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ABSTRACT 25 
The current research effort is focused on improving the effective use of the multiple disparate 26 

sources of data available by proposing a novel maximum likelihood based probabilistic data fusion 27 

approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, 28 

we consider energy usage by fuel type variables (for electricity and natural gas) in residential 29 

dwellings as our dependent variable of interest, drawn from residential energy consumption survey 30 

(RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate 31 

additional variables that are not available in the RECS data. With a focus on improving the model 32 

for the residential energy use by fuel type, our proposed research provides a probabilistic 33 

mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, 34 

instead of strictly matching records with only common attributes, we propose a flexible differential 35 

weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common 36 

attributes for the two datasets. The fused dataset is employed to develop an updated model of 37 

residential energy use with additional independent variables contributed from the NHTS dataset. 38 

The newly estimated energy use model is compared with models estimated RECS data exclusively 39 

to see if there is any improvement offered by the newly fused variables. In our analysis, the model 40 

fit measures provide strong evidence for model improvement via fusion as well as weighted 41 

contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The 42 

analysis is further augmented through a validation exercise that provides evidence that the 43 

proposed algorithm offers enhanced explanatory power and predictive capability for the modeling 44 

energy use. Our proposed data fusion approach can be widely applied in various sectors including 45 

the use of location-based smartphone data to analyze mobility and ridehailing patterns that are 46 

likely to influence energy consumption with increasing electric vehicle (EV) adoption.  47 
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ABBREVIATIONS 55 

Acronym Full Form 
ANN Artificial Neural Network 
BIC Bayesian Information Criterion 
BPNN Back Propagation Neural Network 
EIA US Energy Information Administration 
EV Electric Vehicle 
EWLR Equal weight regression model 
FAF Freight Analysis Framework 
FARs Fatality Analysis Reporting System 
FHWA Federal Highway Administration  
GES Generalized Estimates System 
GIS Geographic Information System 
GPS Global Positioning System 
HH Household 
HVAC Heating, ventilation, and air conditioning 
IOT Internet of Things 
KNN K-Nearest Neighbour 
LBS Location Based Service 
LDA Latent Dirichlet Allocation 
LL Log-likelihood 
LSTM Long Short-Term Memory 
LWLR Latent Weight Regression Model 
MDCEV Multiple Discrete Continuous Extreme Value 
MNL Multinomial Logit 
NHTS National Household Travel Survey  
RECS Residential Energy Consumption Survey 
SLR Simple Linear Regression model 
SVM Support Vector Machine 
TS Transearch 
US United States 
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NOMENCLATURE: 60 

As different research articles used different notations for variables and matrices, Table 1 outlines 61 

the convention applied in this paper. 62 

 63 

 64 

 65 

Notation Description 
i Index for households in the RECS dataset 
K Number of possible matches from the NHTS dataset 
d Index for different energy sources (electricity, natural gas) 
yd,i Observed log-normal of energy usage for household i and energy source d 

Qd,ik Predicted log-normal of energy usage for household i and the Kth fused record 
for energy source d 

Xik Vector of attributes from the source dataset influencing energy demand 
Sik Vector of attributes from the donor dataset affecting energy demand 
β′ Coefficients corresponding to Xik 
γ′ Coefficients corresponding to Sik 

ε ik Independently and identically distributed error term with zero mean and variance 
σ2 

P(Qik) the probability for HH i for the Kth fused records to have yi energy demand 
ϕ(. ) Standard normal probability density function 
Pik matched weightage propensity 
Zik Vector of attributes considered for matching 
∝ Corresponding vector to be estimated for Zik 
Qi weighted probability that HH i has yi energy demand 
LL Log-likelihood function for the fused dataset energy demand 
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1 Introduction 66 

1.1 Background 67 

The United States of America is the second largest consumer of energy with only 4.3% of the 68 

world population (1, 2). The energy consumption in the US can be mainly attributed to following 69 

sectors: residential use (21%), commercial use (18%), transportation use (29%) and industrial use 70 

(32%) (3, 4). Given how individual mobility and activity participation influences energy use, it is 71 

not surprising that energy consumption in residential, commercial and transport sectors is 72 

intertwined. For instance, households that pursue longer commutes are likely to expend larger 73 

energy for transportation and are likely to expend lesser energy at their residence. Similarly, 74 

individuals working longer hours at office would contribute to increased energy consumption at 75 

commercial buildings and reduced energy use (at least from one individual) in the residence. The 76 

intricate relationship among these three sectors became prominent with the ongoing COVID-19 77 

pandemic. Residential energy use increased by 8% during COVID-19 lockdown and/or mobility 78 

restrictions (between April to August 2020), while commercial and transportation related energy 79 

usage decreased 8% and 21%, respectively (5, 6).  80 

With the growing adoption of electric vehicles (EVs), the intricate relationship between 81 

energy consumption across sectors will be further strengthened (7, 8). The uptake of EVs and the 82 

potential energy source diversification (such as solar and wind energy) would result in a 83 

transformation of energy consumption and distribution patterns across the world (8). The demand 84 

for charging the electrical vehicles at home, work and other potential locations is also likely to 85 

influence the spatio-temporal nature of the existing electricity demand. It is possible that the 86 

current demand on the grid could be rapidly altered with higher residential and commercial 87 

demand. There is a growing need for the development of modeling frameworks that provide 88 



