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Abstract
The growing adoption of electric vehicles offers a potential opportunity to reduce transportation sector carbon footprint. In our research, we studied vehicle purchase behavior with emphasis on alternative fuel vehicles using the vehicle purchase dataset “MaritzCX New Vehicle Customer Study”. This study consisted of a two-level modeling approach. In the first level, purchasing of a new car was estimated based on consumers socio-economic characteristics. In the second level, the vehicle purchase decision was examined with a two-dimensional dependent variable – vehicle type and fuel type. We employed an innovative data fusion approach that probabilistically links records from MaritzCX with records from National Household Travel Survey with the objective of identifying new independent variables affecting the decision process while maximizing data fit. The final model included a host of independent variables from four different categories: vehicle-, economic-, demographic-, and spatial characteristics. Finally, the model results were employed to conduct an elasticity analysis.

Keywords: Vehicle purchase decision, fuel type, vehicle type, fusion model, MaritzCX data






























Background
In the United States, the over-reliance on personal automobile for mobility needs is well recognized. The number of households reported to own at least one vehicle has increased from 86.5% in 1983 to 91.1% in 2017 (Mcguckin et al., 2018). The over-reliance on automobiles has economic and environmental implications. On the economic front, over reliance contributes to increase in household expenditure in response to gas prices, congestion related losses (time and money), suburban sprawl and increased infrastructure construction and maintenance costs (Okeke et al., 2020; Kanyepe et al. , 2021). On the environmental front, increased reliance on automobile alternative results in significant noise and air pollution contributing to increased carbon emissions and worsening public health (Lowe et al., 2022; Morency et al., 2020).  In fact, a typical passenger vehicle driven for 11,500 miles at a fuel efficiency of 22 miles per gallon is expected to emit 4.6 metric tons of CO2 annually (USEPA, 2022). The growing adoption of alternative fuel vehicles (AFVs) including Hybrid vehicles, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) offers a mechanism for reducing the impact of automobile dependency on the environment. The carbon emissions from these alternative fuel vehicles are reported to be 17-30% lower than the emissions from conventional gasoline or diesel vehicles (Blink, 2023). 
In the US, the sales of various AFVs have increased over time. For instance, light duty plug-in EVs in 2021 were 608,000; about twice the sales in 2020 (Minos, 2022). The growing adoption of these alternative fuel vehicles across the country raises an important question for transportation planners, energy companies and vehicle manufacturers – What are factors that encourage or dissuade the purchase of AFVs? The objective of the current research is to study vehicle purchase behavior with emphasis on AFVs using a scarcely used vehicle purchase dataset MaritzCX New Vehicle Customer Study (NVCS). MaritzCX data is a long-serving vehicle purchase behavior consumer survey that provides details of the various vehicles purchased or leased across US and Canada. The dataset is the most comprehensive survey of vehicle purchases with about 12.5 million survey responses in the last 50 years. The data is employed by vehicle manufacturers to draw on insights on customer behavior including evolving trends, changes to behavior and brand value (MaritzCX, 2019). While the MaritzCX data provides the most comprehensive vehicle purchase data, it is not employed in transportation modeling to understand population vehicle purchase behavior for two reasons. First, MaritzCX records represent a self-selected sample of vehicle purchasers (and not the general population). Second, MaritzCX data provides very limited data on the household characteristics of the vehicle purchases. Hence, the rich set of vehicle purchase observations are not useful in understanding vehicle fleet evolution at the household resolution. 
In the current research effort, we propose solutions to address these limitations and develop a framework that will allow us to tap into the rich information available in MartizCX data. The self-selection of vehicle purchasers is addressed by developing a vehicle purchase decision model using data from the 2017 National Household Travel Survey (NHTS, 2017). From the NHTS data we create a binary dependent variable – new vehicle purchase decision based on vehicle acquisition year reported in the survey. The households that acquired a new vehicle are assigned a value of one and rest of the households are assigned a value of zero. The dependent variable created is analyzed to identify the factors influencing the decision to purchase a vehicle. The binary model thus allows us to create the sample of households that are in the market for purchasing vehicles – the sample represented in MaritzCX data. 
[bookmark: _Hlk110279816]To improve the independent variables available in the MaritzCX data, we employ an innovative data fusion approach that probabilistically links records from MartitzCX with records from NHTS. The fusion process, developed recently by the study (Bhowmik et al., 2024a; Bhowmik et al., 2024b), is guided by a maximum likelihood approach that allows for fusing two datasets without any common identifier (mathematical details are provided in Methodology section) with the objective of improving the model fit of the choice variable of interest. In our research, the choice variable of interest is the combination of vehicle type (defined as Utility vehicles, Sport sedans, Sedans, and Pickup trucks) and fuel type (defined as Gasoline and non-Gasoline[footnoteRef:3]). The fused dataset is employed to analyze vehicle purchase decisions with eight alternatives using a multinomial logit model. The model estimation process clearly illustrates how the model developed with fused records (i.e., considering the newly added independent variables from NHTS) offer significant improvement in data fit. The model exercise is supplemented with elasticity analysis to illustrate the applicability of the proposed model.  [3:  The share of EVs in the 2017-18 MaritzCX data sample are small. Hence, we employed a non-gasoline characterization of our dependent variable. While the non-gasoline characterization includes multiple fuel types, we can employ the framework developed here to consider that non-gasoline market will primarily evolve into an EV market.] 

The remainder of the paper is organized as follows: The earlier literature section provides a brief overview of vehicle ownership models. The next section outlines the methodological details while the Data Section summarizes the datasets. The Model results section summarizes the results of the models estimated. The applicability of the proposed framework is illustrated in the elasticity analysis section. The final section concludes the paper. 

