmission model, we introduced different temporal time 6 

period specific indicator variables to examine how the different phases affected virus transmission 7 

rate. The temporal attributes considered include: (a) early-pandemic period (March 2020 through 8 

June 2020), (b) 1st wave defined as the time period from July 2020 to October 2020, (c) 2nd wave 9 

defined as time period from November 2020 to February 2021and (d) Vaccination period defined 10 

as time period from March 2021 to August 2021). The model parameters for these indicator 11 

variables estimated with vaccination phase as the base variable offered expected results.  The 12 

coefficient for the early-pandemic period highlights the lower COVID-19 transmission rate 13 

relative to the vaccination period. The result can be attributed to implementation of strict lockdown 14 

measures, travel restrictions, and public awareness campaigns promoting preventive measures. In 15 

the middle phases, the model results reveal a significant increase in the COVID-19 transmission 16 

rate as evidenced by the positive coefficient observed for both 1st and 2nd wave period of the 17 

pandemic. Interestingly, the impact is more pronounced during the 2nd wave period, underscoring 18 

a substantial rise of COVID cases during that particular period. Increased social interactions and 19 

emergence of new variants are some of the factors that facilitated such increased transmission of 20 

the virus.  21 

 22 

Mobility-related variables: As discussed earlier, we recognize that mobility will have a lagged 23 

effect on COVID-19 transmission i.e., exposure to virus today is likely to manifest as a case in the 24 

next 5 to 14 days. Hence, in our analysis, we tested several lag combinations in the model 25 

development. Based on our model estimation, the best statistical and intuitive fit was obtained for 26 

the specification with 2-weeks lag mobility. As expected, the overall mobility effect shows a 27 

positive contribution in transmitting COVID-19 virus (21, 22). The effect is a clear indication of 28 

the significant role of mobility on transmitting the virus within communities. However, the effect 29 

is substantially different across different phases of the pandemic lending support to our hypothesis 30 

that the relationship between mobility and COVID-19 transmission varies over time. Specifically, 31 

the impact of mobility is more pronounced in the later phase of the pandemic (1st and 2nd wave) in 32 

comparison to the beginning of the pandemic. The results clearly highlights that the impact of 33 

mobility on COVID-19 transmission is not constant but rather influenced by the specific phase of 34 

the pandemic, highlighting the importance of considering temporal dynamics in understanding the 35 

virus's spread. 36 

 37 

Health Care Infrastructure Attributes: With respect to health care infrastructure related variables, 38 

we find that higher testing rate is generally linked to higher COVID-19 transmission (19, 23). The 39 

finding is intuitively understandable as higher testing efforts lead to increased identification of 40 

COVID cases. In absence of adequate testing, individuals with mild symptoms are deterred from 41 

testing themselves due to long wait times.  42 
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 1 

Socio-demographics: Among socio-demographic variables, we find several attributes to have a 2 

significant impact on the COVID-19 transmission rate. Counties with higher share of young people 3 

are likely to report an increased incidence of COVID-19 cases while a larger percentage of senior 4 

people in the county is negatively associated with the transmission rate (20).  The results follow 5 

expected trends as young people are likely to engage more in social gatherings while seniors are 6 

more cautious and follow preventive measures. Further, the results indicate that a higher share of 7 

African-American, Hispanic and female population in a county contributes positively to COVID-8 

19 transmission. The findings are consistent with findings from previous research (24–26).  9 

 10 

Health Indicators: Several health indicators were considered in the model (see Table 1). The 11 

parameters of health indicator variables underscore their importance on understanding the COVID-12 

19 transmission. Our results indicate that counties with a greater number of HIV and Hepatitis C 13 

patients are likely to experience higher COVID-19 transmission rates. The results are intuitive 14 

because individuals with such conditions have a compromised immune system and are more 15 

susceptible to contracting and transmitting COVID.  16 

 17 

Spatial Factors: The final variable group considered in our model correspond to spatial factors 18 

including variables related to tourism, regional location, and airport density. We considered the 19 

tourism status of the state in our analysis by identifying the top and bottom 10 desirable states with 20 

respect to tourism activity. The counties were allocated to Top and bottom 10 tourism status based 21 

on their respective state ranking. As expected, we find a negative effect of the bottom 10 tourist 22 

attraction states on COVID transmission rate. The result might be indicative of reduced travel 23 

activity in such regions. In terms of regional location, we find higher COVID-19 incidence in the 24 