 

 

insights on energy use and potential future energy demand evolution. A major bottleneck for model 89 

framework development is the unavailability of “perfect” data. 90 

Recent technological advances and their adoption including sensing technology, smart 91 

energy sensors, connected and autonomous vehicles, shared mobility (bike sharing, scooter sharing 92 

and transportation network companies), naturalistic driving studies, and location-based 93 

smartphone data have resulted in large volumes of data being collected. This data explosion has 94 

shifted research challenges in multiple fields from modeling with limited data to developing 95 

modeling approaches that support effective utilization of the abundant data. The current research 96 

effort is focused on improving effective use of the multiple disparate sources of data available for 97 

energy use modeling by proposing a novel maximum likelihood based probabilistic data fusion 98 

approach.  99 

Data fusion algorithms refers to the techniques of integrating two or more distinct data 100 

sources into a fused data that offers enriched information (additional explanatory variables) 101 

compared to the individual data sources (9). The algorithms can be simple merging efforts across 102 

multiple datasets. Let us consider the compilation of a typical residential energy demand dataset. 103 

Utility companies compile energy use data using a smart energy sensor system with detailed 104 

information on energy demand in continuous time while also compiling residential unit 105 

characteristics (such as floor area and the number of bedrooms). The data also has unique 106 

information in terms of the residential unit location. Employing the location information, the 107 

dataset can be augmented with a Weather and Geographic Information System (GIS) file that 108 

provides location specific characteristics such as temperature and precipitation. The merging of 109 

data described here is a simple, deterministic fusion. Given the location, using GIS and appropriate 110 

weather data, the analyst can query or cross-reference for weather characteristics and append them 111 



 

 

to the energy demand record. The data fusion described is typically devoid of uncertainty (as long 112 

as the appropriate data processing steps are employed) and well defined as there are attributes that 113 

can be used to match data across these multiple datasets. Any data analysis in recent years includes 114 

such simple data fusion procedures.  115 

The proposed research is geared towards fusing databases that are not relatable because of 116 

the inherent differences across these datasets. For these uniquely unmatched datasets, there is a 117 

significant need for a behavioral data fusion approach across various domains including energy 118 

demand analysis (10–14), mobility pattern analysis (15–17), freight movement modeling (18–20); 119 

disaster evacuation planning (21) and traffic safety (22). With increasing share of energy use for 120 

mobility (with EVs), it is important to examine how transportation mobility needs can influence 121 

energy use. The current research recognizes the potential relationship between energy and 122 

transportation datasets and provides an algorithm to enhance energy data modeling using 123 

information from transportation datasets. The proposed approach is general and can be applied 124 

across domains. With emerging advances in information technology and communication devices 125 

data from smartphone location data or cell phone OD data are ideal complements to traditional 126 

data by offering improved spatiotemporal coverage (23, 24). At the same time, these data are not 127 

usually available with person or household level characteristics. Thus, adoption of these data at a 128 

decision maker level would require an effective algorithm that can fuse this information with travel 129 

survey data.  130 

 131 



 

 

1.2 Research Approach 132 

The data fusion algorithm developed in the current research is targeted toward datasets that contain 133 

information that is not uniquely matchable. Consider data from a Residential Energy Consumption 134 

Survey (RECS) data compiled by US Energy Information Administration (EIA) that provides 135 

energy use information by fuel type (such as electricity and natural gas) at a residential unit 136 

resolution along with household level information. To understand the determinants of energy use 137 

by fuel type, a linear regression model can be estimated using the set of independent variables 138 

available in the RECS dataset including household level characteristics: housing type, housing 139 

characteristics such as number of stories and bedrooms (25, 26); location characteristics: census 140 

region, division, located in urban/rural area (27, 28); and climatic characteristics: number of 141 

cooling and heating days (29–31). However, the RECS data - source dataset - does not have any 142 

information on the number of employed individuals and household vehicle ownership. It is 143 

possible that these two variables are contributing factors for energy use. Employment status and 144 

vehicle ownership are indicative of the mobility needs of the household influencing energy 145 

consumption at the residence and for transportation needs. The proposed research develops 146 

methods that bring in this relevant information from another dataset – a donor dataset. The 147 

National Household Travel Survey (NHTS) administered by Federal Highway Administration 148 

(FHWA) surveys travel behavior patterns. NHTS dataset provides information on employed 149 

individuals and vehicle ownership – information that might assist in better understanding energy 150 

use and its prediction. With a focus on improving the model for the dependent variable of interest 151 

from the RECS dataset (energy use by fuel type in the example), our proposed research provides 152 

a probabilistic mechanism for appropriately fusing records from the NHTS dataset with records in 153 