earlier work and study contributions

Earlier Research
Vehicle ownership models have received significant attention in transportation literature (see (Anowar et al., 2014; Ma and Ye, 2019) for review efforts). In our study, we provide a brief review of relevant literature. In vehicle ownership studies, the dimensions of interest include: (a) vehicle type choice such as sedan, and sports utility vehicle (SUV) (Spissu et al., 2009; Baltas and Saridakis, 2013; Mabit, 2014; Gillingham et al., 2015; Bubeck et al., 2016; Cirillo et al., 2016; Jian et al., 2017; Nazari et al., 2019), (b) comparative evaluation of various fuel types considering costs  (Ahn et al., 2008; Bolduc et al., 2008; Fang, 2008; Bhat et al., 2009; Sheldon and Dua, 2018, 2021; Guo et al., 2019; Ryu et al., 2020), and (c) adoption of alternative fuel vehicles including EVs (Qian and Soopramanien, 2011; Eppstein et al., 2011; Hoen and Koetse, 2014; Chen et al., 2015; Bubeck et al., 2016; Hackbarth and Madlener, 2016; Daina et al., 2017; Mulholland et al., 2018; Liao et al., 2019; Kumar and Chakrabarty, 2020; Lee and Brown, 2021; Caggiani, Prencipe and Ottomanelli, 2021; Fevang et al., 2021; Ackaah et al., 2022; Ayetor et al., 2023). The data sources employed for analysis vary by the vehicle ownership model resolution. For disaggregate analysis at the household level revealed preference data such as National Household Travel Survey, urban region-specific data (such as origin destination data for Montreal) and MaritzCX data are employed (Anowar et al., 2016).  Several studies, especially for understanding the preferences for emerging vehicle types have employed stated preference surveys (Cirillo et al., 2016; Menon et al., 2019). The spectrum of modeling approaches employed for vehicle ownership include multinomial logit model (Zhao et al., 2018; Fevang et al., 2021; Sabouri et al., 2021; Kiran and Shanmugam, 2017; Hara and Asahi, 2020), nested logit model (Stinson et al., 2020; Zhou et al., 2020), latent class logit model (Khan & Habib, 2021), ordered-logit model (Sabouri et al., 2021), Poisson regression model (Sabouri et al., 2021), and multiple discrete-continuous extreme value model (Ahn et al., 2008; Bhat et al., 2009; Jian et al., 2017). These studies employed a diverse range of exogenous variables including – household’s demographics, socio-economic attributes, commuting pattern characteristics, transportation network characteristics, land use characteristics, built environment characteristics, vehicle characteristics, and policy related attributes. Traditional vehicle choice studies that employed vehicle sales data usually limit themselves to vehicle characteristics (such as vehicle price, internal area, allowed load, vehicle age, engine power, cylinder volume, wheel type, fuel type, body type and vehicle brand) (see (Anderhofstadt & Spinler, 2019; Dhanabalan et al., 2018; Harahap et al., 2019; Joshi & Bhatt, 2018; Kim & Kim, 2014; Knez et al., 2014; Ma & Mayburov, 2021; Østli et al., 2017; Raza & Masmoudi, 2020)). On the other hand, vehicle choice studies that employed survey datasets (such as California Household Travel Survey data and datasets from SMS or email invitations) are found to emphasize several household socioeconomic characteristics (such as age, gender, household income, ethnicity, number of household vehicles, employment, educational qualification, and annual mileage) (see (Arokiaraj & M.Banumathi, 2014; Bauer, 2018; Biswas et al., 2014; Chang & Hsiao, 2011; Eluru et al., 2010; Liu et al., 2016; Nerurkar et al., 2023; Pierce & Connolly, 2023; van Huyssteen & Rudansky-Kloppers, 2024)). These studies are found to employ a very limited number of vehicle characteristics (such as fuel type, body type, vehicle brand and vehicle age). The reasoning for these data limitation is two-fold. First, vehicle characteristics and array of sociodemographic information are not readily available in a single data source. Second, for estimating vehicle ownership models employing different categories of exogenous variables, it might be necessary to merge several datasets. The merging process is straight forward in datasets with a clear matching identifier variable. However, the vehicle sales datasets and survey datasets do not have any common identifier variable that can be utilized for merging those datasets. To the authors’ knowledge, no research has undertaken a merging exercise for two datasets without a matched variable for developing vehicle ownership models. In this study we estimated households’ vehicle purchase decision, as a combination of vehicle type and fuel type, by integrating an extensive array of vehicle characteristics (from MaritzCX vehicle purchase data) alongside household’s economic and demographic characteristics (from 2017 NHTS data) through an innovative fusion of merging two distinct datasets without a matched identifier variable.

Current Study in Context
[bookmark: _Hlk110279982]The current study contributes to vehicle choice and purchase literature with the following three objectives. First, the study utilizes a large-scale vehicle purchase dataset scarcely employed in transportation literature. To be sure, multiple studies employed MaritzCX data to study vehicle ownership dimensions such as the role of fuel economy (Leard et al., 2020; Ankney and Leard, 2021), adoption of EVs (Holland et al., 2016, 2019; Jabbari et al., 2017; Xing et al., 2021), and purchasing new or used passenger cars (Leard, 2022). However, the models developed with MaritzCX data do not consider several important household variables influencing vehicle purchase decisions such as household age distribution, gender distribution, current vehicle ownership, vehicle availability, number of adults and children in the household, employment characteristics, and educational attainment of the household members. The current study is motivated by the need to improve our understanding of vehicle purchase decisions by incorporating additional independent variables drawn from NHTS and incorporated along with the rich details of vehicle fuel and type choice from MaritzCX data. Second, the dependent variable of interest in our analysis is combination of fuel (gasoline and non-gasoline) and vehicle type (utility vehicle, sport sedan, sedan, and pickup truck) alternatives. Fuel type is an important aspect to consider while purchasing vehicle, because of its effect not only on the maintenance and driving cost, but also on the environmental footprint of the vehicle. On the other hand, vehicle type represents consumers’ lifestyle and commuting requirements. Therefore, considering both fuel and vehicle type allows us to form a more inclusive decision. Finally, a novel data fusion approach has been utilized for merging two datasets with no matched identifier variable. The proposed data fusion approach is geared towards identifying new independent variables affecting the dependent variable while maximizing the fit for the dependent variable of interest (see Figure 1). The reader will note that the records in NHTS and MaritzCX do not correspond to the same individuals or households. The proposed data fusion is based on common attributes across the two datasets. Four identical variables – age category, income category, household’s state, and household’s location classified as urban or rural – are present in both MaritzCX and NHTS dataset. The fusion algorithm hypothesizes that households with matching attributes are likely to have an increased likelihood for making similar choices. The approach tests two weight mechanisms to recognize that multiple matches from NHTS dataset should contribute to only one record from MaritzCX (see (Bhowmik et al., 2024a; Bhowmik et al., 2024b) for examples of similar methods in different contexts). The data fusion process and model selection procedures are summarized in Figure 1 and 2.
In summary, the current study is conducted in two parts. In the first part, a binary logit model was estimated using the 2017 NHTS data to understand the impact of different household economic and demographic characteristics on household decision to purchase a new vehicle[footnoteRef:4]. This model allows us to identify the subsample of NHTS data that represent the households purchasing a new vehicle. In the second part, the NHTS records of this subsample were fused with the MaritzCX data employing the proposed fusion approach.      [4:  The reader would note that the NHTS data already identifies the households who purchased new vehicle(s). Thus, we do not strictly need the binary logit component for our analysis. However, when the model is applied to other datasets without an identifier for new purchases, having a purchase decision model will be useful as a two-level analysis. Hence, we included this in our paper. ] 
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Figure 1: MaritzCX and NHTS Data Fusion Illustration
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Figure 2: Flow Chart of Fusion Algorithm

Methodology
In this section, we present the methodological framework adopted in the study for analyzing household’s vehicle purchase decision. The model structure consists of two models: 1) a binary logit (BL) model to identify the households buying a new car, and 2) a data fusion driven model to analyze individual’s vehicle choice by fuel types and vehicle types. The methodologies of the proposed frameworks are described below.

Binary Logit Model
Let us assume  as the index for household in the NHTS data. Now for the binary logit framework, the probability expression is as follows:



where  represents the probability that household  will buy a new car or not (yes/no) and it will be determined based on .Here , if household  buys a new car, and , otherwise. With this notation, the equation for  is as follows:



where,  is a vector of attributes (including the constant) and  is a conformable parameter vector of the binary logit model to be estimated. This  will help us determining the household that will be fused with MaritzCX data. 