South and mid-west regions. A possible explanation for these effects is probably related to the 25 

population density and variation of public health measures in such areas. Finally, the parameter 26 

regarding the number of airports suggests that areas with more airports are likely to experience 27 

higher incidence of COVID cases, perhaps indicative of the increased travel and higher exposure 28 

in those locations (19).  29 

 30 

Mobility Model 31 

Constant: The constant does not have any substantive interpretation after including other 32 

independent variables 33 

 34 

Temporal Factors: As described in the COVID model results section, mobility patterns of people 35 

have undergone significant changes across different phases of the pandemic. For instance, during 36 

the early stage of the outbreak, we found a sharp decline in mobility as indicated by the negative 37 

parameter for the early-pandemic phase. This decrease could be attributed to the implementation 38 

of lockdowns and restrictive measures during the early stage of the pandemic. Interestingly, as the 39 

pandemic progressed, we find noticeable changes in the mobility pattern. Specifically, the effect 40 

on mobility was less severe during the 1st and 2nd wave of the pandemic compared to the initial 41 

stage of the pandemic. It appears that as time went on, mobility starts to recover to some extent 42 

compared to the early-pandemic period (see (27) for similar results). However, the reader will also 43 

note that the mobility levels during these periods were lower relative to the mobility levels in the 44 

vaccination phase.  The varying temporal parameters can be attributed to familiarity with COVID, 45 

use of masking, ease of lockdown and fatigue associated with the pandemic.  46 
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 1 

COVID-19 related Variables: Similar to the COVID model, we hypothesize that COVID-19 2 

incidence reported today will likely impact mobility behavior in the future. We tested several 3 

lagged transmission variables, and the two-week lag COVID-19 transmission variable offered the 4 

best fit. The presence of several COVID-transmission related variables in Table 2 demonstrates 5 

the impact of COVID-19 on mobility patterns. Consistent with earlier research (28, 29), our 6 

analysis also found a negative association between COVID-19 transmission and mobility patterns. 7 

The result suggests that counties experiencing an elevated number of COVID-19 cases today will 8 

likely have lower travel related activities 2 weeks into the future. Interestingly, the model results 9 

show that as the pandemic progressed, the negative effect gradually diminished over the different 10 

phases of the pandemic indicating a partial recovery in mobility despite the presence of higher 11 

COVID-19 transmission rate. It appears that people may have responded to the ongoing pandemic 12 

situation by adopting safety measures, adjusting their behaviors, and finding ways to resume 13 

certain activities while managing the risks. 14 

 15 

Socio-demographics: Socio-demographic characteristics are found to play an important role in 16 

influencing mobility behavior. The population share by age in a county offered clear impact on 17 

mobility. Specifically, we find that an increase in the percentage of young people in a county 18 

contributes positively towards mobility. Usually, young individuals are more active and are less 19 

likely to curtail their mobility in the presence of COVID-19. Contrastingly, the opposite is true for 20 

senior people, that is in counties with higher share of senior population mobility is likely to be 21 

lower (30). The model estimation results show that counties  with higher share of  African-22 

American and Hispanic people are likely to experience higher mobility. Finally, the positive 23 

coefficient associated with the employment rate indicates that an increase in the employment rate 24 

in a county resulted in increased mobility. A higher employment rate is associated with a higher 25 

need to travel (for work) and ability to engage in discretionary leisure activities.   26 

 27 

Spatial Factors: Among spatial factors, our analysis indicates that several factors related to 28 

geographical location and airport accessibility have a positive effect on mobility demand. 29 

Specifically, people residing in the south and mid-west region exhibit higher mobility as indicated 30 

by the positive coefficient in Table 2. The higher mobility can be attributed to favorable weather 31 

conditions, extensive private transportation infrastructure and lower inclination for lockdown 32 

measures in these regions. Further, the parameter associated with airport density offers a positive 33 

contribution suggesting an increased mobility demand in the areas with better airport accessibility. 34 

