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Abstract 

 

There is considerable evidence in existing safety literature that the exogenous variable effects are 

likely to be time-varying in the injury severity analysis. The majority of these earlier studies tested 

time-varying effects of exogenous variables by crash year. However, there might be variability in 

the variable effects within a year, while the same effect might carry over in some or all parts of the 

preceding years. Towards that end, in this study, we propose a flexible framework to identify when 

the time-varying effect is likely to occur (the onset of temporal variation) and how long such time-

varying effect lasts (duration of temporal variation) in the model estimates. In the study design, 

we assume that the onset of temporal variation can be any quarter of a year under consideration, 

while the time-varying effect can continue over different quarters after the onset of temporal 

variation in a variable effect. The injury severity model is estimated by using Correlated Random 

Parameter Generalized Ordered Logit formulation with piecewise linear functions. The empirical 

analysis is demonstrated by employing active traveler (pedestrian and bicyclist) crash data from 

Queensland, Australia for the years 2015 through 2020. The estimation results are further 

augmented by computing elasticity effects. The results indicate that the time-varying effects are 

likely to be different across years for several variables, while for other variables, the onset of time-

varying effects could be different than the start of a year. Such flexibility in model specification is 

likely to have significant implications for devising and implementing effective countermeasures 

since it allows us to understand how road traffic injuries are evolving over time and when a new 

road safety issue might be arising.  

 

Keywords: Active travel; Temporal variation; Systematic heterogeneity; Crash; Pedestrian; 

Bicyclist 
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1. Introduction 
 

1.1. Background 

 

The econometric issue relevant to time-varying effects of exogenous variables in crash data 

analyses (both aggregate level crash risk and disaggregate level injury severity analysis) received 

significant attention since the publication of a seminal work by Mannering (2018). Crashes are 

rare and random events. As such, traditionally, crash data analysis by using statistical approaches 

consider accumulation of crash record over multiple years1 . However, relationships between 

exogenous variables and crash risk/severity outcomes might be time-varying resulting in structural 

changes in the variable effects2. The reasons for such temporal variations (also often referred to as 

temporal instability) in exogenous variable effects can be attributed to improvements in vehicle 

technology, changes in roadway design, changes in travel behavior, implementation of new 

laws/regulations and other unobserved factors (see Mannering (2018) for a detailed discussion on 

the potential sources of time-varying effect in crash data analysis). However, the reasons for such 

temporal variations in variable effects may or may not be observable to the analysts.  

There is considerable evidence in existing safety literature that the exogenous variable effects 

are likely to be time-varying in the crash risk/severity analysis. For example, Behnood and 

Mannering (2015) used mixed logit model to examine the time-varying effects of exogenous 

variables contributing towards driver injury severity outcome for single vehicle crashes by using 

data for the years 2004 through 2012 from Chicago, Illinois, USA. In this study, time-varying 

effects of exogenous variables are examined by developing separate models for each crash year 

(generally known as exogenous segmentation approach 3 ). Building on such exogenous 

segmentation approach by different years, to date, a number of studies in existing safety literature 

have examined time-varying effects of exogenous variables (Ahmed et al., 2022; Alnawmasi and 

Mannering, 2023; Alzaffin et al., 2023; Chang et al., 2021; Dzinyela et al., 2024; Hosseini et al., 

2022; Li et al., 2021; Pang et al., 2022; Se et al., 2023; Shabab et al., 2024; Song et al., 2023; 

Wang et al., 2022; Xing et al., 2023; Yan et al., 2023; Yu et al., 2023). In addition, to capture time-

varying effects of exogenous variables, researchers have also considered time-elapsed variables 

derived from the differences between the most recent years and the base year available in the 

dataset (Chang et al., 2022; Kabli et al., 2023; Marcoux et al., 2018; Phuksuksakul et al., 2023; 

Shinthia et al., 2023; Yasmin et al., 2022). By quantifying the duration between these time points, 

this variable provides a systematic approach to capturing time-varying effects, however, such 

effects are likely to be monotonic in nature. Further, Alnawmasi and Mannering (2023) and 

Bhowmik et al. (2019) tested for systematic heterogeneity in variable effects by pooling data 

records and estimating varying effects based on interaction terms. In this approach, the 

heterogeneity in variable effects across different attributes (such as time periods) are tested based 

on the data fit measures of the estimated models. 

 

 
1 To be sure, yearly crash records or more disaggregated time points of data records are also considered based on the 

objective of the relevant study.  
2 Structural change refers to time-varying effects in the parameters of econometric models. Without accommodating 

for structural changes in econometric models, the model is likely to be error prone and unreliable. 
3 Exogenous segmentation generally refers to consideration of splitting the data sample (data records) by different 

exogenous attributes (such as year, collision type) and estimation of separate models for each segment. 
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In addressing the time-varying effects in injury severity analysis, studies adopted several 

econometric approaches, which include - (1) Random parameter logit model with heterogeneity in 

means and variances (Alnawmasi and Mannering, 2022, 2023; Alogaili and Mannering, 2022; 

Behnood and Mannering, 2019; Hosseini et al., 2022; Islam and Mannering, 2020; Li et al., 2021; 

Mansour et al., 2021; Seraneeprakarn et al., 2017; Song et al., 2023; Zamani et al., 2021), (2) 

Random parameter multinomial logit model (Behnood and Mannering, 2015, 2016), (3) Random 

thresholds random parameters hierarchical ordered probit model (Yu et al., 2021), (4) Random 

thresholds random parameters generalized ordered logit model (Song et al., 2023), (5) Random 

parameters hazard-based duration model with means and variances heterogeneity (Alzaffin et al., 

2023; Pang et al., 2022), (6) Correlated random parameter bivariate tobit model (Ahmed et al., 

2022), (7) Latent segmentation based random parameters ordered logit model with time elapsed 

variables (Chang et al., 2021), (8) Latent class multinomial logit model (Behnood and Mannering, 

2016), and (9) Markov switching models (Malyshkina and Mannering (2009) and Xiong et al. 

(2014)). 

The abovementioned studies provided valuable insights and information on the importance 

of accommodating time-varying effects in analyzing crash data. However, these studies mostly 

tested time-varying effects of exogenous variables by crash year. Implicitly, these earlier studies 

assumed that the effects of an exogenous variables remain same within a year4. However, there 

might be variability in the variable effects within a year while the same effect might carry over in 

some or all parts of the preceding years. For example, in Brisbane, Australia, there are more 

pedestrian and bicyclist activities during the last quarter of a calendar year due to summer 

festivities and holiday seasons which continues until February of the next year and wind down in 

March with the starting of the school and regular working rhythm. Such differences in activities 

across different parts of the year are likely to contribute towards different crash risk and severity 

profiles for active traveler crashes. Moreover, after COVID-19 period, there has been significant 

investment in active traveler infrastructures, which is likely to contribute towards a different safety 

profile for active travelers. Therefore, in examining time-varying effects of exogenous variables, 

it is important to allow for such flexibility to identify when the time-varying effect is likely to 

occur (the onset of temporal variation) and how long such time-varying effect lasts (duration of 

temporal variation) in the model estimates.  

In examining the temporal variations, Markov Switching models might offer a more 

flexible approach by allowing parameters to transition between distinct states more frequently, 

such as on a weekly basis. These models can capture the rapid shifts in roadway safety conditions 

caused by unobserved factors like changes in weather or traffic patterns, which may occur at finer 

temporal resolutions (see Malyshkina and Mannering (2009) and Xiong et al. (2014) for such 

examples). Specifically, switching models assume that some observed process in the data is 

influenced by an unobserved process that switches between different states over time, while each 

state implies a different probability model. In estimating these models, an analyst generally needs 

to choose an adequate parametric function for different states a priori. Choosing an adequate 

parametric family is likely to be challenging since the underlying states of observations are likely 

to be unknown before a model is fitted. Such restriction in model specification can result in 

overestimation of the number of states and difficulties in making inferences related to the identified 

states (Pohle et al., 2017). It is also important to recognize that switching models with parametric 

 
4 It is worthwhile to mention here that some of the studies accommodated the variations in variable effects within a 

year by specifying it as random variables (Ahmed et al., 2022; Fountas et al., 2018). 
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family formulations are numerically more stable, hence, these approaches should be adopted based 

on the empirical context under scrutiny (Langrock et al., 2017). 

As such, it might be advantageous and worthwhile to investigate the time-varying effects 

of exogenous variables while also examining the onset and duration of such temporal heterogeneity 

by using a more computationally tractable approach. Towards that end, in this study, we propose 

a flexible framework for examining the onset and duration of time-varying effects in developing 

injury severity models5. The applications of piecewise polynomials for capturing the time-varying 

effects or testing for other structural changes are an established approach in econometric texts 

(Blanchini and Giordano, 2014; De Baets et al., 2011; Goujon et al., 2023; Greene, 2017). In 

regressing the dependent variable (𝑦) on independent variables (𝒙) , piecewise polynomial 

functions allow to examine the possibility of intervals in (𝒙) by dividing it into pieces at specific 

knots, thus, allow for more flexible representations in 𝑓(𝒙) . Piecewise polynomials can be 

considered as constant, linear, quadratic and/or cubic functions6 in allowing the flexibility for 

polynomial representation in specifying 𝑓(𝒙). In the proposed approach of this study, the structural 

changes in the variable effects are tested by using piecewise linear functions7 (i.e. interaction terms 

of a time period and different exogenous variables). A linear approximation of 𝑓(𝒙). is a worthy 

initial step as these first order Taylor approximations for specifying temporal variation in 

independent variables are computationally tractable and easy to interpret without overfitting. In 

the context of injury severity model estimation, an extension of linear approximation of time-

varying effects by considering piecewise quadratic and cubic functions could be an avenue for 

future research direction.     

In this study, the breakpoint (knot) of the piecewise linear function is assumed to be the 

start of a quarter of year and segment is defined by different quarters of the year under 

consideration. Thus, we assume that the onset of temporal variation can be any quarter of a year 

under consideration, while the time-varying effect can continue over different quarters after the 

onset of temporal variation in a variable effect. In this setting, the duration of time-varying effects 

of an exogenous variable is empirically tested by combining the quarters following the onset 

quarter in the model estimates. It is worthwhile to mention here that, in this study, quarter is 

considered as the highest resolution to allow for sufficient observations (crash records) across 

different time periods in the piecewise linear function formulation. However, time-varying effects 

can be tested by using any other resolutions in the available temporal scale (such as day, week, 

time-of-day).  