Fusion Model
The fusion model structure has a decision component and a weight component. In the decision model component, a multinomial logit formulation for the vehicle purchase variable is considered as we have eight alternatives in the choice dimension. Let’s, assume  and  are two index representing fuel type and vehicle type respectively. In our study, the values of the  were assigned as follows: gasoline , non-gasoline ; and the values of the  were assigned as follows: utility vehicle , sport sedan , sedan , and pickup trucks . There are ) individuals in the MaritzCX data and m possible matches from the NHTS dataset. With this notation, the vehicle purchase propensity takes the following form:

)

where  represents the propensity of the individual  for the  fused record to purchase fuel type  and vehicle type .   is the observed vehicle choice, that is 1 if the person  in MaritzCX for the  fused record from NHTS had purchased fuel type  and vehicle type  and 0 otherwise. is a vector of attributes from the MaritzCX dataset that influence the vehicle purchase choice and  is the corresponding coefficients to be estimated (including a scalar constant).  is the vector of attributes from the NHTS dataset that affect the purchase decision and  is the corresponding vector of coefficients to be estimated.  is an idiosyncratic error term assumed to be identically and independently Type I Gumbel distributed. Based on this, the probability for person  for the  fused records to purchase fuel type  and vehicle type  given by:



The weight component also takes the form of a latent multinomial logit structure allocating the probability for each NHTS user being paired with the MaritzCX individual. The matched weightage propensity is determined based on a latent probability value estimated using a multinomial logit model as follows:



where  is a column vector of attributes for individual  and fused record  that influences the propensity of matching the NHTS data with the MaritzCX data. represents the variables that are present in both datasets but not used for fusion.  is the corresponding vector coefficients to be estimated. 

Model Estimation
Based on above notations, the overall weighted probability for each individual in the MaritzCX data can be written as:



where  is the weighted probability the person   in the MaritzCX dataset has the corresponding vehicle choice . Employing equation 6, several additional variables from the NHTS dataset will be employed to develop an improved vehicle purchase choice model. Finally, the log-likelihood function for the fused dataset is defined as:



The proposed matching algorithm has been estimated using a maximum likelihood based econometric model. We have used the GAUSS Matrix Programming software for estimating the models. 

Data Description
The MaritzCX vehicle purchase data and the National Household Travel Survey (NHTS) 2017 data were used in our analysis. MaritzCX data, providing the household vehicle ownership records from the year 2010 to 2018 of 1,813,674 households across the entire United States, was used for vehicle purchase related information. It contains information about vehicle purchase year, vehicle model year, fuel type, body type, vehicle make, model, cost, and engine characteristics. In addition, it provides information about consumers’ age, income, and housing locations (states and urban/rural). The MaritzCX data encompasses both household level (such as household income, location, and state) and person level (such as age of the customer who bought the car) attributes representing only one member from each household. On the other hand, the NHTS 2017 survey data was utilized in this study for detailed socio-economic and spatial characteristics including, household size, number of working members, number of adults, household vehicle availability, and educational attainment of the household members. This dataset contains the records of 118,100 households representing the characteristics of 103,091,506 households across the entire United States.

Dependent Variable
This study consisted of a two-level modeling approach. In the first level, purchasing of a new car was estimated based on consumers current socio-economic characteristics. For this model, households that acquired a new vehicle are assigned a value of one and the rest of the households are assigned a value of zero. In our analysis, vehicles of model year 2016 and 2017, and acquired in 2017 in NHTS 2017 data were considered as new vehicles. To ensure that model overfitting is not an issue, 25,000 out of 118,100 household records were randomly chosen for modeling purposes. The share of new vehicles in the estimation dataset was found to be 12.3%.
In the second level, the vehicle purchase decision was estimated for a two-dimensional dependent variable – vehicle type and fuel type. In our study, the variable of interest is the combination of vehicle types and fuel types, and the dependent variable is categorized into 8 categories (4 vehicle types x 2 fuel types). However, presence of alternatives with a very small share can affect the estimation of parameters for the smaller share alternatives. To circumvent this, we employ a dimension specific estimation approach for independent variable impacts. To elaborate, we estimate the impact of independent variables for vehicle type and fuel type separately. Then, after estimation, the impact of any alternative can be computed as the sum of the parameters for each dimension. This approach, sometimes referred to as portfolio modeling, is commonly employed for joint choice modeling in transportation (such as mode and departure time choice, mode and activity type choice; see (Anowar et al., 2015; Imani et al., 2014) for examples of such approaches). Since the estimation was conducted for only the new vehicles, vehicles of model year 2016 and 2017, and bought in 2017 in MaritzCX data were considered for this analysis. Based on this criterion, among 1,813,674 customer records 187,092 customers were found to buy a new car. After eliminating the cases with missing values, 103,385 customer records were retained in the study dataset. For the data fusion and modeling purpose 5,000 customers with a new car were randomly selected from the MaritzCX data[footnoteRef:5]. Further, the distributions of various fuel types and vehicle types are shown in Figure 3. It is found that gasoline operated vehicles hold the highest share of 86.76% in fuel type distribution, while utility vehicles hold the higher share of 53.40% in vehicle type distribution. The description of the dependent variables is presented in Table 1. [5:  The reader would note that full datasets were not used in our analysis for two reasons. First, estimating models with large samples can potentially inflate the t-statistics resulting in too many variables being significant leading to overfitting. So, using sampled datasets allows us to arrive at specifications that are less prone to overfitting. Second, the computational burden of running models with full datasets is significant in our research exercise. As the reader is aware, we run models after fusing different numbers of records – 1, 5, 10, 15, 20, 25, 30 and 35. So, when we estimate a model with a 5000-sample size for MaritzCX data with 15 fusion records from NHTS dataset we are estimating models with 5000*15 records. Given the number of comparisons we do across variable combinations and fusion sizes, the sampling approach offers a reasonable compromise.] 


[image: ]
Figure 3: Distribution of Dependent Variables

Independent Variable
A host of independent variables from four different categories: 1) vehicle characteristics and 2) household economic characteristics, 3) household demographic characteristics, and 4) spatial characteristics are utilized in this study. The vehicle characteristics data were drawn from MaritzCX data. All other variables are drawn from NHTS data and considered through the fusion process. In our study, the fusion model is developed by fusing the NHTS data to the MaritzCX data. Among 118,100 households in the NHTS data, 14,274 records are selected for fusion purpose based on the new vehicle criterion. Considering the data resolution, a dataset of 28,995 household members from the 14,274 households in NHTS data is employed to fuse with the MaritzCX data. The resampling procedure of both databases is presented in Figure 4. The descriptive statistics of the independent variables, used in the model specification, were presented in Table 1. The common variables across MaritzCX and NHTS data were identified in Figure 5 (variables with results from both datasets). In the model estimation process several functional forms of the variables were tested and the final specification was based on statistical significance at the 90% level.
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Figure 4: Resampling procedure of the MaritzCX and NHTS datasets



Figure 5: Mean of variables in MaritzCX and NHTS data



Table 1: Descriptive Statistics of the Model Variables
	Variable name
	Description
	Minimum
	Maximum
	Mean

	MaritzCX Data (N = 5,000)

	Fuel efficiency (mpg)
	Mileage driven by per gallon gas (equivalent to 33.7 kWh of electricity)
	13.35
	77.20
	25.79

	Vehicle price (in thousands)
	Vehicle price in USD
	16.88
	81.14
	35.74

	Engine size (liters)
	The volume of fuel and air that can be pushed through a car's cylinders 
	1.40
	6.40
	2.87