In general, an increased number of airports in a county contribute to higher mobility. 35 

 36 

Correlation Factors 37 

As described in the methodology section, we developed a bi-directional simultaneous mixed linear 38 

model for estimating the daily COVID-19 transmission rate  and the mobility pattern to incorporate 39 

two levels of dependencies: a. temporal correlations: dependencies across each county for weekly 40 

level repetitions (𝜎2, 𝜌 and 𝜙,) and b. common unobserved factors affecting COVID-19 41 

transmission and mobility pattern simultaneously (η). The last row panel of Table 2 present the 42 

estimated correlation parameters. All the parameters demonstrate high significance level 43 

highlighting the influential role of unobserved factors in shaping the relationship between COVID-44 

19 transmission and population mobility level. In particular, the significant impact of the temporal 45 

correlations underscores the role of temporal dynamics and dependencies over time(74 weeks) in 46 
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influencing COVID-19 transmission and mobility patterns. Additionally, the presence of 1 

significant common unobserved factors (η in Table 2) suggests interconnectedness between 2 

COVID-19 transmission and mobility patterns. The findings offer support to our hypothesis that it 3 

is necessary to develop a simultaneous model to capture the influence and feedback between 4 

COVID-19 transmission and mobility patterns. 5 

 6 

Validation Analysis  7 

In this section, we conducted a validation exercise, to evaluate the performance of the proposed 8 

joint model on observations set aside for validation and not used for model estimation (231 9 

counties were set aside as the hold-out sample). In the validation exercise, the performance of the 10 

joint bi-directional mixed model is compared with the performance of the uni-directional mixed 11 

linear model and the uni-directional linear regression model. The comparison exercise across the 12 

three models is conducted based on the root mean square error value (RMSE). The results for the 13 

validation effort are presented in Table 3. The results clearly highlight the superior performance 14 

(as indicated by the lower RMSE values) of the joint model over its other counterparts across both 15 

estimation and validation samples. The validation exercise further confirms the suitability of the 16 

simultaneous bi-directional model for capturing the interconnectedness across COVID and 17 

mobility, as it offers enhanced interpretability as well as improved predictive capability. The reader 18 

would note the adoption of other metrics such as mean prediction bias (MPB), mean absolute 19 

deviation (MAD) offer similar results and are presented in the Appendix (Table A.1). 20 

 21 

Table 3: Model Validation Results 22 

Data Model 
COVID Model 

RMSE 

Mobility Model 

RMSE 

Estimation 

Uni -directional linear regression model  201.151 61.561 

Uni-directional mixed linear model 189.49 53.871 

Joint bi-directional mixed model  89.167 42.990 

Validation 

Uni -directional linear regression model  239.981 76.340 

Uni-directional mixed linear model 222.891 66.910 

Joint bi-directional mixed model  100.674 56.110 

 23 

Elasticity Effects 24 

To further assess the effectiveness and robustness of our proposed simultaneous modeling 25 

framework, we conducted an elasticity analysis comparing the elasticity impact of variables from 26 

joint bi-directional model with the elasticity impact of variables from its uni-directional 27 

counterparts. This comparison exercise will uncover the pitfalls of uni-directional models and 28 

highlight the advantages offered by the bi-directional model. To that extent, we compute aggregate 29 

level elasticity effects for both BJMLR and UMLR models. In particular, we estimate the 30 

percentage change in the expected COVID -19 transmission and weekly mobility pattern  in 31 

response to the increase of the explanatory variable by 10% (see (25, 26) for a discussion on the 32 

methodology for computing elasticities). For this purpose, we identify a subset of exogenous 33 

variables including COVID transmission rate, weekly mobility, percentage of young and senior 34 

people and no. airports in the county. The elasticity analysis results comparing the UMLR and 35 

JBMLR models are presented in Table 4.  36 

 37 
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Table 4: Elasticity Effects Across Two Models (UMLRs and JBMLR) 1 