 

1.2. Contributions of the current study 

 

The major objective of this study is to examine the time-varying effects of exogenous 

variables in injury severity analysis while also identifying the onset and duration of such structural 

changes. Specifically, the injury severity model is estimated by using Correlated Random 

Parameter Generalized Ordered Logit formulation with piecewise linear functions. Building on 

Balusu et al. (2018), in this study, we adopt the variance reduction technique by specifying 

 
5 The proposed flexible approach in capturing the onset and duration of time-varying effects can also be adopted for 

developing crash risk models.  
6 An analyst is unlikely to go beyond piecewise cubic polynomials unless the goal is to achieve a smooth derivative 

in optimizing the objective function (Hastie et al., 2009). 
7 Piecewise linear function approach divides the data into a finite number of segments given a pre-defined 

knot/breakpoint (Malash and El-Khaiary, 2010; Moreno-Carbonell and Sánchez-Úbeda, 2024; PennState, 2024). 
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correlations across different threshold in developing generalized ordered logit model. The 

proposed model is demonstrated by developing active traveler (pedestrian and bicyclist) injury 

severity models based on the data compiled from the State of Queensland in Australia for the years 

2015 through 2020. The injury severity models are estimated by considering a comprehensive set 

of exogenous variables, including active traveler characteristics, motorist characteristics, motor 

vehicle characteristics, environmental characteristics, and roadway geometric characteristics.  

Several studies in existing safety literature examined temporal variability of variable 

effects in developing active traveler injury severity models (Alnawmasi and Mannering, 2023; 

Alogaili and Mannering, 2022; Behnood and Mannering, 2016; Hosseini et al., 2022; Li et al., 

2021; Phuksuksakul et al., 2023; Song et al., 2020; Zamani et al., 2021). However, these studies 

examined time-varying effects by years. As such, the current study contributes towards safety 

literature both methodologically and empirically by proposing a mathematical simpler approach 

to address time-varying effect of exogenous variables while also identifying the onset and duration 

of such variations. Methodologically, the empirical formulation proposes in this study addresses 

three econometric issues, which are – (1) allows additional flexibility in specifying systematic 

heterogeneity in developing injury severity models, (2) incorporates unobserved heterogeneity 

through a discrete mixture-of-normals approach, and (3) allows dependence of unobservables 

between threshold functions in the generalized ordered logit formulation. Empirically, the study 

contributes towards identifying the critical factors contributing towards active travelers’ injury 

severity outcomes.  

The rest of the paper is structured as follows. Section 2 presents the econometrics 

framework of the proposed model. Section 3 demonstrates data description and empirical design 

of the study. Section 4 describes the model estimation results. Section 5 summarizes the paper. 

 

2. Econometric framework 

 

The major focus of the study is to examine the onset and duration of temporal variations in 

exogenous variable effects in developing active traveler injury severity model. Specifically, the 

temporal variations are examined by employing a correlated random parameter generalized 

ordered logit model with piecewise linear functions. The econometric formulation for the proposed 

model is presented in this section.  

 Let us assume that 𝑖 (𝑖 = 1,2, … , 𝐼)  be the index to represent active traveler crash, 

𝑗 (𝑗 = 1, 2, … , 𝐽; 𝐽 = 4) be the index to demonstrate injury severity levels including ‘Minor injury 
(𝑗 = 1)’, ‘Moderate injury (𝑗 = 2)’, ‘Major injury (𝑗 = 3)’ and ‘Fatal injury (𝑗 = 4)’, 𝑚 (𝑚 =
1,2, … , 𝑀; 𝑀 = 6) be the index to represent years which takes the form of ‘year 2015 (𝑚 = 1)’, 

‘year 2016 (𝑚 = 2)’, ‘year 2017 (𝑚 = 3)’, ...... , ‘year 2020 (𝑚 = 6)’, and 𝑘 (𝑘 = 1,2, … , 𝐾; 𝐾 =
4) be the index to represent yearly quarters which takes the form of ‘1st quarter’ (𝑘 = 1), ‘2nd 

quarter (𝑘 = 2)’, ‘3rd quarter (𝑘 = 3)’, and  ‘4th quarter (𝑘 = 4)8.  ℎ (ℎ = 1,2, … , 𝐻 = 2) be the 

index to represent active traveler types which are ‘bicyclist (ℎ = 1)’ and ‘pedestrian (ℎ = 2)’. 

Based on these notational indices, the econometric framework employed in this study is presented 

as follows. 

 
8 According to the notation, in a single crash year (k), m can be matched with a maximum of 4 quarters i.e.[𝑚, 𝑘]  ∈
 {[1,1], [1,2], [1,3], [1,4], [2,1], [2,2], … [6,3], [6,4]} to represent the 1st, 2nd, 3rd,4th quarter of each crash year from 

2015 through 2020. 
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Let 𝑦𝑖  be the discrete injury severity levels sustained by active traveler in crash 𝑖. 𝑦𝑖  is 

assumed to be associated with an underlying continuous latent variable 𝑦𝑖
∗ that can be specified as 

a linear function as follows: 

 

𝑦𝑖
∗ = (𝜷 + 𝜶𝑖)𝒙𝑖 +  𝜀𝑖             𝑓𝑜𝑟  𝑖 = 1, 2, 3, … , 𝐼 (1) 

 

where, 𝒙𝑖 is a vector of exogenous variables, 𝜷 is a vector of parameters to be estimated (including 

a scalar constant). 𝜶𝑖  is a vector of unobserved variables on the injury severity propensity for 

active traveler crash 𝑖 and its associated characteristics (assumed to be independent realizations 

from normal population distribution: 𝜶𝑖  ~ℚ(0, ℷ2) ) and, 𝜀𝑖  is the random disturbance term 

(assumed to be standard logistic that captures the idiosyncratic effect of all omitted variables in 

injury severity propensity). Let us assume that the unobserved latent variable 𝑦𝑖
∗ is associated with 

the observed discrete injury severity levels 𝑦𝑖  by the 𝜏𝑗  thresholds (𝜏0 = −∞ 𝑎𝑛𝑑 𝜏𝐽 =  +∞ ) 

which is associated with injury severity level 𝑗; then, 𝑦𝑖 can be expressed as: 

 

𝑦𝑖 = 𝑗,         𝑖𝑓 𝜏𝑗−1 <  𝑦𝑖
∗ <  𝜏𝑗           𝑓𝑜𝑟  𝑗 = 1, 2, … , 𝐽 (2) 

 

In addressing the constant threshold assumption from traditional ordered models, a generalized 

ordered formulation with different parametric functions has been proposed and applied in previous 

studies (Eluru et al., 2008; Eluru and Yasmin, 2015; Maddala, 1983; Srinivasan, 2002). Among 

different proposed specifications of generalized ordered logit model formulations, in this study, to 

maintain the ordinality of injury severity levels (−∞ <  𝜏1 <  𝜏2 < ⋯ <  𝜏𝑗−1 <  +∞ ), we adopt 

the parametric form proposed by Eluru et al. (2008), which can be expressed as: 

 

𝜏𝑗 = 𝜏𝑗−1 +  𝑒(𝝈𝑗+𝝃𝑖𝑗)𝒛𝑖𝑗 (3) 

 

where, 𝒛𝑖𝑗 is a set of exogenous variables related with 𝑗𝑡ℎ  threshold for each active traveler crash 

𝑖. 𝝈𝑗  is the vector of parameters to be estimated associated with injury severity levels 𝑗. 𝝃𝑖𝑗  is 

demonstrating unobserved variable specific to the associated environment for active traveler crash 

𝑖 in injury level 𝑗  and assumed to be independent realizations from normal population distribution: 

𝝃𝑖𝑗 ~ℚ(0, ℶ2)). 

The effect of different exogenous variables might vary across different time intervals under 

consideration. In this study, we assume that the onset of temporal variation can be a quarter (𝑚′) 

of any year (𝑘′) which can continue over different quarters (𝕄, 𝕂 = [𝑚′, 𝑘′] + ∑[(𝑚 >
𝑚′), (𝑘 > 𝑘′)]) after the onset of temporal variation in a variable effect which is empirically tested 

based on the data fit. Thus, [𝑚′, 𝑘′]  represents the onset of temporal variation and  
[𝕄, 𝕂] represents the duration of temporal variation specific to an exogenous variable. Further, we 

assume that the effects of different variables might also vary by active traveler group ℎ. To allow 

for such heterogenous effect of exogenous variables, 𝜷𝑠 and 𝝈𝑗 in Equations 1 and 3, respectively, 

are specified as: 

 

𝜷 =  𝜸 + 𝜸𝕄,𝕂 +  𝜸ℎ (4) 

 

𝝈𝑗 =  𝝆𝑗 + 𝝆𝑗𝕄,𝕂 +  𝝆𝑗ℎ (5) 
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where 𝜸 and 𝝆𝑗 represent the main effects of exogenous variables in the propensity and threshold 

functions, respectively. 𝜸𝕄,𝕂 and 𝝆𝑗𝕄,𝕂 represent (spline variables) the time varying relationship 

of exogenous variables in the propensity and threshold functions, respectively. 𝜸ℎ  and 𝝆𝑗ℎ 

represent (spline variables) the varying relationship of exogenous variables by active traveler type 

ℎ in the propensity and threshold functions, respectively. 

In the generalized model specification, the higher order threshold includes its preceding 

threshold to maintain the increasing order in thresholds (Equation 3). Such restrictive 

specifications can lead to difficulty in random parameter estimates in the higher order thresholds 

(see Balusu et al. (2018) for a detailed discussion on this). Balusu et al. (2018) proposed the use 

of negative correlations between random thresholds to relax this restriction and to allow flexibility 

in random parameter estimates for the higher order thresholds. As such, in this study, in order to 

explore the correlations between the random parameters in thresholds, 𝝃𝑖𝑗 is assumed to follow a 

multivariate distribution with mean vector ℶ2 and a correlation structure of 𝛀 as [0, 𝜻23,  ±𝜻23] 
across 𝜏1 , 𝜏2  and 𝜏3 . A positive (negative) sign for 𝜻23  indicates that random variables in 

thresholds are likely to be positively (negatively) correlated, which is empirically tested based on 

the data fit. Then, the probability expressions for active traveler crash 𝑖 and alternative 𝑗 from 

quarter 𝑘  in the correlated random parameter generalized ordered logit model with piecewise 

linear function can be expressed as: 

 

𝝋𝑖𝑗 = Pr (𝑦𝑖 = 𝑗)

=  Λ𝑗[𝜏𝑗 +  𝑒(𝝈𝑗+𝝃𝑖𝑗 )𝒛𝑖𝑗 −  (𝜷 + 𝜶𝑖)𝒙𝑖]

−  Λ𝑗[𝜏𝑗−1 +  𝑒(𝝈𝑗−1+𝝃𝑖,𝑗−1 )𝒛𝑖𝑗 −  (𝜷 + 𝜶𝑖)𝒙𝑖] 

(6) 

 

where, Λ𝑗(∙) is the standard logistic cumulative distribution function.  