	2-door car
	Number of doors: 2
	0.00
	1.00
	0.08

	4-door car
	Number of doors: 4
	0.00
	1.00
	0.92

	Chevrolet
	Car brand: Chevrolet
	0.00
	1.00
	0.09

	Ford
	Car brand: Ford
	0.00
	1.00
	0.09

	Honda
	Car brand: Honda
	0.00
	1.00
	0.06

	Toyota
	Car brand: Toyota
	0.00
	1.00
	0.11

	Subaru
	Car brand: Subaru
	0.00
	1.00
	0.08

	Jeep
	Car brand: Jeep
	0.00
	1.00
	0.05

	GMC
	Car brand: GMC
	0.00
	1.00
	0.05

	Other brands
	Other than the above-mentioned brands
	0.00
	1.00
	0.47

	Low-income household
	Household income less than 50K
	0.00
	1.00
	0.12

	Medium income household
	Household income in between 50K and 100K
	0.00
	1.00
	0.30

	High income household
	Household income more than 100K
	0.00
	1.00
	0.58

	Less than 17 years old
	Age category: less than 17 years
	0.00
	1.00
	0.01

	17 to 35 years old
	Age category: less than 17 to 35 years
	0.00
	1.00
	0.11

	36 to 50 years old
	Age category: less than 36 to 50 years
	0.00
	1.00
	0.22

	51 to 65 years old
	Age category: less than 51 to 65 years
	0.00
	1.00
	0.36

	More than 65 years old
	Age category: more than 65 years
	0.00
	1.00
	0.31

	Location: Urban
	Urban = 1/ Rural = 0
	0.00
	1.00
	0.86

	Location: Rural
	Urban = 0/ Rural = 1
	0.00
	1.00
	0.14

	Northeast
	Included states: Connecticut, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont
	0.00
	1.00
	0.20

	Midwest
	Included states: Iowa, Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, North Dakota, Nebraska, Ohio, South Dakota, and Wisconsin
	0.00
	1.00
	0.24

	South
	Included states: Alabama, Arkansas, District of Columbia, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, Oklahoma, South Carolina, North Carolina, Tennessee, Texas, Virginia, and West Virginia
	0.00
	1.00
	0.34

	West
	Included states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, New Mexico, Nevada, Oregon, Utah, Washington, and Wyoming
	0.00
	1.00
	0.22

	NHTS Data (N = 25,000; household level data for vehicle purchase model)

	Low density area
	Population density: 0-499 persons per square mile 
	0.00
	1.00
	0.32

	Medium density area
	Population density: 500-3999 persons per square mile 
	0.00
	1.00
	0.42

	High density area
	Population density: 4000 or more persons per square mile 
	0.00
	1.00
	0.26

	Household size
	Count of household members
	1.00
	11.00
	2.17

	Number of workers 
	Count of household workers
	0.00
	7.00
	1.04

	Number of adults
	Count of household members of at least 18 years old
	1.00
	8.00
	1.81

	Number of children
	Count of household members of more than 18 years old
	0.00
	8.00
	0.36

	Owned house
	Household ownership: Own a house
	0.00
	1.00
	0.79

	Rented house
	Household ownership: Do not own house
	0.00
	1.00
	0.21

	Proportion of male
	Count of male members/ Household size
	0.00
	1.00
	0.45

	Proportion of female
	Count of female members/ Household size
	0.00
	1.00
	0.55

	Proportion of Caucasian-American
	Count of Caucasian-American members/ Household size
	0.00
	1.00
	0.84

	Proportion of African American
	Count of African American members/ Household size
	0.00
	1.00
	0.07

	Proportion of Asian American
	Count of Asian-American members/ Household size
	0.00
	1.00
	0.04

	Proportion of other races
	Count of other races/ Household size
	0.00
	1.00
	0.05

	Proportion of people aged less than 17 years old
	Count of members aged less than 17 years/ Household size
	0.00
	1.00
	0.01

	Proportion of people aged 17 to 35 years
	Count of members aged 17 to 35 years/ Household size
	0.00
	1.00
	0.18

	Proportion of people aged 35 to 50 years
	Count of members aged 35 to 50 years/ Household size
	0.00
	1.00
	0.19

	Proportion of people aged 51 to 65 years
	Count of members aged 51 to 65 years/ Household size
	0.00
	1.00
	0.32

	Proportion of people aged more than 65 years old
	Count of members aged more than 65 years/ Household size
	0.00
	1.00
	0.31

	Urban area
	Household located in urban area
	0.00
	1.00
	0.77

	Rural area
	Household located in rural area
	0.00
	1.00
	0.23

	NHTS Data (N = 28,995; person level data for fusion model- considering new vehicles only)

	Owned house
	Household ownership: Own a house
	0.00
	1.00
	0.87

	Rented house
	Household ownership: Do not own house
	0.00
	1.00
	0.13

	Low density area
	Population density: 0-499 persons per square mile 
	0.00
	1.00
	0.32

	Medium density area
	Population density: 500-3999 persons per square mile 
	0.00
	1.00
	0.44

	High density area
	Population density: 4000 or more persons per square mile 
	0.00
	1.00
	0.24

	Proportion of male
	Count of male members/ Household size
	0.00
	1.00
	0.49

	Proportion of female
	Count of female members/ Household size
	0.00
	1.00
	0.51

	Low-income household
	Household income less than 50K
	0.00
	1.00
	0.18

	Medium income household
	Household income in between 50K and 100K
	0.00
	1.00
	0.33

	High income household
	Household income more than 100K
	0.00
	1.00
	0.49

	Less than 17 years old
	Age category: less than 17 years
	0.00
	1.00
	0.10

	17 to 35 years old
	Age category: less than 17 to 35 years
	0.00
	1.00
	0.12

	36 to 50 years old
	Age category: less than 36 to 50 years
	0.00
	1.00
	0.22

	51 to 65 years old
	Age category: less than 51 to 65 years
	0.00
	1.00
	0.32

	More than 65 years old
	Age category: more than 65 years
	0.00
	1.00
	0.24

	Location: Urban
	Urban = 1/ Rural = 0
	0.00
	1.00
	0.76

	Location: Rural
	Urban = 0/ Rural = 1
	0.00
	1.00
	0.24

	Dependent Variable

	Gasoline
	Fuel type: Gasoline
	0.00
	1.00
	0.87

	Non-gasoline
	Fuel type: Plug in hybrid, hybrid, diesel, natural gas, and electric
	0.00
	1.00
	0.13

	Utility vehicles
	Vehicle type: Passenger vans, sport utility, and station wagon
	0.00
	1.00
	0.53