 

 

the RECS dataset. For each RECS record, the algorithm considers a select set of records from the 154 

NHTS dataset with some common attributes (such as census region or household size) as a starting 155 

point for matching consideration. A weight function is defined that optimizes the weight for each 156 

RECS record while improving dependent variable model fit (energy use by fuel type). As the 157 

weight is unobserved to the analyst, the weight function proposed is analogous to the latent 158 

segmentation weight for a discrete outcome variable. In our research, the weight function is scored 159 

based on the similarity/dissimilarity of the source and donor records for common unmatched 160 

attributes (such as number of adults). The weight score is expected to be higher for source and 161 

donor records with more similarity. Across the selected donor records for a single source record, 162 

the weight sums to one. The donor records selected will provide additional useful variables missing 163 

for the source record.  164 

The proposed fusion approach is illustrated using RECS and NHTS datasets for energy use 165 

by fuel type analysis. The model developed offers improved data fit for the dependent variables of 166 

interest. The main motivation behind our matching approach is to augment RECS data with NHTS 167 

data that contains detailed socio- demographics (gender, age), travel patterns (what mode is used 168 

for daily travel) and location information that could significantly affect energy usage. For instance, 169 

households situated in high population density locations typically have reduced floor area per 170 

capita and hence are likely to use less electricity for heating and cooling. Further, in recent years, 171 

energy consumption patterns are affected along two directions. First, the emergence of electric 172 

vehicles (EV) will transform the energy-transportation relationship. In the future, in households 173 

with EVs the energy consumption will be directly associated with vehicle ownership variables 174 

(how many electric cars) and vehicle usage dimensions. Second, during the COVID pandemic, a 175 

large number of workers facilitated by advances in information technology started to work from 176 



 

 

home influencing residential energy consumption. Currently RECS data does not provide any 177 

information on these important variables. NHTS data on the other hand can fill this gap as 178 

information on the number of vehicles in the HH, the corresponding vehicle types (fuel/electric) 179 

and the number of people working from home are available. Thus, the proposed fusion algorithm 180 

enables us to merge these two distinct datasets and create an enriched data source for analyzing 181 

energy consumption. Using the fused data, the association between additional categories of 182 

exogenous variables with residential energy demand can be tested. Thus, the model developed 183 

with the fused database will have additional explanatory power relative to the model developed 184 

solely using RECS data. 185 

The rest of the paper is organized as follows: Section 2 provides a brief review of previous 186 

research on the application of data fusion algorithms in transportation field and highlights the 187 

contribution of the current study. Section 3 briefly outlines the methodological framework used in 188 

the analysis while a detailed description about the experimental setup of the study is presented in 189 

section 4. In section 5, we describe the model findings and finally, concluding thoughts are 190 

presented in section 6.  191 

 192 

2 Earlier Research and Current Study 193 

In our research, we are interested in developing advanced approaches for energy consumption 194 

analysis drawing on novel approaches from data fusion literature. Hence, we focus our literature 195 

review along two directions. In the first direction, we provide a summary of studies examining 196 

residential energy usage. In the second direction we provide a summary of studies adopting data 197 

fusion techniques in the energy domain.  198 



 

 

2.1 Literature on Energy Usage 199 

Residential energy demand has been extensively researched in the energy analysis literature. 200 

However to conserve on space, we will provide a brief summary of these studies (see (31) for 201 

details on these studies). From our literature review, it is observed that earlier research focused on 202 

electricity and natural gas consumption (25, 26, 29–36) while very limited attention has been 203 

devoted to other forms of energies including fuel oil and LPG (31, 32, 37).  Interestingly, RECS 204 

is the most used database in United States for analyzing the usage of various energy sources (29–205 

34). Within these studies, the most prevalent form of energy usage considered is the continuous 206 

representation of energy use including energy consumption in BTU, or natural logarithm of energy 207 

consumption (29, 30, 33, 34) while a handful of research efforts focused on the choice of energy 208 

source (30–32, 34). Given the continuous nature of the choice variable, it is not surprising earlier 209 

research adopted the regression framework for examining the energy usage. In particular, work in 210 

this area has ranged from simple linear regression (29, 30, 33, 34) or discrete continuous models 211 

(30, 34) to more advanced models such as the Multiple Discrete Continuous Extreme Value 212 

(MDCEV) model (31, 32) for predicting the residential dwelling energy usage. In terms of the 213 

predictors, previous studies identified the following factors  significantly affecting the residential 214 

energy usage: household level characteristics (HH income, race, household size, education) (25, 215 

31, 36); location characteristics (census region, type of location) (26, 32), housing characteristics 216 

(such as year of construction, housing type, type of unit, square footage, and number of stories) 217 