The parameters to be estimated in the correlated random parameter generalized ordered 

logit model with piecewise linear function include [𝜷, 𝝈𝑗] and the variances of the stochastic 

component [𝜶𝑖, 𝝃𝑖𝑗]. In this study, these stochastic elements are drawn from an independent 

realization of the normal distribution. Let the stochastic terms are represented by Θ. Therefore, 

conditional on Θ, the likelihood function can be expressed as: 

 

𝐿𝑖|Θ =  ∏ [∏(𝑃𝑟(𝑦𝑖 = 𝑗|Θ))

𝐽

𝑗=1

]

𝐼

𝑖

 (7) 

 

Finally, the log-likelihood function can be expressed as: 

 

𝐿𝐿 =  ∑ 𝑙𝑛 {∫ (𝐿𝑖|Θ)𝑓(Θ)𝑑(Θ)

⬚

Ξ

}

𝑁

𝑖=1

 

 

(8) 

The log-likelihood function in Equation 7 involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in Θ. Therefore, to approximate this integral in the 
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likelihood function and maximize the logarithm of the resulting simulated likelihood function, we 

applied Quasi-Monte Carlo simulation techniques based on the scrambled Halton sequence (Bhat, 

2001; Yasmin and Eluru, 2013). Specifically, we have applied 200 random draws based on the 

Scrambled Halton sequence (Bhat, 2003). The likelihood functions are programmed in Gauss 

matrix programming language (Aptech, 2023).  

 

3. Data description and empirical design 

 

Active traveler (pedestrian and bicyclist) crash data for the current study is sourced from 

the official crash database of Queensland, Australia for the years 2015 through 2020. The current 

study is focused on injury severity outcomes sustained by active traveler in crashes with motor 

vehicle (referred to as active traveler crash hereafter). Between 2015 and 2020, 8,414 active 

traveler crashes were recorded which includes 3,873 pedestrians and 4,577 bicyclists involved 

crashes. Crashes involving single active traveler and single motor vehicle are used for further 

analysis9. Crash records with missing information for essential attributes are removed from the 

current analysis. The final data set has a record of 6,304 active traveler crashes (2,864 pedestrians 

and 3,440 bicyclists involved crashes). From the final dataset, 5,000 (2,276 pedestrians and 2,724 

bicyclists involved crashes) records are randomly selected for model estimation purposes. Further, 

1,304 records are selected for validation purposes. 

 

3.1. Dependent variable 

  

In the crash database, injury severity outcomes of active traveler are recorded as four-point 

ordinal scale variable representing – (1) minor injury, (2) moderate injury, (3) major injury, and 

(4) fatal injury10. Injury severity distributions by years and quarters in the final data sample are 

presented in Figure 1(a) and 1(b), respectively. From Figure 1(a), it can be observed that the 

majority of active travelers are recorded to sustain major injury in crashes with motor vehicles 

indicating their vulnerability as unprotected and unshielded road user groups. From the overall 

trends in different injury severity outcomes in Figure 1(a), it is alarming to note that the proportion 

of major and fatal injuries are increasing in recent years. Further, it can be observed from Figure 

1(b) that there are significant variations in active traveler injury severity outcome profiles across 

different quarters of a year. Across six years, the overall proportions of minor, moderate, major, 

and fatal injuries are 10.30%, 35.57%, 51.56% and 2.58%, respectively. The percentages of fatal 

injury were found to be higher than average (2.58%) in the 4th quarter/2015 (2.63%), 1st, 3rd, 4th 

quarter/2016 (5.68%, 3.18%, and 2.84%, respectively), 1st to 4th quarters/2018 (2.63%, 3.69%, 

3.86%, and 4.04%, respectively) and 1st to 2nd quarter/2020 (3.31% and 3.70%, respectively). As 

is evident, the highest proportion of fatal injury was observed for the 1st quarter/2016 and 4th 

quarter/2018. The percentages of major injuries were found to be significantly higher than average 

(51.56%) in the 1st quarter/2015 (54.45%), 3rd and 4th quarter/2016 (58.64% and 52.13%, 

respectively), 2nd quarter/2017 to 2nd quarter/2018 (56.28%, 52.21%, 53.69%, 52.49%, 55.26%, 

and 57.60%, respectively), and 2nd to 4th quarter/2020 (56.08%, 55.45%, and 58.85%, 

 
9 Crashes including multiple active travelers or multiple motor vehicles are likely to have different injury severity 

mechanisms due to the complexity in the crash chaining process. Thus, these crashes are not considered in the current 

empirical study and could be an avenue for future research. 
10 The crash data recorded in Queensland does not include ‘no injury’ crashes since 2010. Therefore, the data has 

records for crashes resulting in casualty only. 
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respectively). Within a year, the highest variations of major injury severity profiles were observed 

for the 2nd to 4th quarters/2020 relative to 1st quarter/2020. Hence, it is clear that there are 

significant temporal variations in active traveler injury severity distributions across different years 

as well as across different quarters within a year11. 

 

 
Fig. 1(a). Injury severity distributions (percentage across injury severity within a year) of active 

traveler crashes by years between 2015 and 2020 [overall trends across all years are presented 

by dotted lines]. 

 

 
11 From Figure 1(a) it can be observed that the active traveler crash data under consideration might have long-term 

trends (i.e. steady upward and downward trends) across different injury severity categories. In this study, the major 

focus is to demonstrate the applications of piecewise linear function in examining the finer resolution of temporal 

variations (onset and duration of seasonal patterns). The model estimates for temporal variations are likely to be 

inconsistent if a certain part of seasonality evolves in a similar pattern as in the long-term trend. From Figure 1(b), it 

could be observed that there are significant variations in the injury severity patterns for a certain quarter across 

different years. Such variations in injury severity patterns across different quarters do not visually follow the strict 

upward/downward long-term trend in the data. However, in future, it might be interesting to test such a hypothesis 

empirically and develop injury severity models by incorporating both long-term trends and seasonal variations of 

variable effects in the same model. 
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Fig. 2(b). Injury severity distributions of active traveler crashes by quarters (Q)12,13 from the year 

2015 through 2020. 

 

3.2. Independent variables 

 

The independent variables considered in this study can be grouped into five broad 

categories:  

- Active traveler characteristics include active traveler's age, gender, active traveler 

under the influence of alcohol, active traveler intended action, active traveler at-fault. 

- Motorist characteristics include motorist age, gender, motorist under the influence of 

alcohol, distracted/unattended motorist, motorist indented action. 

- Motor vehicle characteristics include vehicle type and vehicle age. 

- Environmental attributes include time-of-the-year, week, day-of-week, time-of-the-

day, and lighting conditions. 

- Roadway characteristics include posted speed limit, road geometries (horizontal and 

vertical alignments), road surface condition, weather condition, road region, crash 

location, and presence of traffic control. 

In this study, the possible time-varying effects (onset and duration of time-varying effects) are 

specified as a piecewise linear function of exogenous variables. Specifically, interaction terms of 

different quarters (from 1st quarter/2015 through 4th quarter/ 2020) and other exogenous variables 

 
12 According to Figure 1, the term Q represents the quarter of the year where Q1 is between January-March, Q2 is 

between April-June, Q3 is between July-November, and Q4 is between October-December, Therefore, each of the 

year from 2015 through 2020 are recategorized based on quarter of the year (The first quarter through the fourth 

quarter).  
13 The value as represent in the rectangular boxes represent the average percentage of each injury severity level for 

each year from 2015 – fatal, major, moderate and minor injuries from the top row to the bottom row.  
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are generated to accommodate the possible time-varying effects in the model specifications. The 

interaction terms in the consecutive time points (duration of time-varying effects) are tested for 

similarities in effects by using the likelihood ratio test (nested models). The final model is 

developed based on exogenous variables (main effect and interactions) which are statistically 

significant (at a 90% confidence level) in the propensity and threshold functions. Further, there 

might be variations in variable effects by different active traveler groups (pedestrian vs. bicyclist). 

Such variations by active traveler groups are specified as interactions of active traveler group by 

different exogenous variables. Table 1 provides descriptive statistics for the dependent and all 

exogenous variables by crash year considered in the current study.  

 

Table 1 

Summary Statistics of Injury Severity Distributions and Exogenous Variables. 

Injury Severity Distributions 

CRASH COUNTS 

Crash Year 

2015 2016 2017 2018 2019 2020 

  Minor injury 58 64 103 100 117 74 

  Moderate injury 355 327 287 249 308 262 

  Major injury 400 427 477 434 423 418 

  Fatal injury 14 28 22 29 14 20 

  Total 827 846 889 812 862 764 

Exogenous Variables 

SAMPLE SHARE (%)* 

Crash Year 

2015 2016 2017 2018 2019 2020 

Active Traveler Characteristics       

  Active traveler type       

     Pedestrian 47.5 48.0 46.5 45.8 43.4 41.6 

     Bicyclist 52.5 52.0 53.5 54.2 56.6 58.4 

  Active traveler age       

     ≤15 years old 16.4 16.8 17.5 18.0 17.4 18.2 

     16-24 years old 15.6 14.8 16.0 12.8 17.9 13.6 

     25-39 years old 25.3 22.3 25.9 24.6 22.5 22.8 

     40-49 years old 15.8 16.7 15.0 14.3 15.3 13.9 

     50-59 years old 12.7 13.2 12.8 12.2 10.9 14.8 

     ≥60 years old 14.1 16.2 12.8 18.1 16.0 16.8 

  Active traveler gender       

     Male 71.5 68.4 68.7 70.0 69.3 72.4 

     Female 28.5 31.6 31.3 30.0 30.7 27.6 

  Under the influence of alcohol       

     No 94.6 95.9 95.2 95.0 96.5 95.8 

     Yes 5.4 4.1 4.8 5.0 3.6 4.2 

  Active traveler intended action       

     Cross carriageway 32.6 31.7 29.6 28.0 29.5 27.0 

     Remain stationary 5.1 6.4 5.2 5.3 3.9 4.7 

     Other (e.g. go straight) 62.3 61.9 65.2 66.7 66.6 68.3 

  Active traveler at-fault       
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     No 58.2 60.6 57.0 60.0 59.6 61.8 