	Sport sedans
	Vehicle type: Convertible and coupe
	0.00
	1.00
	0.05

	Sedans
	Vehicle type: Hatchback and sedan
	0.00
	1.00
	0.31

	Pick-up trucks
	Vehicle type: Pick-up and truck wagon
	0.00
	1.00
	0.11



Selection of Model with Fused Data 
[bookmark: _Hlk110280090]The proposed data fusion is based on common attributes present in MaritzCX and NHTS datasets. Four identical variables – age category, income category, household’s state, and household’s location classified as urban or rural – are present in both datasets. The reader will note that as the number of matching variables increases the number of potential matches from NHTS will reduce. In fact, as the number of matched variables increase, we end up 0 matches. Hence, we do not consider all variables for matching. For instance, in our context, we consider matching two or three variables to ensure adequate matching records exist. 
The matching process recognizes that for any set of matching records, multiple matches are likely to exist. Among these matches, there is no way to identify an “ideal match”. Hence, we consider the fusion process with multiple candidates randomly from the pool of matched records. We systematically test the model fit of the dependent variable for different number of fusion records to identify the “optimal” number of fusion records. While increasing the size of fusion records improves the model, the increase in computation time needs to be recognized. Another aspect to consider is that as we fuse multiple NHTS records for each MaritzCX record, the number of vehicle purchase decisions will repeat with each fused record. We include a weight variable that ensures each MaritzCX record accounts for only one record. For example, if the number of matched records is 10, we ensure that across the 10 records the newly added weight adds to 1. The actual weight can be evaluated in two approaches: deterministic and probabilistic. In the deterministic approach an equal weight is assumed (so 1/10 in the example). In the probabilistic approach, we let the model allocate the weight for each of the fused records. In this process, the records that offer the largest improvement in prediction will have higher weights. The weight function is scored based on the similarity/dissimilarity of the common attributes that were not used for fusion. The weight score is expected to be higher for records with higher similarity. Given the inherent random nature of the fusion process, we repeat the fusion process for a fixed number of fused records multiple times to ensure that the results are reliable. The model parameters across these samples are compared using a modified Wald t-test to ensure parameter stability. After establishing parameter stability, the fused dataset and the model is finalized. 
[bookmark: _Hlk110280376]The data fusion and the selection of optimal model are conducted following the algorithm presented in Figure 2. In the first step, 10 variable combinations: 1) age and income, 2) age and location, 3) age and state, 4) age, income and location, 5) age, income and state, 6) age, location and state, 7) income and location, 8) state and location, 9) state and income, and 10) state, income and location were considered for data fusion. In the second step, for each combination 1-, 5-, 10-, 15-, 20-, 25-, and 30 NHTS records were randomly fused to each MaritzCX record, and an eight alternative MNL model was developed with the fused data. Given the inherent random nature of the fusion process, we repeat the fusion process for every number of fused records multiple times to ensure that the results are reliable. In the third step, the improvement of the model LL (relative to the model with only MaritzCX dataset) at each combination was compared. Based on the LL improvement, the optimum number of fusion records for each variable combination was selected. The model LL improvements  for different variable combinations and different number of fusion records are presented in Table 2. The reader will note that, with the increase of the number of fusion records, the sample size of the dataset also increases. However, the inclusion of the weight variable ensures that, the total number of cases of the fused dataset is equivalent to the total number of cases of the MaritzCX only data. In the fourth step, the selected models for all variable combinations were compared, and the optimum combination was selected. Figure 6 shows the LL improvement for different variable combinations. It is noticeable that for the combination of income and location the LL improvement is the highest. Therefore, this combination was selected as the optimum final combination. Figure 6 also shows the optimum number of fusion records for the combination income and location. It is noticeable that, after fusion size = 15, the LL value does not change significantly. Further, increasing the number of fusion records requires increased computational time. Considering the insignificant improvement in LL and computational time, the optimum number of fusion records was finalized as 15. Therefore, the proposed model framework was estimated fusing 15 NHTS records to each MaritzCX record based on income, and location combination. The reader would note that the development of the fused dataset does not impose any sample size restrictions on the model estimation. Further, the fused dataset will be selected for adoption only if the fused variables (newly added variables) improve the model fit for the dependent variable.  

Table 2: Log-likelihood improvements of different models
	Variable combination
	Number of fusion records

	
	1
	5
	10
	15
	20
	25
	30
	35

	Age and income
	6.25
	19.77
	32.60
	55.77
	58.69
	59.59
	64.92
	65.80

	Age and location
	1.81
	3.89
	7.01
	7.60
	10.95
	12.56
	12.09
	---

	Age and state
	13.36
	13.11
	13.34
	13.56
	13.89
	---
	---
	---

	Age, income and location
	25.20
	25.27
	26.00
	25.87
	52.24
	53.70
	57.98
	---

	Age, income and state
	14.44
	21.26
	22.06
	21.96
	22.10
	---
	---
	---

	Age, location and state
	25.09
	25.61
	26.45
	25.82
	26.53
	---
	---
	---

	Income and location
	23.70
	24.60
	54.70
	68.52
	66.39
	68.02
	---
	---

	State and location
	15.37
	16.02
	29.63
	45.34
	49.84
	52.92
	---
	---

	State and income
	20.75
	22.84
	23.12
	23.05
	20.94
	---
	---
	---

	State, income and location
	27.69
	28.90
	29.23
	31.66
	32.25
	31.35
	---
	---

	N.B.: Bold number indicates the optimum number of fusion records
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Figure 6: Improvement of LL across Various Model Estimations

In the final step, the stability of the fusion model is tested. Since the 15 NHTS records were selected randomly, it is important to ensure the random sampling does not affect the stability of estimates. For this reason, we conducted model estimation by employing multiple random samples following the same process used for the estimation sample. For all of these samples fusion model specifications described were estimated. The reader would note that across the samples, it is not likely that the parameters estimate remain identical. However, the focus is on examining if the parameters across these multiple samples exhibit statistically significant variability.  For this purpose, we consider the mean of the parameters across the samples as the population estimate. Subsequently, a revised Wald t-test statistic is generated for each sample parameter relative to population mean parameter as follows:
Parameter test statistic = 

It was found that the parameter test statistic is less than critical t statistic value (1.65) for 90% confidence interval for all variables except for the weight variable – age. For the age variable, a small number of samples (3) violate the 1.65 test statistics. But as noted in the box plot, the mean and distribution are well under the 1.65 level. The reader would note that, out of 340 (= 34 variables x 10 models) test statistics generated only 3 values are larger than 1.65. This implies that sample randomness does not affect the parameter stability across the samples (see distribution of t-statistic across all variables in Figure 7). 
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Figure 7: Test Statistics for Parameter Estimates Across Samples
Empirical ResultS 
This study involves estimation of two model structures: 1) a binary logit model; and 2) a multinomial logit model. The model estimation process involved the following steps. First, the binary logit model was developed to estimate the propensity for purchasing of a new car using NHTS dataset. Second, the new car records in NHTS dataset were fused with MaritzCX dataset following the procedure described above, and a multinomial logit model with probabilistic weighting was developed to estimate the choice of a new car. The estimation results of the models with statistically significant coefficients (at 90% confidence level) are described here.

Binary Logit Model
The estimation results of the binary logit model are shown in Table 3.

Household Economic Characteristics
Several characteristics of the household were tested in our model. Among them household income, household ownership, and number of workers were found to offer significant impact on purchasing a new car. It is noticeable that medium and high-income households are more likely to purchase a new car compared to low-income households. Households not owning a house are less likely to buy a new car. Finally, the positive impact of the number of workers indicates that an increase in the number of workers in a household increases the likelihood of purchasing a car. 

Household Demographic Characteristics
In terms of demographic characteristics, several variables were found to significantly affect car purchasing decisions. The number of children was found to have a negative impact indicating a lower likelihood of purchasing a car with an increased number of children. With respect to the proportion of female members in a household, proportion of male members offers a negative impact on car purchasing. Households with a higher proportion of African American individuals are found to have lower likelihood of buying a new car. Across different age categories individuals in the age between 51 and 65 years old are found to have a lower probability of buying a new car, while individuals of age more than 65 years old are more inclined toward purchasing a car. Finally, people residing in rural areas are less likely to buy a car relative to people residing in urban areas. 
  
Spatial Characteristics
Several spatial factors were found to offer significant influence on household’s vehicle purchase decision. These variables represent vehicle purchasing fixed effects for various parts of the country.