(31, 35, 37), appliance use (such as appliances used in the housing unit) (31, 38) and climatic 218 

characteristics (such as heating degree days and cooling degree days) (29–33, 35). 219 

 220 



 

 

2.2 Literature on Data Fusion Techniques in Energy  221 

Data fusion algorithms have been widely researched and applied in various fields including 222 

statistics, business analysis, chemical engineering, energy demand, navigation industry and 223 

transportation (9, 11, 19, 22, 39, 40). For the current research effort, we have confined our attention 224 

to the studies adopting data fusion techniques in energy demand sector. 225 

Energy efficiency (in building) is a heavily researched area where data fusion is applied at 226 

various resolutions. However, unlike transportation field, data fusion algorithms in energy demand 227 

literature mainly focused on appliance, sensor and semantic level fusion as opposed to data level 228 

fusion (14). Example includes system identification combined with Kalman filtering (41), and 229 

deep learning-based techniques (11, 42) that integrate data from multiple sources. These 230 

techniques have been applied to various types of data, including weather, occupancy, and 231 

equipment usage patterns. Multi-information fusion models, such as those using convolutional 232 

neural network (CNN) and long short-term memory (LSTM) networks, have also been used to 233 

enhance the accuracy of energy forecasting (43, 44). Based on the dimension of crucial interest, 234 

these studies can be broadly classified into two groups: 1) examine the occupancy status of the 235 

building and 2) understand the energy consumption pattern. The reader would note that data fusing 236 

algorithms have also been developed to minimize the variance of the fused data, which is beyond 237 

the scope of the current study (see (45, 46) for details). 238 

The first group of studies mainly adopted different data fusion algorithms for analyzing the 239 

occupancy status of a building, a crucial component in energy efficiency and energy consumption 240 

analysis (10, 11, 47–49). For instance, Wang and his colleagues (47) considered K-Nearest 241 

Neighbour (KNN), Support Vector Machine (SVM) and Artificial Neural Network (ANN) 242 



 

 

algorithms to fuse the environmental data with WI-FI data for predicting the building occupancy. 243 

Another research effort by Nesa and Banerjee (48) presented Internet of Things (IoT) based real 244 

time sensor data fusion using the data collected from various sensors within office space to predict 245 

the occupancy status of the office spaces. Varlamis and his colleagues (10) fused sensor-based 246 

energy data with the historical data and user feedback to generate recommendations for smart 247 

homes and offices. Wang et al.,(11) used Long Short-Term Memory (LSTM) networks to fuse 248 

data from various utilities to predict internal heat gains for office buildings -  a major component 249 

in heating, ventilation, and air conditioning (HVAC) operations.  He et al. (49) proposed the fusion 250 

of LSTM and Back Propagation Neural Network (BPNN) algorithms to predict air conditioning 251 

load in buildings. Tan and his colleagues (43) employed rule-based decision-making algorithms to 252 

combine data from multiple sensors, such as motion, door, and light sensors to improve occupancy 253 

detection accuracy in residential buildings. 254 

The second line of inquiry is focused on analyzing the energy consumption patterns of 255 

buildings by applying data fusion techniques (12, 13, 50, 51). Gouveia (13) fused the electricity 256 

consumption data from smart meters with door-to-door surveys to understand the energy patterns 257 

of the households. Wijayasekara and Manic (51) used ANN based data fusion method to increase 258 

the temporal resolution of building energy consumption data. Similar approach was also used by 259 

De Silva and his colleagues (50) to understand the energy consumption patterns in buildings.  260 

Gurino et al.,(12) compared the existing climatic databases with the simulated historical weather 261 

data aimed to generate a fused dataset by using various climate change models. This fused database 262 

was used to predict the consumption of energy requirements for office buildings.  263 

 264 



 

 

2.3 Current Study in Context 265 

The literature review clearly highlights the prevalence of data fusion algorithm across various 266 

energy sectors. However, all these studies focused on combining two/more datasets based on a 267 

common identifier (such as fusing information to a house based on its ID) or by employing black 268 

box approaches to data fusion. Furthermore, the data fusion approaches are geared towards 269 

compiling dependent variables of interest not available in one of the datasets. In our research, the 270 

focus is on providing additional independent variables for accurately representing the dependent 271 

variable of interest. The preceding discussion also makes it clear that data fusion algorithms in 272 

energy demand literature are primarily focused on semantic, sensor, and appliance level fusion, as 273 

opposed to observation level probabilistic fusion approach proposed in our study (14). To the best 274 

of the authors’ knowledge, this is the first attempt (in both transportation and energy demand 275 

literature) to develop a behavioral fusion algorithm to combine two different datasets without any 276 

common identifier. A recent paper by Zhang and his colleagues (60) adopted a fusion approach to 277 

predict credit risks for small and medium-sized businesses (SMEs) in supply chain financing by 278 

merging behavioral and demographic data. However, the work also focused on deterministic 279 

fusion as both these data were matched based on the common entity of SMEs in supply chain 280 

finance. 281 

The current approach is focused on a data fusion approach that augments RECS data 282 