Variables/Model 
UMLRs JBMLR 

Covid 

Model 

Mobility 

Model 

Covid 

Model 

Mobility 

Model 

Mobility, 2 weeks lag, in initial phase of 

pandemic 
1.94% -- 2.04% -- 

Mobility, 2 weeks lag, in 1st and 2nd wave of 

pandemic 
5.31% -- 4.71% -- 

Covid cases, 2 weeks lag, in initial phase of 

pandemic 
-- -7.13% -- -6.31% 

Covid case, 2 weeks lag, during 1st wave of 

pandemic 
-- -2.97% -- -4.53% 

Covid case, 2 weeks lag, during 2nd wave of 

pandemic 
-- -1.91% -- -2.97% 

Covid case, 2 weeks lag, during vaccination 

phase 
-- -1.13% -- -0.71% 

% Young people 4.70% 5.82% 4.93% 5.82% 

% Senior people -0.88% -1.58% -0.88% -1.76% 

No. airports per 100K population 2.17% 4.00% 2.16 % 4.20% 

 2 

Two important observations can be made based on the elasticity effects presented in Table 3 

4. First, we find significant differences in the estimated impact of variables between the UMLRs 4 

and JBMLR model. For example, while mobility with a 2-week lag during the early phase of the 5 

pandemic reveals a positive impact in both models, the effect is slightly higher in the JBMLR 6 

model compared to its uni-directional counterpart. However, the opposite is true in the later phases 7 

of the pandemic (1st and 2nd wave), i.e., mobility is found to have reduced positive effect in the 8 

JBMLR model. Similar results are also observed regarding COVID-19 related variables. The 9 

model incorporating the interplay between COVID-19 transmission and weekly mobility pattern 10 

(JBMLR) offers  a higher negative impact of COVID-19 transmission on the mobility relative to 11 

the UMLR model. On the other hand, during the vaccination phase, the impact of COVID-19 12 

transmission on mobility is less severe in the BJMLR model as indicated by the lower negative 13 

value in Table 4. These discrepancies clearly highlights the importance of considering the bi-14 

directional relationship between COVID-19 transmission and mobility when interpreting the 15 

effects of independent variables. Second, we find smaller differences for demographics and airport 16 

effects across both models  as indicated in Table 4. The results suggest that these effect remain 17 

relatively constant irrespective of the modeling framework.   18 

In summary, the differences in variable impacts further lends support to our hypothesis that 19 

allowing for the feedback between COVID-19 transmission and mobility will provide a more 20 

accurate representation of their relationship. Specifically, the JBMLR model incorporates the bi-21 

directional relationship between COVID-19 transmission and mobility, thus providing a 22 

comprehensive understating of the reciprocal effects. In contrast, the UMLRs treat COVID and 23 

mobility as separate systems, potentially resulting in incorrect and/or biased interpretation of the 24 

effects of independent variables. 25 

 26 
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CONCLUSION 1 

Earlier research studies typically focused on examining the uni-directional impact of mobility on 2 

COVID-19 transmission and vice-versa. However, it is possible that these variables are 3 

interconnected with each other. Addressing the presence of interplay between COVID-19 4 

transmission and population mobility by recognizing the bi-directional relationship is essential for 5 

accurate analysis and policy formulation. The current research effort develops a simultaneous 6 

econometric model system that allows for the bi-directional impact across the two dependent 7 

variables (COVID-19 transmission and population mobility pattern) while also controlling for the 8 

influence of common unobserved factors affecting the two variables. With the bi-directional 9 

model, in our analysis, we explored the changing relationship between transmission and mobility 10 

by considering various phases of the pandemic in the US including (a) initial part of the pandemic, 11 

(b) first wave, (c) second wave, and (d) vaccination phase. We analyzed county-level data on 12 

transmission and mobility patterns from the US over a 78-week period using a comprehensive list 13 

of factors including (a) temporal factors, (b) socio-demographics, (c) health indicators, (d) health 14 

care infrastructure attributes, and (e) spatial factors. 15 

The empirical analysis involves estimation of three different model system: a) uni-directional 16 

linear regression models (ULRs) where we develop separate linear regression models for both 17 