Table 3: Estimation Result of Binary Logit Model
	Variables
	Estimates
	T-stat

	Intercept
	-2.48
	-859.91

	Economic Characteristics

	Household income (Base: Low income)

	High income household
	0.89
	469.98

	Medium income household
	0.49
	270.86

	Household ownership (Base: Own a house)

	Do not own a house
	-0.15
	-91.09

	Number of workers
	0.12
	141.79

	Demographic Characteristics

	Number of children
	-0.01
	-18.19

	Gender (Base: Proportion of females)

	Proportion of males
	-0.04
	-19.02

	Ethnicity (base: Other categories)

	Proportion of African – American individuals
	-0.07
	-28.08

	Age (Base: Other categories)

	Proportion of individuals aged between 51 and 65 years
	-0.10
	-48.49

	Proportion of individuals of age more than 65 years
	0.06
	25.56

	Location (Base: Urban areas)

	Rural areas
	-0.11
	-62.75

	Spatial Characteristics (Base: South)

	Northeast
	-0.05
	-29.50

	Midwest
	0.02
	11.80

	West
	-0.17
	-92.34



Multinomial Logit Model
The multinomial logit model was estimated with a two-dimensional dependent variable. The first dimension includes fuel type, and the second dimension includes vehicle type. The model estimation process employs a dimension specific approach for variable consideration as this will result in a more parsimonious model structure. The estimation results of the model are shown in Table 4. The reader would note that the variables considered in the model are drawn from MaritxCX and NHTS fused database. We discuss the results by grouping the variables into their source.

MaritzCX Data

Vehicle Characteristics
Several vehicle related variables were found to have a significant impact on our model. Fuel efficiency is found to offer a positive correlation with non-gasoline operated vehicles. In general, gasoline operated vehicles convert less than 40% of their energy to the vehicle usable power, leaving the rest as waste heat. In contrast, the conversion rate is 85% or higher for the electric motors in EV or fuel cells in hydrogen vehicles (Boloor et al., 2019). Further, it has been found to have similar impacts across all categories of vehicles. Vehicle price offered a positive correlation with sport sedans and pickup trucks; however, it is negatively correlated with sedans. The result is indicative of customers opting for sport sedans and pickup trucks in spite of their price. It is also interesting to observe that the impact of price is similar across both fuel types (Noel et al., 2020). A negative impact of engine size on sedans indicates that preferences for larger engine size decreases the likelihood of buying sedans. In comparison to 4-door cars, 2-door cars provide a negative preference for sedans; however, it is positively associated with pickup trucks. Finally, several vehicle brands were found to have a significant impact on our model representing brand specific fixed effects, which are not interpretable after the addition of several vehicle related attributes in the model. 
Household Economic Characteristics
In terms of household economic characteristics, high income category households present a negative association with pick-up trucks compared with low- and medium-income households. Surprisingly, household income was found to have no significant impact on fuel choice decision (see (Mohamed et al., 2018; Singh et al., 2020) for similar findings in earlier research). It is possible that fuel choice decisions are more likely to be affected by attitudinal preferences and are not solely affected by household income.

Household Demographic Characteristics
Only one demographic characteristic – age – was present in the MaritzCX data, and it has been found to offer significant impact in the vehicle choice model. It is noticeable that individuals aged more than 65 years old are more likely to purchase sedans but less likely to buy sport sedans. 

Spatial Characteristics  
Several spatial factors were tried in our model, but they were not found to offer any significant effects on fuel type and vehicle type.

NHTS Data   

Household Economic Characteristics
Various economic characteristics were tried in our model. However, only household ownership is found to offer significant impact on vehicle type. Households, not owning a house, are more likely to buy sport sedans and less likely to buy pickup trucks. On the other hand, they do not present any differential impacts across fuel types.

Household Demographic Characteristics
Several demographic attributes were found to have significant influence on our model. The findings indicate that households in low dense areas are more likely to buy non-gasoline operated vehicles, and less likely to buy sedans. This is an interesting finding and could be a reflection of the availability of space for installing solar panels or other renewable energy sources fueling their non-gasoline fuel operated vehicles (such as battery EV, plug-in EV, and plug-in-hybrid EV). Further, from our two-dimensional modeling framework, the combined impact of low dense areas on non-gasoline sedans can be computed as sum of the impact of non-gasoline fuel type and sedan vehicle type as (0.41-0.30). Finally, households with higher proportion of males are less likely to buy sport sedan and sedan vehicle types, and more likely to buy pickup trucks. However, they do not show any differential impacts across fuel types. 

Spatial Characteristics
As discussed earlier, NHTS data was fused with MaritzCX data for enhancing the estimation of vehicle choice. In this context, for any common variable(s) across both datasets, MaritzCX data, being the host data, will be preferred for model estimation. Hence, these variables from NHTS were not considered in the multinomial logit model. 

Weight Variable
There were 4 common variables in MartizCX and NHTS data. Of these 4 variables, the fusion employed a 2-variable combination (income, and location). Hence, two common variables (state, and age) existed in the fused data to parameterize the weight. So, two indicator variables were created as one if the state (age) variable matches in both datasets and zero otherwise.  Between these two variables age is found to offer significant impact on our model as a weight variable. The positive and significant coefficient of the weight variable implies that the contribution of records is significantly higher when the age of MaritzCX data matches with the age of NHTS data.  Thus, we are able to differentiate between contribution of same age records to the overall model fit.

Table 4: Estimation Result of Multinomial Logit Model
	Parameters
	Base: Gasoline
	Base: Utility vehicles

	
	Non-gasoline
	Sport sedans
	Sedans
	Pickup trucks

	
	Coefficient
(T-value)
	Coefficient
(T-value)
	Coefficient
(T-value)
	Coefficient
(T-value)

	Intercept
	-6.19 (-22.11)
	-8.15 (-12.49)
	8.78 (25.22)
	-8.55 (-9.94)

	MaritzCX Data

	Vehicle Characteristics

	Fuel efficiency (mpg)
	0.15 (14.76)
	--
	--
	--

	Vehicle price (in thousands)
	--
	0.16 (10.86)
	-0.03 (-3.98)
	0.14 (9.21)

	Engine size (liters)
	--
	--
	-2.87 (-26.25)
	--

	Number of doors (base: 4-door car)

	2-door car
	--
	--
	-1.73 (-6.28)
	3.16 (12.30)

	Vehicle brands (Base: Other brands)

	Toyota
	0.98 (7.67)
	-1.39 (-3.25)
	--
	2.96 (16.07)

	Chevrolet
	--
	--
	-0.66 (-3.42)
	2.45 (12.44)

	Subaru
	--
	-1.42 (-3.35)
	-0.64 (-4.54)
	

	Ford
	-1.04 (-4.31)
	--
	--
	2.23 (11.65)

	Honda
	-1.65 (-4.00)
	--
	-0.51 (-2.65)
	1.34 (4.85)

	Economic Characteristics

	Household income (base: Low and medium income)

	High income
	--
	--
	--
	-0.51 (-4.12)

	Demographic Characteristics

	Age (Base: Less than 65 years old)

	Age more than 65 years old
	--
	-0.53 (-2.74)
	0.34 (3.95)
	--

	NHTS Data

	Economic Characteristics

	Household ownership (Base: Own a house)

	Rent a house
	--
	2.32 (8.89)
	--
	-8.48 (-2.42)

	Demographic Characteristics

	Population density (Base: High and medium density)