(source) with additional variables from NHTS dataset (donor) with a focus on improving the data 283 

fit of the dependent variable of interest (energy use by fuel type) in the source dataset. The source 284 

and donor dataset can have common attributes such as census region, household size, household 285 

ownership, number of adults, and area (urban/rural). Ideally, selecting all or the majority of the 286 



 

 

common attributes for matching would provide the most precise fusion. However, the reader would 287 

recognize that selecting all or a large number of common attributes as matching variables can 288 

potentially reduce viable matching candidates or result in zero candidates. This would have 289 

resulted in the loss of records and potentially introduced bias, as significant portions of the dataset 290 

might be excluded from the analysis. Hence, we employ an approach where we choose a subset of 291 

common attributes for matching. As the matching between source and donor sets are being 292 

considered across different datasets, we hypothesize that fusing multiple candidates (as opposed 293 

to one record) would allow for a more useful and representative fused dataset. At the same time, 294 

as we fuse multiple records (say K) from the donor dataset (NHTS) with the source dataset 295 

(RECS), the source record will need to be duplicated K times to generate fused records. To address 296 

this duplication, a simple deterministic weight (1/K) is applied to ensure for each source record, 297 

the multiple matched rows of data represent only one new record. The proposed fusion approach 298 

makes several variables that are not available in the original dataset accessible for modeling. The 299 

benefit from these additional variables can be evaluated in a straightforward manner. If these 300 

additional variables contribute to improving the data fit of the dependent variable, then the fused 301 

dataset offers improved analysis of the dependent variable of interest. The improvement in data fit 302 

is compared using the log-likelihood and Bayesian Inference Criteria metrics that are well 303 

established in the literature  304 

 The deterministic matching approach will work effectively with a small set of matching 305 

variables. As the number of potential matching variables increases, the number of exact matches 306 

could reduce very quickly. Therefore, we propose a matching approach with a probabilistic weight 307 

that penalizes differences between the source record and the donor record. So, in this approach, 308 

we allow for some variable mismatch and evaluate its impact on matching process by estimating 309 



 

 

a weight for each donor record that is fused with a source record. Specifically, the weight is 310 

parameterized as a function of the discrepancy for variables in both datasets. The contribution is 311 

influenced by similarity (or dissimilarity) across the common attributes between source and donor 312 

datasets. This weighting process effectively translates to estimating the weight contribution of the 313 

donor record to improve data fit of the dependent variable of interest (as opposed to using a 314 

uniform 1/K weight). The records with smaller mismatch are likely to have a weight higher than 315 

the deterministic weight (1/K) and records with higher mismatch are likely to have a weight lower 316 

than the deterministic weight. The parameters estimated as part of the weight function will inform 317 

us about the ranking of the various matching factors on their impact on the dependent variable of 318 

interest. For instance, household ownership status might not be as important as number of children 319 

in explaining household energy consumption patterns. In this case, the weight function coefficient 320 

for difference in the number of children variable will be larger in magnitude.  321 

To better illustrate the data fusion process, an example is presented in Figure 1. The RECS 322 

Survey has four HHs with information on household size, household ownership status, number of 323 

adults in the HHs, number of rooms in the HH and the dependent variable: consumption of 324 

electricity (in millions of Btu). The NHTS data, in addition to household size, ownership status 325 

and number of adults, provides information on vehicle ownership and number of workers in the 326 

HH. The common variables across these two datasets are household size, ownership status, and 327 

the number of adults. Initially, we begin the fusion using all three matching attributes. In this 328 

process, we are able to find matches for all households except the third household. If we proceed 329 

with this fusion, then the third household would need to be excluded from the analysis, thereby 330 

compromising 25% of the records (1 household out of 4 households in RECS). To address this 331 

issue, we relax the matching assumption by considering two variables (household size, and 332 



 

 

household ownership status) as our matching attributes while use the remaining variable (number 333 

of adults) in the weight function. Based on this, we find three matches for the first HH, two matches 334 

for the second household, one match for the third household, and three matches for the fourth 335 

household. Now, using the matched records, a fused dataset is created with three repetitions of HH 336 

1, , two repetitions of HH2, 1 HH3 and three repetitions of HH4 with NHTS data columns 337 

including number of adults, vehicle ownership and number of workers in the HH (see Figure 1). 338 

As mentioned earlier, a weight function is used in the data to ensure that all the repetitions together 339 

represent one household in the RECS data. For the deterministic weight method, we assign an 340 

equal weight, that is 1/K for K repetitions. For example, for HH 1, which has three repetitions, 341 

each repetition would be assigned a weight of 1/3 (approximately 0.33). For the probabilistic 342 

weight method, we will calculate the difference in the number of adults variable (available in 343 

source and donor datasets but not matched) across the two datasets and use these differences to 344 

parameterize the weight function (details on this process is discussed in the methodology section). 345 