     Yes 41.8 39.4 43.0 40.0 40.4 38.2 

Motorist Characteristics       

  Motorist age       

     ≤20 years old 6.5 7.7 6.7 7.6 6.8 8.4 

     21-24 years old 8.6 9.5 8.9 6.7 6.7 6.9 

     25-39 years old 10.9 9.7 8.8 9.6 11.1 10.6 

     30-39 years old 22.2 18.3 17.5 16.5 18.9 17.9 

     40-49 years old 18.7 20.0 19.7 21.2 18.3 21.5 

     50-59 years old 13.8 14.4 17.0 18.3 18.6 14.5 

     ≥60 years old 19.2 20.4 21.4 20.1 19.5 20.2 

  Motorist gender       

     Male 61.5 59.0 62.1 60.1 60.8 57.7 

     Female 38.5 41.0 37.9 39.9 39.2 42.3 

  Under the influence of alcohol       

     No 95.6 94.4 94.6 94.7 94.9 94.5 

     Yes 4.4 5.6 5.4 5.3 5.1 5.5 

  Distracted/unattended motorist       

     No 95.4 94.8 94.5 92.9 94.0 92.5 

     Yes 4.6 5.2 5.5 7.1 6.0 7.5 

  Motorist intended action       

     Make right turn 19.5 19.6 18.0 15.8 17.5 18.1 

     Make left turn 16.2 17.1 16.2 17.6 18.3 15.8 

     Other (e.g., Change lanes, slow/stop) 64.3 63.3 65.8 66.6 64.2 66.1 

Motor Vehicle Characteristics       

  Vehicle type       

     Car/station wagon 74.4 76.2 75.0 74.9 76.7 77.1 

     Motorcycle and moped 1.7 1.9 1.0 0.6 1.4 1.3 

     Utility/panel van 18.0 16.1 18.9 20.4 17.7 17.7 

     Bus and truck  5.9 5.8 5.1 4.1 4.2 3.9 

  Vehicle age (Crash year – Vehicle 

manufacturing year) 
      

     0-5 years 38.7 36.6 37.8 34.9 32.9 33.1 

     6-10 years 30.0 28.6 27.1 27.0 27.5 26.7 

     11-15 years 18.1 20.7 20.1 24.4 23.9 23.2 

     16-20 years 8.8 9.3 11.5 9.2 10.7 12.2 

     >20 years 4.4 4.7 3.5 4.6 5.0 4.8 

Environmental Characteristics       

  Week       

     Weekend 19.8 21.6 23.1 21.7 20.6 22.9 

     Weekday 80.2 78.4 76.9 78.3 79.4 77.1 

  Day-of-week       

     Monday 15.7 12.1 11.2 16.4 11.5 12.6 

     Tuesday 17.2 13.7 17.1 17.5 17.6 17.7 

     Wednesday 16.0 18.6 15.9 15.1 16.2 14.0 

     Thursday 15.1 17.4 16.6 15.8 15.8 17.7 

     Friday 16.2 16.7 16.1 13.5 18.2 15.2 

     Saturday 11.9 11.2 11.4 12.9 11.9 13.2 
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     Sunday 8.0 10.4 11.7 8.7 8.7 9.7 

  Time-of-the-day       

     Morning peak hour (6am-8am) 23.9 25.1 24.2 25.1 23.7 22.5 

     Morning off-peak (9am-11am) 13.9 14.9 14.8 16.6 14.8 17.1 

     Afternoon (12am-2pm) 12.9 11.5 13.2 11.7 13.8 11.9 

     Evening peak hour (3pm-6pm) 31.8 33.3 29.5 30.5 30.2 34.6 

     Nighttime (7pm-10pm) 8.6 8.9 8.9 8.9 9.0 8.4 

     Late night until early morning (11pm-5am) 8.8 6.4 9.4 7.1 8.5 5.5 

  Translink (Public Transport system) peak and 

off-peak hour 
      

     Off-peak hour (9am-2pm and 7pm-5am) 44.3 41.6 46.3 44.3 46.2 42.9 

     Peak hour (6am-8am and 3pm-6pm) 55.7 58.4 53.7 55.7 53.8 57.1 

  Lighting condition       

     Darkness-lighted 15.8 15.7 16.8 13.4 17.1 14.4 

     Darkness-not lighted 2.3 3.7 3.6 4.3 2.2 3.0 

     Dawn/dusk 10.0 9.0 9.1 8.6 7.0 7.3 

     Daylight 71.9 71.6 70.5 73.7 73.7 75.3 

Roadway Characteristics       

  Posted speed limit       

     10-30 km/hr 3.4 4.6 2.5 3.4 4.6 3.3 

     40 km/hr 10.0 10.2 9.6 10.7 10.7 10.1 

     50 km/hr 27.2 31.4 30.7 32.1 28.2 34.7 

     60 km/hr 52.8 48.0 51.9 47.4 50.2 45.3 

     ≥70 km/hr 6.5 5.8 5.4 6.3 6.3 6.7 

  Horizontal alignments       

     Curve-open/obstructed view 15.0 15.0 13.7 14.8 14.4 15.6 

     Straight  85.0 85.0 86.3 85.2 85.6 84.4 

  Vertical alignments       

     Grade 15.1 13.0 14.3 11.5 12.3 11.0 

     Crest and dip 7.9 7.3 7.3 5.9 7.4 9.7 

     Level 77.0 79.7 78.4 82.6 80.3 79.3 

  Roadway surface condition       

     Wet road surface 8.2 6.1 6.6 6.9 5.1 7.5 

     Dry road surface 91.8 93.9 93.4 93.1 94.9 92.5 

  Weather condition       

     Adverse weather (raining/fog/smoke/dust) 5.8 4.1 5.4 4.6 3.2 5.4 

     Fine weather 94.2 95.9 94.6 95.4 96.8 94.6 

  Remoteness classification       

     Major cities 68.7 70.6 74.0 71.8 70.2 70.2 

     Inner regional 16.2 14.4 12.6 13.4 16.5 14.0 

     Outer regional 13.7 14.1 11.7 13.3 12.3 14.4 

     Remote 1.0 0.7 1.5 1.0 0.9 0.9 

     Very remote 0.5 0.2 0.2 0.5 0.1 0.5 

  Crash location       

     Cross intersection 16.3 15.1 14.7 13.7 14.0 12.8 

     Roundabout 8.3 9.9 9.1 10.5 10.4 9.7 

     T junction 25.0 25.3 26.8 24.0 28.8 28.1 

     Mid-block 50.4 49.7 49.4 51.8 46.8 49.4 
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  Presence of traffic control       

     Operating traffic lights 13.7 13.2 13.5 14.0 15.1 12.6 

     Stop sign and give way sign 21.0 20.1 18.8 19.1 20.8 21.5 

     Pedestrian crossing sign and operated lights 5.2 4.4 4.6 4.2 5.5 3.8 

     Other traffic control (e.g. police) 60.1 62.3 63.1 62.7 58.6 62.1 

*Column percentage 

 

4. Results and Discussion 

 

The empirical analysis involves the estimation of a series of injury severity models, which 

includes (1) Ordered Logit model, (2) Ordered Logit model with piecewise linear functions of 

temporal heterogeneity, (3) Generalized Ordered Logit model with piecewise linear functions of 

temporal heterogeneity, (4) Generalized Ordered Logit model with piecewise linear functions of 

temporal and active traveler group heterogeneity, and (5) Correlated Random Parameters 

Generalized Ordered Logit model with piecewise linear functions of temporal and active traveler 

group heterogeneity.  

To identify the model with the best data fit in the current empirical context, the data fit 

measures of different estimated models are compared in this section. All the estimated competitive 

models are nested versions of each other, and hence, the data fit measures for these models are 

compared by employing the likelihood ratio test, expressed as: 

 

𝜒2 =  −2[𝐿𝐿𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 −  𝐿𝐿𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙] (9) 

 

where 𝐿𝐿 is the log-likelihood value at the convergence.  

For the empirical context of this study, the log-likelihood at zero (equal share model) and 

the log-likelihood at constant (market share model) are -6931.472 and -5184.416, respectively. 

First, a traditional Ordered Logit model is estimated to establish the benchmark for comparison. 

Log-likelihoods at zero and constant provide a baseline for a clear assessment of how much the 

inclusion of predictors enhances the model’s explanatory power (Cameron and Trivedi, 2005). As 

is evident, the traditional ordered logit model provides significantly better data fit over equal share 

and market share models and hence enhances the model explanatory power. The log-likelihood at 

convergence and number of parameters for different final specified models are presented in Table 

2, while the second-row panel of Table 2 presents the results of likelihood ratio tests across 

different competitive models. 

The estimates of the Ordered Logit model are further tested for the onset and duration of 

temporal variations. The onset of temporal variation in any variable effect is assumed to be a 

quarter of any year under consideration and are specified as the interactions of quarters and the 

exogenous variable. In this study, the dataset has 24 quarters over 6 years of crash data. Thus, 23 

interaction terms (deviations) can be specified for each exogenous variable (at least one of the 

quarters needs to serve as the base case) (see Bhowmik et al. (2019) and Phuksuksakul et al. (2024) 

for further details on such model specification). The statistically significant (at 90% confidence 

level) deviations are the onset of temporal variations.  

In this study, in identifying the duration of the temporal effect, it is further assumed that 

the temporal variation can continue over different quarters after the onset of temporal variation in 

a variable effect which is empirically tested based on the data fit. As explained in the econometric 
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framework section, such duration is specified as piecewise linear function of (𝕄, 𝕂 = [𝑚′, 𝑘′] +
∑[(𝑚 > 𝑚′), (𝑘 > 𝑘′)]) , where quarter (𝑚′)  of year (𝑘′)  is a significant onset of temporal 

variation. In identifying the temporal duration, the following quarters (𝑚) of the onset quarter 

(𝑚′) are added to the onset (𝑚′) until adding further (𝑚) does not improve the data fit. For 

example, let us assume that the interaction terms of variable ‘x’ with quarter 1 of year 2015 

(Q1/2015) is found to be statistically significant – Model 1. Thus, Q1/2015 is the onset of a 

temporal variation episode for ‘x’. Once the onset is identified, in the next step, an interaction of 

the indicator for (Q1+Q2)/2015 with ‘x’ is specified to test for temporal duration, which is found 

to be statically significant – Model 2. The likelihood ratio test between Models 1 and 2 shows that 

Model 2 performs better, signifying that the effects of Q1/2015 and Q2/2015 are the same. Further, 

Model 3 is estimated by adding Q3/2015 to (Q1+Q2)/ 2015. For the sake of this example, let us 

assume that the likelihood ratio test demonstrates that Model 3 does not improve the data fit over 

Model 2. Thus, Model 2 is the best specified model in this example with Q1/2015 as the onset of 

temporal variation and (Q1+Q2)/2015 as the duration for this episode of temporal variation.  