	Low population density
	0.41 (2.60)
	--
	-0.30 (-2.14)
	--

	Gender (Base: Proportion of female)

	Proportion of male
	--
	-2.05 (-2.97)
	-0.62 (-1.67)
	1.76 (1.81)

	Weight Variable

	Age
	0.60 (2.25)



Model Validation
To evaluate the performance of the proposed fusion model, a prediction exercise was conducted at different census regions using a validation dataset of 4,000 records (1,000 records from each region). In the validation exercise, we evaluated the model performance of the MaritzCX only model (that includes only MaritzCX variables) and the fusion model (that includes both MaritzCX and NHTS variables). The predicted LL (BIC) values for the MaritzCX only model and the fusion model are -4,445 (9,106) and -4,409 (9,100) respectively. Thus, the test statistic of the log-likelihood ratio test is (2(-4409+4445)) or 72, with an additional eight parameters in the fusion model. The test statistic obtained is greater than the corresponding  value at any level of significance highlighting the superiority of the proposed model. Clearly, the fused model offered significant improvement highlighting the value of the new independent variables form NHTS dataset. In addition, we computed the prediction accuracies of the two modeling frameworks on the validation data. For this purpose, we computed the number of records for which the chosen alternative has the highest predicted probability. The results indicate that the fusion model (prediction accuracy = 71.4%) outperforms the MaritzCX only model (prediction accuracy = 69.5%). Further, we compared the performance of the two modeling frameworks across the four census regions. The results of the comparison are shown in Figure 8. From the figure it can be observed that, for every census region our proposed fusion model outperforms the MartizCX only model. The result supports our hypothesis that building a fused dataset using NHTS dataset significantly improves model predictive power across different data segments. The finding is quite encouraging and bodes well for future applications of the proposed model.


Figure 8: LL comparison between proposed fusion model and MaritzCX only model

Elasticity EffectS
[bookmark: _Hlk110280449]The coefficients of the independent variables in Table 4 do not directly provide the exact magnitude of the impact of variables on household’s vehicle purchase decision. The effects of the variables might change across different combinations of fuel type and body type. To evaluate this variability, we computed the elasticity of the variables. More specifically, we estimated the percentage change in the probability of buying a vehicle of specific fuel and vehicle type in response to any change in the explanatory variables. For continuous independent variables in the model, the change was conducted in an increment of 10% (see (Bhowmik et al., 2022) for similar analysis). For indicator variables, the change was obtained by changing the value of the variable to one for the subsample of observations for which the variable takes a value of zero and vice-versa (see (Kabli et al., 2020) for similar analysis). The variables fuel efficiency, vehicle price and engine size are alternative specific. In the elasticity analysis, we examined how the changes in any of these variables for each alternative affect the probability of all the alternatives (self and cross-elasticity effects). The elasticity effects are shown in Table 5. The underlined values in the table indicate the changes in the probability of any alternative due to the changes in exploratory variables associated with the respective alternative (self-elasticity).
[bookmark: _Hlk110280532]Several observations can be made from the results in Table 5. First, as expected, we find fuel efficiency as one of the important factors influencing vehicle purchase decisions, particularly for non-gasoline vehicles. The results illustrate that increasing the fuel efficiency by 10 % will result in an increased likelihood of purchasing non-gasoline vehicles irrespective of the vehicle types. Second, we find an interesting trend for the cost/price variable. With respect to sports sedans and pickup trucks, the effect is positive irrespective of the fuel type suggesting people considering these vehicles are not deterred by price. On the other hand, people are more sensitive to price when considering the purchase of a sedan. The effect is more pronounced (higher reduction) for gasoline sedans as indicated by the higher negative magnitude in the Table. Third, engine size of the vehicles also plays a significant role in vehicle purchase decision. The results suggest people’s lower preference of buying sedans with large engine size, perhaps indicative of the increased fuel consumption. Fourth, the elasticity effects of vehicle brands indicate that while purchasing non-gasoline pickup trucks, customers show higher affinity for Toyota brand. Finally, changes in several economic and demographic characteristics employed in the model (through fusion from NHTS), are found to offer notable impact on vehicle type and fuel type selections. 


Table 5: Elasticity Effect Analysis for All Fuel Type and Vehicle Type Combinations  
	Parameter
	Gasoline utility vehicles
	Gasoline sport sedans
	Gasoline sedans
	Gasoline pick-up trucks
	Non-gasoline utility vehicle
	Non-gasoline sport sedans
	Non-gasoline sedans
	Non-gasoline pick-up trucks

	
	% changes in the probability

	Fuel efficiency*
	Non-gasoline sport sedans
	-0.20
	-0.63
	-0.12
	-0.04
	-0.20
	46.05
	-0.08
	-0.04

	
	Non-gasoline sedans
	-1.17
	-0.89
	-0.87
	-0.87
	-1.36
	-1.16
	16.85
	-1.35

	
	Non-gasoline pick-up trucks
	-0.45
	-0.19
	-0.26
	-1.93
	-0.77
	-0.14
	-0.29
	41.61

	
	Non-gasoline utility vehicle
	-2.91
	-2.11
	-1.79
	-2.15
	40.11
	-2.89
	-1.34
	-3.46

	Vehicle price*
	Gasoline sport sedans
	-3.25
	54.47
	-1.79
	-1.72
	-2.52
	-10.39
	-0.99
	-1.35

	
	Gasoline sedans
	1.75
	1.47
	-4.56
	0.87
	1.67
	1.75
	0.79
	0.96

	
	Gasoline pick-up trucks
	-4.66
	-2.33
	-2.22
	32.87
	-4.72
	-1.36
	-1.80
	-17.27

	
	Non-gasoline sport sedans
	-0.33
	-1.06
	-0.20
	-0.07
	-0.32
	75.35
	-0.12
	-0.07

	
	Non-gasoline sedans
	0.25
	0.18
	0.18
	0.17
	0.29
	0.25
	-3.49
	0.27

	
	Non-gasoline pick-up trucks
	-0.62
	-0.27
	-0.34
	-2.69
	-1.04
	-0.20
	-0.38
	57.09

	Engine size*
	Gasoline sedans
	11.33
	9.46
	-29.53
	5.68
	10.79
	11.24
	5.07
	6.36

	
	Non-gasoline sedans
	1.46
	1.10
	1.08
	1.06
	1.73
	1.48
	-20.96
	1.72

	Number of doors:2
	-24.27
	10.95
	-65.38
	267.07
	-24.69
	8.86
	-49.99
	269.35

	Toyota
	-36.23
	-65.30
	-22.05
	168.65
	31.70
	-30.52
	11.27
	408.80

	Chevrolet
	-18.53
	-0.43
	-35.82
	172.20
	-19.51
	1.92
	-26.21
	170.90

	Subaru
	13.67
	-57.29
	-18.01
	7.52
	12.46
	-58.25
	-13.09
	8.51

	Ford
	-17.46
	-4.65
	-9.63
	152.62
	-62.02
	-55.24
	-27.04
	8.63

	Honda
	1.41
	7.03
	-20.13
	111.59
	-73.08
	-71.76
	-43.42
	-51.84

	Age more than 65 years old
	-1.86
	-15.17
	6.70
	-1.16
	-2.05
	-17.34
	3.28
	-1.60