The probabilistic weight variable provides a higher weight when the difference is lower (or 0. For 346 

example, for HH 2 (see Figure 1), the first matched record has the same number of adults as the 347 

RECS dataset, resulting in a higher weight of 0.7. In contrast, the second matched record does not 348 

have the same number of adults, resulting in a lower weight of 0.3. Please note that the numbers 349 

provided in Figure 1 are for illustration purposes and will be estimated in our model within a 350 

maximum likelihood setting. 351 
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In summary, the current study contributes to the energy and data science literature both 355 

empirically and methodologically. Empirically, the proposed fusion algorithm enables us to merge 356 

these two distinct datasets and create an enriched data source for analyzing energy consumption. 357 

Using the fused data, the association between additional categories of exogenous variables with 358 

residential energy demand can be tested. Thus, the model developed with the fused database will 359 

have enhanced explanatory and predictive power relative to the model developed solely using 360 

RECS data. Further, this enriched dataset, and the resulting model can significantly inform policy 361 

decisions. For example, understanding the impact of EV ownership and working-from-home 362 

trends on residential energy consumption can guide policymakers in designing targeted incentives 363 

for energy-efficient technologies and infrastructure. Methodologically, the study presents an 364 

innovative behavioral data fusion technique to combine two datasets without a common identifier. 365 

Further, our approach strategically selects variables for initial matching and incorporates the 366 

remaining ones into a weight function, ensuring an optimal balance between sample size and 367 

important variables. This type of behavioral fusion is introduced for the first time in this paper (to 368 

the best of the authors' knowledge) and can be widely applied to various fields. 369 

 370 

3 Experimental Design 371 

The objective of the current research effort is to illustrate how we can fuse two disparate datasets 372 

to enhance the model development for a dependent variable present in the RECS dataset using 373 

variables from the NHTS dataset.  In the presence of a set of common variables, the fusion process 374 

will be affected by several aspects: (1) how many deterministic matching variables will be used 375 

and how many probabilistic matching variables will be used, (2) how many records from the donor 376 



 

 

dataset will be fused with each source record and (3) how will we assess the impact of randomness 377 

of fusion process on parameter stability.  378 

 In this section, we present an experimental setup documenting the structure of how the 379 

fusion process will be tested (see Figure 2). The overall process consists of four stages: Data 380 

Source and Variable Identification, Data Fusion, Optimization, and Reliability Check. The initial 381 

stage involves identifying the two datasets for fusion: the source dataset that serves as the primary 382 

dataset for analysis and the donor dataset from which additional information will be incorporated. 383 

After identifying the two datasets, we will determine the common variables between them: these 384 

are the variables that form the basis of matching the source and donor dataset. The next stage is 385 

the Data Fusion, where the process begins by checking if it is possible to fuse the two datasets 386 

based on all common matching variables. If substantial matching records can be found for each 387 

record in the source dataset, the datasets are fused, and the model is developed. However, if 388 

matching records are insufficient, then a subset of those common variables is selected for the 389 

matching process, and the remaining variables are used in the weight function to allow for 390 

probabilistic matching. When selecting the subset of variables, different combinations can be used 391 

for fusion, including a single variable (e.g., matching by HH size) or variable groups comprising 392 

multiple variables (e.g., matching by HH size and location). Based on the matching variables, we 393 

can identify potential candidates from donor dataset that can be appended to each source record. 394 

The matching process can result in a several records for each source record (say M). Hence, 395 

selecting a single record or selecting a set of records randomly might introduce bias. We select a 396 

fixed number of records (say K) and repeat the sampling process several times (say N=15). For 397 

example, let’s say we match RECS and NHTS based on HHsize and number of adults. By doing 398 

so, we find 100 potential matches (M=100) for each RECS HH from the NHTS dataset. However, 399 



 

 

estimating models with all these fused records increases the model estimation burden. Hence, we 400 

start our fusion process by fixing the number of matching records to be 5 (K=5) and generate 15 401 

mutually exclusive samples (N=15).  Now, with these samples established, we run N number of 402 

models for all the samples with new variables from the NHTS dataset (donor dataset) and evaluate 403 

if the average model fit in terms of log-likelihood has improved relative to the model estimated on 404 

the RECS dataset only (source dataset).  405 

 406 



 

 

The process then proceeds to the Optimization stage. During this stage, the data fusion 407 

process is repeated multiple times with varying matching variable combinations to determine 408 

which variables offer the best improvement over the non-fused model. The variable (or variable 409 

combination) that offers the most significant improvement is identified as the optimal matching 410 

variable (or variable combination). The next step is to determine the optimal number of records to 411 

be matched between the source and donor datasets. For the selected X matching variable (or 412 

matching combination), the process tests if changing K (3, 5, 10, 15, 20, 40, 50) affects the average 413 

log-likelihood improvement. The examination ensuring that the improvement is not a random 414 

occurrence and is consistent for different numbers of matched records. The K providing the highest 415 

improvement is selected, representing the optimal number of matched records for the fusion 416 

process. Once the optimal X and K values are identified, the next step is to check the robustness 417 

of the fusion process, which is conducted in the final stage of the experimental setup named 418 