Splitting the data across different quarters might result in smaller data records across different 

injury severity levels, specifically in the fatal injury category. Thus, the proposed study design of 

identifying the temporal duration over different quarters intrinsically reduces the possibility of 

estimating a parameter with a very small number of data records across different quarters.    

According to Table 2, the results suggest that the model with piecewise linear function of 

temporal heterogeneity provides better data fit in the current study context (𝝌2, dof, p-value: 

205.32, 16, p-value <0.01). Therefore, the result supports our hypothesis that the effects of 

exogenous variables are likely to vary across different timepoints of the year under consideration. 

Further, it can be observed that the generalized ordered logit model outperforms the ordered logit 

model in terms of data fit supporting our hypothesis that the effects of exogenous variables are 

likely to vary across different alternatives of the dependent variable.  

Further, we hypothesize that there might be systematic heterogeneity in the effects of 

variables by active traveler groups; thus, the estimated generalized ordered logit model with 

piecewise linear function of temporal heterogeneity is augmented by interaction terms of active 

traveler indicators (GOL-Pkh). However, none of the interactions between active traveler group 

and other exogenous variables is statistically significant in the current study context. The result is 

perhaps indicating the similarity in injury severity mechanism between pedestrian and bicyclist 

when crash with motor vehicle as these two are the most vulnerable road users.  

As stated in the econometric framework section, the thresholds in the generalized ordered 

logit formulation might be correlated through unobservables. As such, in this study, the 

Generalized Ordered Logit model with piecewise linear function of temporal heterogeneity (in 

both propensity and thresholds) is further tested for the correlations of exogenous variables across 

different threshold functions (GOLC- Pk). Correlations across different thresholds are examined 

by using multivariate distribution of normal variables that stitches the thresholds through 

unobserved error terms. The statistical significance of the correlation terms is empirically tested 

based on the data fit (at 90% confidence level). However, none of the correlation parameters are 

found to be significant in the current empirical context. The result is perhaps indicating that the 

model with structural variations in temporal effects of exogenous variables provide more observed 

information, and hence, the role of unobserved heterogeneity is likely to become statistically less 

prominent in developing active traveler injury severity models.  

Models GOL-Pkh and GOLC- Pk do not have any additional parameters and hence, are 

reduced to model GOL-Pk. Thus, GOL-Pk is considered the best-specified model and is considered 
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for further analysis. Model GOL-Pk is further tested for unobserved heterogeneity in parameter 

estimates of the Generalized Ordered Logit formulation, and one of the variables is found to be 

random. The likelihood ratio test indicates that the model with random parameter outperforms the 

model without random parameter (𝝌2, dof, p-value: 3.46, 1, 0.05 < p-value < 0.1) and hence 

highlighting the superiority of addressing unobserved heterogeneity in the effect of exogenous 

variables.  

Finally, to further assess the performance of the best-specified model, a validation 

experiment is also carried out by using 1,304 hold-out samples. For the validation sample, based 

on the estimates of the Random parameter Generalized Ordered Logit model with piecewise linear 

function of temporal heterogeneity (RGOL- Pk), the predicted shares (observed shares) across 

different injury severity categories are: 0.099 (0.098) for minor injury, 0.360 (0.359) for moderate 

injury, 0.515 (0.516) for major injury and 0.025 (0.025) for fatal injury. The reasonable predicted 

share shows that the estimated model performs well in the current study context. Moreover, for 

the hold-out sample, the log-likelihood at converge (number of parameters) for the Ordered Logit 

and Random parameter Generalized Ordered Logit model with piecewise linear function of 

temporal heterogeneity are -1273.52 (18) and -1252.40 (41), respectively.  The likelihood ratio test 

indicates that the model with random parameter outperforms the traditional ordered logit model 

without temporal heterogeneity (𝝌2, dof, p-value: 42.24, 23, p-value < 0.01), and hence, 

highlighting the superiority of addressing temporal heterogeneity in the effect of exogenous 

variables.  

 

Table 2 

Comparison of data fit measures across models. 

Model 
Log-Likelihood at 

Convergence 

Number of 

Parameters 

Ordered Logit model (OL) -4,947.23 18 

Ordered Logit model with piecewise linear function of temporal 

heterogeneity (OL-Pk) 
-4,931.03 24 

Generalized Ordered Logit model with piecewise linear function of 

temporal heterogeneity (GOL-Pk) 
-4,828.37 40 

Random parameter Generalized Ordered Logit model with piecewise 

linear function of temporal heterogeneity (RGOL- Pk) 
-4,826.65 41 

Comparison model 

Nested model – Likelihood ratio test (𝝌2, dof) p-value – Best model 

OL/OL-Pk (32.42, 6) < 0.01 – OL- Pk 

OL-P/ GOL-Pk (205.32, 16) < 0.01 – GOL- Pk 

GOL- Pk /RGOL- Pk 0.05 < (3.46, 1) < 0.1 – RGOL- Pk 

dof: degree of freedom; NS: Insignificant; --: no presence of statistically significant exogenous variables 

 

 

4.1. Model estimation results 

 

In presenting the proposed model estimation results, we will restrict ourselves to the 

discussion of the best-specified model (as presented in Table 2) that is the ‘Random parameter 

Generalized Ordered Logit model with piecewise linear function of temporal heterogeneity’ 

(referred to as generalized ordered model for brevity hereafter). Table 3 presents the results of the 

model. A positive (negative) coefficient in the propensity corresponds to an increased (decreased) 
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likelihood of serious injury severity outcome. In thresholds, a positive (negative) parameter 

implies that the threshold is bound to increase (decrease). Since the major focus of this study is to 

examine the onset and duration of temporal variations in the variable effects, the results of the 

time-varying effects are presented first. The estimation results are explained by variable groups in 

the following sections.  

 

Table 3  

Estimation results of the Random parameter Generalized Ordered Logit model with piecewise 

linear function of temporal heterogeneity. 

Explanatory variables 

Estimates 

Propensity 

Threshold 

between 

Moderate 

and Major 

injury 

Threshold 

between 

Major  

and Fatal 

injury 

Constant -1.716*** 0.753*** 1.406*** 

Active Traveler Characteristics    

  Active traveler age (Base: Other active traveler age group)    

      ≤15 years old 0.231*** -- -- 

      ≥60 years old 0.534*** -- -0.407*** 

  Active traveler gender (Base: Male) 
   

      Female″  0.585*** 0.166*** -- 

          From 2015, Q1 to 2016, Q3‴ -0.237* -- -- 

          From 2019, Q2 to 2020, Q1  -0.414*** -- -- 

  Under the influence of alcohol (Base: No) 
   

      Yes  0.864*** -- -0.771*** 

  Active traveler intended action (Base: Other, e.g. remain stationary) 
   

      Crossing carriageway  0.487*** -- -- 

          From 2015, Q1 to 2016, Q2 -0.247* -- -- 

          From 2018, Q1 to 2018, Q4 -0.461*** -- -- 

  Active traveler at-fault (Base: No) 
   

      Yes  0.601*** -- 0.427* 

       Standard deviation -- -- 0.485** 

          From 2016, Q1 to 2016, Q4 -- -- -0.211* 

          From 2019, Q1 to 2019, Q4 -0.233* --  --  

Motorist Characteristics    

  Motorist age (Base: Other motorist age group)    

      ≤24 years old 0.280*** -- -- 

      25-39 years old 0.195** -- -- 

  Motorist gender (Base: Male)     

      Female  -0.125** -- -- 

  Under the influence of alcohol (Base: No)     

      Yes  0.587*** -- -- 

  Distracted/unattended motorist (Base: No)     

      Yes  0.629*** -- -- 

Motor Vehicle Characteristics    

  Vehicle type (Base: Other, e.g. Passenger car)    

      Bus and truck  0.302* -- -0.551*** 

  Vehicle age (Base: Other age groups)       

      0-5 years old -- -- 0.129* 

Environmental Characteristics    
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  Time-of-the-day (Base: Other time-of-the-day)       

      Nighttime (7pm-10pm) -- -0.097* -- 

      Late night until early morning (11pm-5am) 0.319*** -- -- 

Roadway Geometric Characteristics    

  Posted speed limit (Base: 60 km/hr)       

      10-40 km/hr -0.364*** -- 0.566*** 

      50 km/hr -0.375*** -0.127*** 0.168** 

          From 2015, Q1 to 2015, Q4 -- 0.135** -- 

          From 2019, Q1 to 2020, Q2 -- -- 0.288* 

          From 2020, Q1 to 2020, Q4 0.265* -- -- 

      >70 km/hr -- -0.351*** --  

  Presence of traffic control (Base: No traffic control)       

      Operating traffic lights -- -- 0.322*** 

      Stop sign and give way sign -- -- 0.763*** 

Log-likelihood at convergence -4,826.645 

Number of observations 5,000 

--: Non statistically significant; *: Statistically significant at 90%, **: Statistically significant at 95% and ***: 

Statistically significant at 99%; ″: Main effect of the variable; ‴: Second order effect (interaction of the variable 

and the temporal duration) 

 

4.1.1 Time-varying effects 

 Several exogenous variables are found to be associated with time-varying effects in the 

propensity and threshold functions. For ease of presentation, the coefficients with the time-varying 

effects are plotted and presented in Figure 2. The variables with time-varying effects in the 

propensity functions are – (Figure 2(a)) female active traveler, (Figure 2(b)) active traveler 

crossing carriageway, (Figure 2(c)) at-fault active traveler, and (Figure 2(e)) posted speed limit of 

50 km/hr. The variables with time-varying effects in the threshold functions are – (Figure 2(d)) at-

fault active traveler and (Figures 2(f) and 2(g)) posted speed limit of 50 km/hr. In Figure 2, the 

black line represents the main effect, the breakpoint for the beginning of the blocks represents the 

onset of time-varying effect, and the block represents the duration of time-varying effect. Thus, 

the total effect of an exogenous variable can be computed by summing up the main and time-

varying effects (deviation). For example, the time-varying effect in Figure 2(a) for female active 

traveler in the propensity function can be interpreted as: 

• The main effect of female active traveler is 0.585. 

• There are two episodes of time-varying effects. 

• The onset of the first episode of time-varying effect is 1st quarter/2015. The duration of this 

time-varying episode is from 1st quarter/2015 to 3rd quarter/2016. The overall effect of 

female active traveler during this first episode is (0.585 - 0.237) = 0.348. 

• The onset of the second episode of time-varying effect is 2nd quarter/2019. The duration of 

this time-varying episode is from 2nd quarter/2019 to 1st quarter/2020. The overall effect of 

female active traveler during this second episode is (0.585 – 0.414) = 0.171. 