COVID-19 weekly transmission rate and the weekly mobility patterns; b) uni-directional mixed 18 

linear regression models (UMLRs) where we consider temporal dependencies within each ULR 19 

for COVID-19 weekly transmission rate and the weekly mobility patterns; and c) joint bi-20 

directional mixed linear regression models (JBMLR) where we extend the UMLRs by allowing 21 

for the bi-directional impact across the two dependent variables while also controlling for the 22 

influence of common unobserved factors affecting the two variables. The three model systems 23 

were compared based on Bayesian Information Criterion (BIC). The findings highlighted the 24 

superiority of the proposed simultaneous framework (JBMLR) over its counterparts in analyzing 25 

COVID-19 transmission rates and mobility patterns.  26 

Model estimation results highlight the presence of a complex and multi-phased relationship 27 

between COVID-19 transmission and mobility patterns. While the overall mobility effect shows a 28 

positive contribution in increasing COVID-19 transmission, the impact is different across different 29 

phases of the pandemic. Similarly, COVID-19 transmission is found to be negatively associated 30 

with mobility. However, the magnitude of the effect gradually went down as the pandemic 31 

progressed. Both these findings clearly highlight that the interplay between the two variables is 32 

not constant but rather influenced by the specific phase of the pandemic. Further, the significant 33 

impact of the common unobserved factors clearly provide credence to our hypothesis of the 34 

existence of the bi-directional relationship and the need to take into account such relationship while 35 

analyzing the COVID-19 transmission rates and the mobility patterns.  36 

The analysis was further augmented by undertaking a validation exercise using the final model 37 

parameter estimates on both estimation and hold-out samples. The results further confirm the 38 

suitability of the simultaneous model for capturing the interconnectedness across COVID and 39 

mobility, as it offers enhanced interpretability as well as greater predictive capability. An elasticity 40 

analysis was also conducted to illustrate the importance of the bi-directional model vis-à-vis the 41 

uni-directional model. The uni-directional models are prone to over or under-estimate the influence 42 

of different variables considered.  43 

The findings of the study can be used to develop strategies for managing future pandemics 44 

and reducing their impact on public health and transportation systems. To further illustrate the 45 

practical application of our findings, let's consider a scenario where we manage public spaces such 46 



18 

 

as restaurants and parks during a pandemic with changing transmission rates, comparing the use 1 

of unidirectional versus bidirectional models. In a unidirectional approach, public spaces might 2 

experience rigid, uniform closures whenever COVID-19 cases rise, only considering how 3 

transmission affects mobility. This reactive approach could lead to delayed reopening even as case 4 

numbers decrease, extending economic and social losses well beyond what may be required. On 5 

the other hand, a bidirectional model will be able to capture the dynamic interplay between disease 6 

transmission and mobility. It not only responds to how rising cases might reduce mobility but also 7 

prepares for the increase in mobility as cases decline. Hence, this model might suggest tightening 8 

measures like outdoor dining or limited occupancy as cases rise and then implementing a phased, 9 

data-driven reopening as transmission decreases. This proactive approach aligns public health 10 

measures more closely with both epidemiological data and public behavior shifts, maintaining 11 

public trust and compliance. By integrating this bidirectional perspective, policymakers can devise 12 

strategies that effectively manage both the virus’s spread and its socio-economic impacts, leading 13 

to more sustainable and successful pandemic management. Further, the proposed simultaneous 14 

approach can be applied across other fields where endogeneity plays a significant role, such as 15 

crash and citation analysis, crash severity and emergency medical service response time analysis. 16 

To be sure, the study is not without limitations. Data availability issues prevent us from 17 

including the Omicron and post-Omicron phases in our analysis. Future research should 18 

incorporate data from these phases to obtain a more comprehensive understanding of the dynamics 19 

between COVID-19 transmission and population mobility patterns.   20 
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Appendix 1 

Table A.1: Model Prediction Results (MPB and MAD) 2 

Data Model 

COVID Model Mobility Model 

MPB MAD MPB MAD 

Estimation 

Uni -directional linear regression model  10.21 36.47 5.43 19.29 

Uni-directional mixed linear model 8.96 33.61 5.11 18.77 

Joint bi-directional mixed model  7.32 26.83 5.02 15.53 

Validation 

Uni -directional linear regression model  13.73 46.32 9.58 29.72 

Uni-directional mixed linear model 13.11 44.17 8.13 28.98 

Joint bi-directional mixed model  12.51 40.98 7.97 26.53 

 3 