Reliability Check (see Figure 2). It is possible that the model developed from the fused dataset 419 

based on X and K can differ from the model developed on a different sample with the same X and 420 

K, due to the random selection of K records. For instance, if 10 records are identified as the optimal 421 

match out of 100 possible matches, the first sample might include a randomly selected set of 10 422 

records, while a different set of 10 records might be selected for the second sample. Consequently, 423 

the models developed from these two samples could vary significantly. If substantial differences 424 

are observed between the models, it indicates that the results are highly dependent on the 425 

randomness of the selection process. Therefore, ensuring the reliability of the fusion process is 426 

crucial to validate the stability and robustness of the model outcomes. To check this, we generate 427 

S number of samples (S=25) considering the selected X and K and develop the same model for all 428 

S samples. After that, we evaluate the consistency of the models at a parameter level i.e., we check 429 



 

 

if the parameters remain stable across all S samples of the data for that K. To be specific, we 430 

compare the models across the S samples using an approximate t-test to see if these parameters 431 

vary across the samples. If we find any variation across the samples, then it lends evidence to 432 

instability in parameter magnitudes and signs. Therefore, that corresponding X is excluded from 433 

the fusion process, and we proceed to test the next best combination of X and K. This process is 434 

repeated until all criteria are satisfied, ensuring that the identified X and K values lead to consistent 435 

and reliable improvements, as confirmed through the reliability check.  436 

 437 

4 Data Description 438 

The dependent variable of interest in our research is energy usage by fuel type (electricity and 439 

natural gas) in residential dwellings. The energy use data is drawn from the 2015 Residential 440 

Energy Consumption Survey (RECS) administered by US EIA. The RECS data, for 5,686 441 

households, provides detailed information on energy usage, housing characteristics (such as 442 

construction period, number of rooms, bedrooms), appliances used (such as internet, mobile phone, 443 

number of refrigerators, desktop, use of ac and heater); location related variables (such as census 444 

division, area of the household: rural/urban); and climatic variables (such as number of cooling 445 

and heating degree days). Out of these 5,686 households, we randomly selected 4,000 households 446 

as our estimation sample and the remaining 1,686 households were set aside for validation 447 

exercise.  Several relevant variables are missing in RECS data such as the number of employed 448 

individuals, number of female household members, number of drivers and workers in the 449 

household, household vehicle ownership, population density, and daily travel pattern (like use of 450 

car, bike, transit, walk on a daily basis). To evaluate the potential value of this information, we 451 



 

 

employ the NHTS survey data that provides information on the missing variables as a potential 452 

donor dataset. The RECS and NHTS datasets share seven variables along two dimensions: HH 453 

related factors (such as household size, no. of adults in HH, race and home ownership status) and 454 

location related variables (HH region, HH division, HH location classified as rural/urban). Table 455 

1 presents detailed summary statistics for both dependent and independent variables from both 456 

RECS and NHTS dataset respectively.  Further, before proceeding with the fusion, we checked 457 

the distribution of households across the two datasets based on all common variables. The 458 

comparison is presented in Figure 3, and as can be seen, the distributions of the households from 459 

both datasets are quite comparable, thereby validating the alignment of the datasets for meaningful 460 

fusion. This step is crucial as it ensures that the two datasets represent similar populations, 461 

minimizing potential discrepancies. 462 

Table 1: Dependent and Independent Variables Summary from RECS and NHTS Data 463 

Variable Minimum  Maximum Average 
Dependent Variables form RECS 

Electricity usage (in 10^6 BTU) 0.200 215.69 37.73 
Natural gas usage (in 10^6 BTU) 0.000 306.59 33.54 

Independent Variables from RECS 
HH Characteristics 

Total square footage 221.000 8501.00 2081.44 
Number of bedrooms 0.00 10.00 2.83 
Total number of rooms 1.000 19.00 6.19 
Housing type - Mobile home 0.00 1.00 0.05 
Housing type - Apartment 0.00 1.00 0.66 
Construction year 1981 - 2000 0.00 1.00 0.29 
Construction year 2001 - 2010 0.00 1.00 0.16 
Construction year after 2010 0.00 1.00 0.04 
High income HH (>120k) 0.00 1.00 0.15 

Appliance Use 
AC Used -- -- 0.87 
Number of refrigerators used 0.00 8.00 1.40 



 

 

Number of desktop computers 0.00 10.00 0.52 
Space heating used 0.00 1.00 0.95 
Number of smart phones 0.00 8.00 1.60 
Humidifier used 0.00 1.00 0.20 