The rest of the variables with time-varying effects can be interpreted in a similar manner. The 

results support our hypothesis that the effect of an exogenous variable might be different within a 

year which can be carried over to some part of the next year. On the other hand, some of the years 

might have the same effect throughout the year. As such, it is important to consider disaggregated 

time points in examining injury severity mechanism, where feasible. Further, the main effect of 

at-fault active traveler in the threshold demarcating major and fatal injury is found to be normally 

distributed. Therefore, in presenting the time-varying effects of “at-fault active traveler” indicator 

in the threshold functions in Figure 2(d), the black line represents the mean main effect (0.427). 
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The supporting argument on such time-varying effects are discussed in the following sections 

along with other variables.  
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(a) - Time-varying estimate of female active traveler  

in the propensity function 

(b) - Time-varying estimate of active traveler action crossing 

carriageway in the propensity function 

  
(c) - Time-varying estimate of at-fault active traveler in the propensity 

function 

(d) - Time-varying estimate of at-fault active traveler in the threshold 

function between major and fatal injury  

  

Mean main effect = 0.427 

Mean main effect + Deviation = 0.216 
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(e) - Time-varying estimate of posted speed limit 50 km/hr in the 

propensity function 

(f) - Time-varying estimate of posted speed limit 50 km/hr in the 

threshold function between moderate and major injury  

  
(g) - Time-varying estimate of posted speed limit 50 km/hr in the 

threshold function between major and fatal injury  

 

Fig. 3. Effect of exogenous variables with time-varying effects.
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4.1.2. Active traveler characteristics 

With respect to active traveler characteristics, several exogenous variables are found to be 

statistically significant. The results highlight that relative to the 16 to 59 years old active traveler 

group, young (≤15 years old) and elderly (≥60 years old) active travelers are likely to be severely 

injured in the event of crashes with motor vehicles. Moreover, the indicator representing elderly 

active traveler is also found to be negative in the threshold demarcating major and fatal injury 

representing a higher likelihood of fatal injury for this road user group. These results highlight the 

frailty of young and elderly active travelers relative to their other counterparts (Eluru et al., 2008; 

Moore et al., 2011). 

With regards to active traveler gender, the results indicate that female active traveler is 

more likely to sustain serious injury with an overall higher likelihood of sustaining moderate injury 

relative to their male counterpart. The result could be explained by less physiological strength of 

female to withstand blunt force trauma (Hosseini et al., 2022; Tay et al., 2011). Further, the results 

also indicate time-varying effects of female active traveler group. The results indicate a decrease 

in the size of propensity (can be computed as 0.348 = 0.585 – 0.237) between the 1st quarter/2015 

to 3rd quarter/2016. Between 4th quarter/2016 and 1st quarter/2019, the overall propensity of injury 

severity for the female active traveler is 0.578, which decreased to 0.171 (0.585 – 0.414) between 

2nd quarter/2019 and 1st quarter/2020. Empirical evidence from Queensland indicates a significant 

surge in mental and behavioral health issues among females during 2017-2018 period compared 

to the preceding years (Queensland Government, 2021b). Moreover, females were reported to 

exhibit higher levels of psychological distress and anxiety, potentially leading to riskier behaviors, 

particularly on roads. Consequently, this heightened propensity for risk-taking behavior among 

female active travelers over 2017 and 2018 may have contributed towards greater likelihood of 

severe injuries for this road user group relative to their male counterpart (Ceccato et al., 2015; 

Esmaili et al., 2021). The relatively higher injury severity outcome of female active traveler in the 

last three quarters of 2020 is perhaps reflecting the impact of COVID-19. During this period, 

higher levels of traffic violations were observed, which contributed to higher crash risk and injury 

severity outcomes (Hughes et al., 2022; Lee et al., 2023). Thus, the less physiological strength of 

women and overall increase in risk taking behavior among road users during COVID period 

perhaps contributed towards higher injury severity outcomes among female active traveler relative 

to their male counterparts. Overall, the results indicate that female active travelers are likely to 

sustain higher injury severity in crashes with motor vehicles relative to male active traveler, and 

the size of effect on severity outcome is time-varying. Thus, the net effect of female active traveler 

on injury severity outcome can be computed in conjunction with propensity, thresholds, and time-

varying effects in the model. 

As expected, active travelers under the influence of alcohol are likely to sustain higher 

injury severity outcomes in the event of crashes with motor vehicles relative to non-alcohol 

impaired active travelers. A negative sign in the threshold demarcating major and fatal injury 

indicates a higher likelihood of fatal injury outcome for alcohol impaired active travelers. Alcohol 

consumption potentially compromises the central nerve system which in turn decreases the 

decision-making skill, thus, an alcohol impaired active traveler might fail to take effective action 

in the advent of a crash resulting in higher injury severity outcome (Kweon and Lee, 2010; Lin 

and Fan, 2021).  

We find that the effect of active traveler intended action, crossing carriageway indicator is 

found to be temporally varying. The results indicate a positive coefficient (𝛽 = 0.487) in the 
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propensity function, which declines to 0.240 (𝛽 = 0.487 − 0.247) between 1st quarter/2015 to 2nd 

quarter/2016 and reaches to 0.026 (𝛽 = 0.487 − 0.461) during 2018 and increases back to 0.484 

in 2019 and 2020. While the effect varies across quarters, the results indicate a higher likelihood 

of active travelers sustaining severe injury in crashes with motor vehicles while crossing the 

carriageway. The observed increase in injury severity outcome among active travelers can be 

attributed to the higher rates of distraction, such as the use of mobile phones while walking or 

cycling, even during road crossing; moreover, this results could reflect a growing non-compliance 

issue of road rules among road users in recent years (e.g. jaywalking or red light crossing, or not 

giving way to pedestrian), particularly during the COVID-19 period resulting in higher severity 

outcome for active traveler during these years (Arafat et al., 2023; Krizsik and Pauer, 2023; Pešić 

et al., 2016). Overall, active travelers are likely to sustain serious injury in a crash with motor 

vehicle while crossing carriageway compared to other actions. While crossing carriageway, active 

travelers are most exposed to the oncoming traffic. Therefore, while crossing a carriageway, an 

active traveler is likely to withstanding the direct impact of a motor vehicle resulting in higher 

severity outcome from a crash (Zajac and Ivan, 2003).  

In the official crash database of Queensland, a crash victim is identified as ‘at-fault’ party 

if the crash victim is attributed with traffic violations or if the crash victim is identified to be the 

“most at-fault” by police. The results indicate that the active travelers who are identified as at-fault 

are likely to be severely injured relative to their not-at-fault counterparts. However, the effects are 

found to be time-varying while also vary by injury severity alternatives. In 2019, the effect of “at-

fault” status is found to be less positive (𝛽 = 0.601 − 0.233 = 0.368) relative to other years. On 

the other hand, the positive coefficient in the threshold demarcating major and fatal injury indicate 

lower probability of fatal injury, but the negative coefficient in threshold demarcating major and 

fatal injury probability of fatal injury is higher in 2016 (𝜎 = 0.427 − 0.211 = 0.216) relative to 

other years. In fact, the effect of at-fault active traveler in the threshold demarcating major and 

fatal injury is found to be normally distributed with a standard deviation of 0.485. However, the 

mean value of the normally distributed parameter is 0.427 for the years 2015 and 2017-2020, while 

the mean value is 0.216 for the year 2016. Thus, the normal distribution spread of the indicator for 

2016 and other years are different in the current study context. Figure 3 represents the overall 

distributions of at-fault status in the threshold demarcating major and fatal injury across different 

years. From Figure 3, it could be observed that over 81% (68%) of at-fault active travelers are 

likely to sustain fatal injury in crashes with motor vehicles for the years 2015 and 2017-2020 

(2016). The lower proportion of fatality among active traveler in 2016 relative to other years are 

perhaps indicating the positive impacts of “Queensland Police Service” campaign in 2016 to 

encourage active travelers, specifically pedestrians, to use the road on safe side of the law (QPS, 

2016).  

The lower propensity in injury severity outcomes of at-fault active travelers in 2019 relative 

to the preceding years could be attributed to significant investments in safer infrastructure that 

better caters for active traveler needs in Queensland (TMR (2018). However, in 2020, during the 

outbreak of COVID-19, there were significant increase in risky behavior among active travelers 

which perhaps contributed towards higher injury severity outcomes among at-fault active travelers 

(Inada et al., 2021; Katrakazas et al., 2020; Zafri et al., 2021). In general, the time-varying effect 

of at-fault active traveler can be attributed to several risky actions such as jay walking, crossing 

from the wrong side, traveling against traffic flow, or darting across the road. Such risky behaviors 

could lead to the reduced perception-reaction time or time-to-collision of approaching motor 

vehicle. In fact, such unexpected situations where at-fault active travelers entering the roadway 
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could lead to unavoidable conflicts and hence active traveler are more likely to receive full crash 

momentum which in turn increasing the injury severity outcomes of active travelers (Dai, 2012; 

Haleem et al., 2015; Zhu et al., 2021).   

 

 
Fig. 3. Distributions of random parameter of at-fault status in the threshold demarcating major 

and fatal injury across different years 

 

4.1.3. Motorist characteristics 

 In the current study context, none of the motorist characteristics is found to have time-

varying effect on active traveler injury severity outcome. The results highlight that active travelers 

are more likely to sustain serious injury in crashes with motor vehicles driven by young (age ≤24 

years old) and young-adult motorists (25-39 years old) relative to other motorist groups. The 

results could be explained by less driving experience and driving maneuverability skills of younger 

motorists (Nishimoto et al., 2019). Moreover, driving with high mean speed and high velocity are 

found to be dominant among young motorists’ cohort (Boyce and Geller, 2002), which in turn can 

result in more severe outcome for active traveler crashes. Several previous studies found that most 

of the female motorists are likely to maintain a lower speed profile and are less likely to be engaged 

in speeding behavior (Roidl et al., 2013; Shinar et al., 2001). Moreover, earlier studies found that 

female drivers are generally more attentive and engage in less aggressive driving behavior 

(Kovaceva et al., 2020; Nishimoto et al., 2019). Thus, female motorists are generally involved in 

less severe active traveler crashes. In this study, we also find that active traveler crashes involving 

female motorist is likely to be less serious than active traveler crashes involving male motorists.  

Alcohol impairment affects driving behavior by compromising cognitive, decision skill 

and perception-reaction time while also contributing towards high risk-taking behavior. As 

expected, active traveler crashes involving alcohol impaired motorists are found to be serious 

relative to active traveler crashes involving sober drivers (see Eluru et al. (2008) and Liu et al. 
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(2019) for similar findings). With respect to distracted/unattended motorists, the result highlights 

the possibility of serious injury outcome for active travelers relevant to such risky driving behavior. 