	High income household
	-1.01
	-1.11
	-0.38
	6.02
	-1.03
	-0.27
	-0.50
	5.88

	Household ownership: No
	-1.01
	-1.11
	-0.38
	6.02
	-1.03
	-0.27
	-0.50
	5.88

	Low density area
	0.76
	0.73
	-9.59
	-0.59
	26.35
	41.86
	2.96
	18.47

	Proportion of male
	0.06
	-5.54
	-1.51
	5.78
	-0.11
	-5.64
	-1.08
	5.99

	*Alternative specific variable



Conclusion
The growing adoption of alternative fuel vehicles (AFVs) across the country has resulted in increased attention on modeling AFV adoption in the US. Several research attempts have developed models on AFV adoption primarily relying on stated preference data. There is limited research employing revealed preference data for AFV adoption. The objective of the current research is to study vehicle purchase behavior with emphasis on AFVs using a vehicle purchase dataset MaritzCX New Vehicle Customer Study (NVCS). MaritzCX data provides the most comprehensive vehicle purchase data in the US and Canada. However, it is not employed in transportation modeling to understand population vehicle purchase behavior for two reasons. First, MaritzCX records represent a self-selected sample of vehicle purchasers (and not the general population). Second, MaritzCX data provides very limited data on the household characteristics of the vehicle purchasers. For estimating vehicle ownership models employing MaritzCX data along with different categories of exogenous variables, it might be necessary to merge several datasets. However, the MaritzCX datasets and different survey datasets that represent household characteristics do not have any common identifier variable that can be utilized for merging those datasets. Hence, the rich set of vehicle purchase observations are not useful in understanding vehicle fleet evolution at the household resolution.
In the current research effort, we propose solutions to address these limitations and develop a framework that will allow us to tap into the rich information available in MartizCX data. The self-selection of vehicle purchasers is addressed by developing a vehicle purchase decision model using data from the 2017 National Household Travel Survey (NHTS, 2017). To improve the independent variables available in the MaritzCX data, we employ an innovative data fusion approach that probabilistically links records from MartitzCX with records from NHTS. The proposed data fusion is based on common attributes across the two datasets. Four identical variables – age category, income category, household’s state, and household’s location classified as urban or rural – are present in both MaritzCX and NHTS dataset. Therefore, in the current study, 10 variable combinations: 1) age and income, 2) age and location, 3) age and state, 4) age, income and location, 5) age, income and state, 6) age, location and state, 7) income and location, 8) state and location, 9) state and income, and 10) state, income and location were tested for data fusion. The proposed model framework was estimated fusing 15 NHTS records with each MaritzCX record based on income and location combination. The reader would note that the development of the fused dataset does not impose any sample size restrictions on the model estimation. Further, the fused dataset will be selected for adoption only if the fused variables (newly added variables) improve the model fit for the dependent variable. The model fit measures and independent variables significant clearly illustrate how the model framework has been significantly improved based on the fused data (relative to MaritzCX only data). The model results also highlight various interesting patterns of customers’ AFV purchase decision. Among vehicle characteristics, fuel efficiency is found to offer a positive correlation with AFVs. The results illustrate that increasing the fuel efficiency by 10 % will result in an increased likelihood of purchasing AFVs irrespective of the vehicle types. It is also interesting to observe that the impact of vehicle price is similar across both fuel types. Further, among socioeconomic variables, household economic characteristics (such as household income and household ownership) do not provide any significant impact on fuel choice decision. On the other hand, the findings indicate that households in low dense areas are more likely to buy AFVs.
The coefficients of the independent variables of the proposed model do not directly provide the exact magnitude of the impact of variables on household’s vehicle purchase decision. The effects of the variables might change across different combinations of fuel type and body type. To evaluate this variability, we generated elasticity effects in response to changes to independent variables. The elasticity results illustrate how the model system can be applied to identify important variables.
The proposed methodology can be employed to examine the effect of incentives on customer’s vehicle purchase behavior. The incentives can be incorporated as an increase in household income and employed to examine the impact on fuel type and body type choices. In addition to estimating customers’ vehicle choice behavior, the proposed methodology can also be applied to address diverse planning challenges, including the utilization of – a) social media data or location-based smartphone data, fused with household’s socio-demographic-, economic-, vehicle ownership- and commuting characteristics for travel behavior analysis, disaster evacuation and public experience assessment regarding various transportation modes (see (Bhowmik et al., 2024b) for example application for evacuation behavior analysis).
To be sure, this study is not without limitations. As mentioned earlier, we had to consider EVs in our modeling framework within the non-gasoline fuel type category. With more years of recent data, this assumption can be relaxed to focus directly on EVs. The approach proposed in our study will need a minor update to account for this change. 
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Identifying common variables across MaritzCX and NHTS Data

MaritzCX Data	2-door car	4-door car	Toyota	Chevrolet	Subaru	Ford	Honda	GMC	Jeep	Other brand	Urban	Rural	Less than 17 years old	17 to 35 years old	36 to 50 years old	51 to 65 years old	More than 65 years old	Low-income household	Medium income household	High income household	HH Income: less than $35K	HH Income: $35K - $50K	HH Income: $50K - $75K	HH Income: $75K - $100K	HH Income: $100K - $125K	HH Income: $125K - $150K	HH Income: $150K - $200K	HH Income: more than $200K	Low density area	Medium density area	High density area	Proportion of male	Proportion of female	Owned house	Rented house	8.0399999999999999E-2	0.91959999999999997	0.1124	8.5199999999999998E-2	8.2600000000000007E-2	9.1999999999999998E-2	5.7000000000000002E-2	4.5999999999999999E-2	5.2200000000000003E-2	0.47260000000000002	0.86219999999999997	0.14000000000000001	0.01	0.1096	0.21820000000000001	0.3634	0.30859999999999999	0.115	0.29559999999999997	0.58940000000000003	3.7655365865454371E-2	8.620206026019249E-2	0.14265125501765247	0.14838709677419354	0.11357547032935145	0.13498089664844998	0.10494752623688156	0.23160032886782417	NHTS Data	2-door car	4-door car	Toyota	Chevrolet	Subaru	Ford	Honda	GMC	Jeep	Other brand	Urban	Rural	Less than 17 years old	17 to 35 years old	36 to 50 years old	51 to 65 years old	More than 65 years old	Low-income household	Medium income household	High income household	HH Income: less than $35K	HH Income: $35K - $50K	HH Income: $50K - $75K	HH Income: $75K - $100K	HH Income: $100K - $125K	HH Income: $125K - $150K	HH Income: $150K - $200K	HH Income: more than $200K	Low density area	Medium density area	High density area	Proportion of male	Proportion of female	Owned house	Rented house	0.76040696669999996	0.23959303330000001	9.5299999999999996E-2	0.12239999999999999	0.21529999999999999	0.32440000000000002	0.24260000000000001	0.18340000000000001	0.3281	0.48849999999999999	9.8900000000000002E-2	8.4599999999999995E-2	0.1656	0.16250000000000001	0.15540000000000001	9.7100000000000006E-2	0.1055	0.1305	0.32002069319999998	0.43666149339999999	0.2433178134	0.4867390929	0.51326090710000005	0.86818416970000001	0.13181583029999999	



Census region wise model evaluation

MaritzCX only model 	Midwest	Northeast	South	West	-1082.7542000000001	-1006.3496	-1144.7538999999999	-1210.7011	Fusion model 	Midwest	Northeast	South	West	-1074.6030000000001	-999.19503999999995	-1135.2704000000001	-1199.5436	
Model Log-likelihood
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