Distracted/unattended behavior compromises driving performance, resulting in insufficient 

judgement time when taking effective evasive actions in the presence of an active traveler (Haque 

and Washington, 2014), resulting in higher injury severity outcomes for active travelers.  

 

4.1.4. Motor vehicle characteristics 

 Active travelers are more likely to suffer serious injury in the event of crashes with heavy 

and large vehicles (bus and truck) relative to passenger vehicles. Heavy and large vehicles are 

likely to produce higher crash momentum due to their weights along with larger impact area 

resulting in higher crash severity outcomes for active travelers (Marcoux et al., 2018; Yasmin et 

al., 2014). With regards to vehicle age, the indicator for newer vehicles (0-5 years old vehicle) is 

insignificant in the propensity function, however, it is found to be significant in the threshold 

between major and fatal injury. The result indicates that crashes with newer vehicles are likely to 

be less severe than older vehicles. Newer vehicles are likely to be associated with the improvement 

in vehicle’s design and composited with built-in driving assistant features (such as pedestrian 

detection and automatic brake) and hence, is likely to mitigate crash outcomes for active travelers 

(Mahdinia et al., 2022). 

 

4.1.5. Environmental characteristics 

 Among different environmental characteristics, only time-of-day is found to have 

significant effect on active traveler injury severity outcomes. The results indicate negative 

consequences of active traveler crashes during nighttime (7pm-10pm) and late night (11pm-5am). 

The negative sign in the threshold demarcating minor and major injury of active traveler crash 

during nighttime indicates higher probability of major injury severity outcome. At the same time, 

late-night period shows an overall higher probability of serious injury outcome for active traveler 

crashes. The results can be attributed to the restricted visibility of road users during nighttime 

(Hezaveh and Cherry, 2018; Nishimoto et al., 2019). Moreover, during nighttime and late-night 

periods, there might be prevalence of speeding and alcohol impairment deteriorating overall safety 

conditions for active travelers. The presence of an active traveler on roadway during late night 

period might be unexpected to a motorist which might contribute towards less efficient reaction to 

effectively avoid an impending crash, further contributing towards higher active traveler injury 

severity outcome.  

 

4.1.6. Roadway characteristics 

 With respect to roadway characteristics, posted speed limit and presence of traffic control 

devices are found to be significant in the estimated model. With regards to posted speed limit, the 

results highlight the benefits of low-posted speed limit roadways (10-40 km/hr). Active travelers 

are likely to be less seriously injured with an overall less likelihood of fatal injury when involved 

in crashes with motor vehicles on 10-40 km/hr speed limit roadways.   

 On the other hand, active traveler injury severity outcome is found to be lower on 50 km/hr 

roadway with an overall higher probability of major injury (negative and positive coefficients in 

the thresholds indicate a higher probability for major injury category). However, the effects of 

50km/hr are time-varying. The effect in the propensity increased by − 0.110 (𝛽 = −0.375 +
0.265) unit in 2020 relative to other years. In 2015, 50 km/hr is found to contribute towards lower 

major injury probability relative to other years. Finally, between 1st quarter/2019 to 2nd quarter 
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2020, the probability of fatal injury is found to be much lower than other quarters. Thus, it is 

evident that the overall effect of 50 km/hr can be computed by considering the values in the 

propensity, and threshold functions while also accommodating for time-varying effects. 50 km/hr 

posted speed limit is applied in built-up area14 where there are diversities in road user groups along 

with activities of commercial and freight vehicles. Such characteristics of 50 km/hr roadway 

contribute towards higher level of complexity in road usage, specifically, complexity in the right 

of way for active traveler group which simultaneously increase the perception-reaction time 

contributing towards higher active traveler injury severity outcomes on 50 km/hr roadways 

(Hussain et al., 2023). The speed limit in built-up areas in Queensland is 50km/h, and the default 

speed limit on a road outside a built-up area is 100km/h (unless otherwise indicated by signs) 

(Queensland Government, 2024). As such, the negative coefficient for threshold demarcating 

minor and major injury for active traveler from year 2016 could perhaps indicate the inappropriate 

posted speed limit zone with regards to impendent urbanization trends since there is significant 

increase in urbanization in Queensland from 2016 (approximately 15% increase in urbanization 

and about 3 times increase in resident population) (Queensland Government, 2021a). However, 

there was an initiation of posted speed reduction in areas with high active traveler activity 

according to the 'Safe System Approach' between the year 2017-2019 (Queensland Government, 

2017), and hence resulting in reduced active traveler injury severity outcomes as presented by the 

positive coefficient of the threshold demarcating major and fatal injury in year 2019. In addition, 

the result associated with the year 2020 is perhaps highlighting the effect of COVID-19 period on 

active traveler injury severity outcomes. Motorists were reported to be associated with higher risky 

driving behavior during COVID-19 (increased driving speed, harsh acceleration, harsh braking 

event and mobile phone usage while driving) resulting in the lower awareness or intention to yield 

to active traveler, in turn contributing towards higher injury severity outcome for active traveler in 

2020 relative to other years (Inada et al., 2021; Katrakazas et al., 2020; Zafri et al., 2021).  

With regards to posted speed limit, although the high posted speed limit indicator (>70 

km/hr) is insignificant in the propensity function, it is found to be negative in the threshold between 

minor and major injury. The result shows a higher probability of major injury for active traveler 

crashes on >70 km/hr roadways. Overall, the results highlight the negative safety impacts of higher 

posted speed limits on active traveler injury severity outcomes. On roadways with higher posted 

speed limit, the right of way is prioritized to motor vehicles in order to maximize vehicle 

movements. Also, less amount of active traveler facilities could be expected on high posted speed 

limit roadways. With the less active traveler facilities (proper crosswalk, pedestrian/cyclist signal, 

proper walkway/cyclist way, and crossing facilities), active traveler is likely to be fully exposed 

to motor vehicles on high posted speed limit roadway while using these roadways. On the other 

hand, motor vehicles are expected to travel at higher speed, and hence, it is likely to take longer 

stopping distance for a motor vehicle to react in time. As such, active traveler injury severity 

outcome is likely to be higher on high posted speed limit locations resulting from high crash 

momentum of vehicle mass and impact speed on such roadways (Das, 2021; Eluru et al., 2008; 

Wahi et al., 2018).  

 Regarding the presence of traffic control devices, the effects of operating traffic light and 

stop/giveway signs are statistically significant, with positive coefficients in the threshold 

demarcating major and fatal injury. The results indicate that active travelers are less likely to 

sustain fatal injury on roadways with operating traffic lights and stop/giveway signs. The results 

 
14 Land use with a mix use of residential, industrial and commercial areas (TMR, 2023) is known as the built-up area 

in Queensland. 
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highlight the benefits of traffic control devices in mitigating crash outcomes for active travelers. 

These devices are designed to accommodate mixed traffic environment by managing traffic flows 

by road user groups from different directions resulting in less possibility of traffic conflicts and 

hence are likely to result in lower injury severity outcomes for active travelers in the event of 

crashes with motor vehicles (Liu et al., 2019). 

 

4.2. Elasticity effects and Model implications  

The estimated effects of the exogenous variables presented in Table 3 and Figure 2 do not 

directly describe the magnitude of the effects of exogeneous variables on active traveler injury 

severity outcomes. Therefore, to identify these effects, aggregate level elasticity effects are 

computed (see Eluru and Bhat (2007) for methodology and discussions on elasticity effects). For 

computing aggregate level elasticity effects, the base-probabilities by injury severity categories 

(Pr (𝑦𝑖 = 𝑗)𝐵𝑎𝑠𝑒) are computed by applying Equation 8. Then, we compute the shift-probability 

function (Pr (𝑦𝑖 = 𝑗)𝑠ℎ𝑖𝑓𝑡) for those exogeneous variable by switching those value of exogeneous 

variable (𝒛𝑖𝑗 , 𝒙𝑖) to zero (one) for exogenous variable which takes a value of one (zero). The 

elasticity effects of exogenous variables by different years are computed as: 

 

𝐸𝐸𝑗 =  
∑ [Pr (𝑦𝑖 = 𝑗)𝑆ℎ𝑖𝑓𝑡 − Pr (𝑦𝑖 = 𝑗)𝐵𝑎𝑠𝑒 ]𝐼

𝑖=1  

∑ [Pr (𝑦𝑖 = 𝑗)𝐵𝑎𝑠𝑒 ]𝐼
𝑖=1

 × 100 ×  𝑆 

 

𝑤ℎ𝑒𝑟𝑒 𝑆 =  {
1       𝑖𝑓  𝒛𝑖𝑗,𝑠ℎ𝑖𝑓𝑡  𝑜𝑟  𝒙𝑖,𝑠ℎ𝑖𝑓𝑡 = 0

−1     𝑖𝑓 𝒛𝑖𝑗,𝑠ℎ𝑖𝑓𝑡  𝑜𝑟  𝒙𝑖,𝑠ℎ𝑖𝑓𝑡 = 1
 

 

(10) 

 

The notations specified in Equation 10 are described in Section 2. The elasticity effects are 

computed as an average measure across all quarters, which are presented in Table 4. Further, 

elasticity effects are computed by quarters for variables with time-varying effects, which are 

presented in Table 5. Further, for ease of representation, the elasticity values in Table 5 are 

represented by using heat map15 to show the variations in elasticity values across different time of 

the year.  

 

Table 4  

Average elasticity effect of exogenous variables. 

Explanatory variables 

Active traveler injury severity outcomes 

Minor 

Injury 

Moderate 

Injury 

Major 

Injury 

Fatal 

Injury 

Active Traveler Characteristics     

     Age ≤15 years old -12.714 -5.898 5.735 16.454 

     Age ≥60 years old -26.931 -15.214 7.770 154.488 

     Female  -16.562 -0.876 3.444 8.741 

     Under the influence of alcohol -51.746 -33.410 2.547 588.890 

     Intended action Crossing -18.193 -7.847 8.505 10.022 

     At-fault -10.648 -4.756 4.868 10.117 

 
15 In Table 5, the darker the color of a block, the higher is the value of elasticity effect specific to an exogenous 

variable. 
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Motorist Characteristics     

     Age ≤24 years old -15.728 -7.962 7.793 15.773 

     Age 25-39 years old -12.809 -6.295 6.240 12.385 

     Female  2.180 0.989 -0.938 -3.397 

     Under the influence of alcohol -37.515 -22.036 20.191 47.076 

     Distracted/unattended  -38.572 -23.043 20.851 51.756 

Motor Vehicle Characteristics     

     Bus and truck  -21.549 -11.139 -1.258 253.030 

     Age 0-5 years old -- -- 0.560 -10.710 

Environmental Characteristics     

     Nighttime (7pm-10pm) -- -10.544 6.713 10.549 

     Late night until early morning (11pm-5am) -21.460 -11.134 10.945 19.118 

Roadway Geometric Characteristics     

     Posted speed limit 10-40 km/hr 26.463 9.357 -8.276 -65.813 

     Posted speed limit 50 km/hr 14.557 -1.080 -1.186 -18.532 

     Posted speed limit >70 km/hr -- -34.979 21.726 45.457 

     Operating traffic lights -- -- 2.066 -39.533 

     Stop sign and give way sign -- -- 3.910 -74.821 

 

Table 5  

Elasticity effects by different quarters for variables with time-varying effects. 

Time-of-the-

year 

Exogenous variables 

 Female active traveler  Active traveler crossing carriageway 

Injury severity Injury severity 

Year Quarter 
Minor 

injury 

Moderate 

injury 

Major 

injury 

Fatal 

injury 

Minor 

injury 

Moderate 

injury 

Major 

injury 

Fatal 

injury 

2015 

1 -2.304 7.419 -4.303 -6.710 -1.822 0.825 0.128 -6.389 

2 -2.304 7.419 -4.303 -6.710 -1.822 0.825 0.128 -6.389 

3 -2.304 7.419 -4.303 -6.710 -1.822 0.825 0.128 -6.389 

4 -2.304 7.419 -4.303 -6.710 -1.822 0.825 0.128 -6.389 

2016 

1 -2.304 7.419 -4.303 -6.710 -1.822 0.825 0.128 -6.389 

2 -2.304 7.419 -4.303 -6.710 -1.822 0.825 0.128 -6.389 

3 -2.304 7.419 -4.303 -6.710 -18.193 -7.847 8.505 10.022 

4 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

2017 

1 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

2 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

3 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

4 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

2018 

1 -16.562 -0.876 3.444 8.741 17.599 8.711 -8.507 -19.095 

2 -16.562 -0.876 3.444 8.741 17.599 8.711 -8.507 -19.095 

3 -16.562 -0.876 3.444 8.741 17.599 8.711 -8.507 -19.095 

4 -16.562 -0.876 3.444 8.741 17.599 8.711 -8.507 -19.095 

2019 

1 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

2 13.817 14.160 -11.486 -19.545 -18.193 -7.847 8.505 10.022 

3 13.817 14.160 -11.486 -19.545 -18.193 -7.847 8.505 10.022 

4 13.817 14.160 -11.486 -19.545 -18.193 -7.847 8.505 10.022 

2020 

1 13.817 14.160 -11.486 -19.545 -18.193 -7.847 8.505 10.022 

2 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

3 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

4 -16.562 -0.876 3.444 8.741 -18.193 -7.847 8.505 10.022 

Exogenous variables 
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Time-of-the-

year 

At-fault active traveler  Posted speed limit 50 km/hr 

Injury severity Injury severity 

Year Quarter 
  Minor 

injury 

Moderate 

injury 

  Major 

injury 

  Fatal 

injury 

  Minor 

injury 

Moderate 

injury 

  Major 

injury 

  Fatal 

injury 

2015 

1 -10.648 -4.756 4.868 10.117 14.557 15.867 -12.090 -33.298 

2 -10.648 -4.756 4.868 10.117 14.557 15.867 -12.090 -33.298 

3 -10.648 -4.756 4.868 10.117 14.557 15.867 -12.090 -33.298 

4 -10.648 -4.756 4.868 10.117 14.557 15.867 -12.090 -33.298 

2016 

1 5.748 3.593 -3.390 -4.415 14.557 -1.080 -1.186 -18.532 

2 5.748 3.593 -3.390 -4.415 14.557 -1.080 -1.186 -18.532 

3 5.748 3.593 -3.390 -4.415 14.557 -1.080 -1.186 -18.532 

4 5.748 3.593 -3.390 -4.415 14.557 -1.080 -1.186 -18.532 

2017 

1 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

2 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

3 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

4 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

2018 

1 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

2 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

3 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

4 -10.648 -4.756 4.868 10.117 14.557 -1.080 -1.186 -18.532 

2019 

1 -10.648 -4.756 2.628 52.987 14.557 -1.080 0.849 -57.467 

2 -10.648 -4.756 2.628 52.987 14.557 -1.080 0.849 -57.467 

3 -10.648 -4.756 2.628 52.987 14.557 -1.080 0.849 -57.467 

4 -10.648 -4.756 2.628 52.987 14.557 -1.080 0.849 -57.467 

2020 

1 -10.648 -4.756 4.868 10.117 -7.263 -10.012 10.938 -49.636 

2 -10.648 -4.756 4.868 10.117 -7.263 -10.012 10.938 -49.636 

3 -10.648 -4.756 4.868 10.117 -7.263 -10.012 8.459 -2.196 

4 -10.648 -4.756 4.868 10.117 -7.263 -10.012 8.459 -2.196 

 

Several observations can be made from Table 4. First, the most important variables in terms 

of increase in fatal injury outcome for active travelers are active travelers under the influence of 

alcohol, crashes with bus and truck, and elderly active traveler (active traveler age ≥60 years old). 

Second, the most important variables in terms of decrease in serious injury outcome for active 

travelers are crashes on posted speed limit of 10-40 km/hr and posted speed limit of 50 km/hr, stop 

and giveway sign, and operating traffic lights. From Table 5, it can be observed that time-varying 

effects are likely to be different across quarters for several variables, while for other variables, the 

onset of time-varying effects could be different than the start of a year. Thus, the results highlight 

the importance of examining the disaggregated nature of time-varying effects (onset and duration 

of time-varying effects) in developing injury severity models, where feasible. Such flexibility in 

model specification is likely to have significant implications for devising and implementing 

effective countermeasures since it allows us to understand how road safety landscapes are evolving 

over time and when a new road safety issue is arising. In fact, understanding time-varying effects 

is crucial for developing dynamic policies that not only enhance road safety but also reduce active 

traveler injury severity. By analyzing these time-varying effects, policymakers can adjust safety 

measures across different seasons as needed by using the changes in safety landscape across 

different parts of the year. For example, stricter speed limits (or adaptive posted speed limit) and 

increased enforcement can be implemented during specific time-of-the-year according to the 

traffic activities or weather conditions (e.g. adverse weather or seasons).  
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5. Conclusion 

 

There is considerable evidence in existing safety literature that the exogenous variable 

effects are likely to be time-varying in the crash risk/severity analysis. The majority of these earlier 

studies in existing safety literature tested for such time-varying effects of exogenous variables by 

crash year. Implicitly, these earlier studies assumed that the effects of exogenous variables 

remained the same within a year. However, there might be variability in the variable effects within 

a year, while the same effect might carry over in some or all parts of the preceding years. As such, 

it might be advantageous and worthwhile to investigate the time-varying effects of exogenous 

variables while also examining the onset and duration of such temporal heterogeneity. Towards 

that end, in this study, we proposed a flexible framework for examining the onset and duration of 

time-varying effects in developing injury severity models. In the proposed approach, we assumed 

that the onset of temporal variation can be any quarter of a year under consideration, while the 

time-varying effect can continue over different quarters after the onset of temporal variation in a 

variable effect. In this setting, the duration of time-varying effects of an exogenous variable was 

empirically tested by combining the quarters following the onset quarter in the model estimates. 

The injury severity model was estimated by using Correlated Random Parameter 

Generalized Ordered Logit formulation with piecewise linear functions. The empirical analysis 

was demonstrated by employing active traveler (pedestrian and bicyclist) crash data from 

Queensland, Australia for the years 2015 through 2020. In the estimated model, several exogenous 

variables were found to be associated with time-varying effects in the propensity and threshold 

functions of the generalized ordered logit formulation. In the current study context, these variables 

(temporal variation - onset; duration) were:   

• Female active traveler in the propensity function - (1st quarter 2015; 1st quarter 2015 

to 3rd quarter 2016) and (2nd quarter 2019; 2nd quarter 2019 to 1st quarter 2020). 

• Active traveler crossing carriageway in the propensity function - (1st quarter 2015; 

1st quarter 2015 to 2nd quarter 2016) and (1st quarter 2018; 1st quarter 2018 to 4th 

quarter 2020). 

• Active traveler at-fault in the propensity function - (1st quarter 2019; 1st quarter 

2019 to 4th quarter 2019). 

• Active traveler at-fault in the threshold function between major and fatal injury - 

(1st quarter 2016; 1st quarter 2016 to 4th quarter 2016). 

• Posted speed limit in the propensity function - (1st quarter 2020; 1st quarter 2020 to 

4th quarter 2020). 

• Posted speed limit in the threshold function between moderate and major injury - 

(1st quarter 2015; 1st quarter 2015 to 4th quarter 2015). 

• Posted speed limit in the threshold function between major and fatal injury - (1st 

quarter 2019; 1st quarter 2019 to 2nd quarter 2020). 

The results supported our hypothesis that the effect of an exogenous variable might be 

different within a year, which can be carried over to some part of the next year. On the other hand, 

some of the years might have the same effect throughout the year. Thus, the results highlighted the 

importance of examining the disaggregated nature of time-varying effects (onset and duration of 

time-varying effects) in developing injury severity models, where feasible. Such flexibility in 

model specification is likely to have significant implications for devising and implementing 

effective countermeasures since it allows us to understand how road safety landscapes are evolving 

over time and when a new road safety issue is arising. The model results were further augmented 
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by computing elasticity effects. Elasticity effects showed that the most important variables in terms 

of increase in fatal injury outcome for active travelers were active travelers under the influence of 

alcohol, crashes with bus and truck, and elderly active traveler (active traveler age ≥60 years old).  

The approach employed in the paper estimates piecewise linear terms to represent the 

deviations. However, the deviation estimated is reliant on the base variable and the breakpoints 

are pre-defined. As such, it would be useful to compare the current approach with recently 

proposed spline approach in Shabab et al. (2024) and Markov Switching approach in Xiong et al. 

(2014).  As demonstrated in this study, capturing finer resolution of temporal variations by quarters 

can provide detailed insights into the onset and duration of these variations. Future research could 

consider incorporating seasonal variations (building on the proposed approach in this study) while 

also isolating long-term trends (adding trend variables, such as linear or quadratic temporal trend 

variables) from these fluctuations. Further, as the sample share imbalance of the dependent 

variable across different time periods can result in biased estimates (irrespective of the choice of 

modeling structure), addressing this could be an avenue for future research. It might be worth 

examining the performance of ordered and unordered outcome models by using the proposed 

modeling structure of accommodating for finer resolution of temporal variations (onset and 

duration of temporal variations). 
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