Climatic Variables 
Total cooling degree days, base temperature 65F 0.00 6607.00 1719.21 
Total heating degree days, base temperature 65F 0.00 9843.00 3707.85 

Independent Variables from NHTS    
Population Density    

Medium 0.00 1.00 0.21 
High 0.00 1.00 0.06 

Number of females in HH 0.00 8.00 1.09 
Number of vehicles in HH 1.00 12.00 2.11 
Number of drivers in HH 0.00 9.00 1.77 
Number of workers in HH 0.00 7.00 1.08 
Mean age of HH members  11.00 92.00 52.87 
HH average annual miles 2.83 254,309 20,994 
People use car daily 0.00 1.00 0.16 
People use bicycle daily 0.00 1.00 0.01 
People walk daily 0.00 1.00 0.16 
People use transit daily 0.00 1.00 0.01 

 464 



 

 

4.1 Selecting Variables Fusion 465 

In the current analysis, we tried several combinations of these factors for linking the two datasets 466 

and for each combination, we calculate the improvement in average (we consider N=15 samples) 467 

log-likelihood (LL) relative to the simple linear regression model that is estimated using the RECS 468 

data only. Finally, we select the corresponding combination that provides the superior 469 

improvement. The average LL improvement measures across each variable/variable groups are 470 

plotted in Figure 4. From this plot, we can clearly see the relatively higher average LL 471 

improvement when household from both datasets are fused based on census division and location 472 

classified as urban or rural. We select this variable group for linking the two datasets and proceed 473 

to the next step. 474 

 475 



 

 

4.2 Selecting Number of Matching Records for Fusion 476 

Based on the result obtained in the first step, we linked the two datasets based on similar HH 477 

location and created N=15 fused databases using multiple matching records of K including 3,5, 478 

10, 15, 20, 30, 40 and 50 (see Figure 5). We compute the improvement in average LL measures 479 

for different values of K. From the Figure (5), we can clearly see there is significant improvement 480 

in average LL as K increases in the initial stages. After a K value of 15, only marginal changes to 481 

average LL improvement are noticed. However, with increased K value, the model estimation 482 

times will continue to increase as the number of effective records increase with K. Thus, from the 483 

perspective of model improvement and run times, we select K=15 as the optimal value. Thus, for 484 

each sample, 15 records from NHTS will be added to the RECS sample.   485 

 486 

 487 



 

 

4.3 Check Parameter Estimates Stability 488 

After selecting the variables and the number of records to be used for fusion, the next step is to 489 

evaluate the stability of the parameters of the energy demand model estimated using the fused data. 490 

As described, multiple samples were generated for the fused dataset, and it is important to confirm 491 

that the parameter estimates from all these samples offer consistent results. To undertake this 492 

evaluation, we propose an approximate t-statistic measure for each sample parameter estimate as 493 

follows: 494 

𝑡𝑡𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴(
(𝐵𝐵𝑚𝑚−𝐵𝐵𝐴𝐴)
�𝑆𝑆𝐷𝐷𝑚𝑚2 +𝑆𝑆𝐷𝐷𝐴𝐴2

) (6) 

Where 𝐵𝐵𝑚𝑚 is the average estimate value across all N samples (𝐵𝐵𝑚𝑚 =  1
𝑁𝑁
∗ ∑ 𝐵𝐵𝑠𝑠𝑁𝑁

𝑠𝑠=1 ); 𝐵𝐵𝑠𝑠 is 495 

the estimate for the sth sample; 𝑆𝑆𝐷𝐷𝑚𝑚 is the average standard error for all N samples (𝑆𝑆𝐷𝐷𝑚𝑚 =  1
𝑁𝑁
∗496 

∑ 𝑆𝑆𝐷𝐷𝑠𝑠𝑁𝑁
𝑠𝑠=1 ) and 𝑆𝑆𝐷𝐷𝑠𝑠 is the standard error for the sth sample. If the computed t-statistic value is 497 

greater than 1.65 it indicates that the parameter estimate is quite different from the average 498 

parameter across the samples. The t-statistic across all parameters and samples can be computed 499 

and used to measure the number of outliers. The presence of outliers will indicate that significant 500 

parameter variability across the samples and hence the results are less likely to be stable in this 501 

case. In our study context, we computed the approximate t-statistic for fused model parameters in 502 

the energy use component and parameters in the weight component. The results are plotted in 503 

Figure 6. The boxplots clearly illustrate significant stability in the parameters estimated. In fact, 504 

the computed approximate t-statistic does not reach 1.65 for even one parameter across all samples. 505 

The highest single value obtained is under 0.3, while the mean values range around 0.1. The results 506 



 

 

clearly indicate that for the fused dataset, we have obtained a reasonably stable estimate for all 507 

parameters. 508 

 509 

 510 

5 Methodology 511 

In this section, we will present the methodological framework adopted in the study for analyzing 512 

the residential energy usage.  513 

The model structure estimated in the current research effort has a choice model component 514 

(energy usage) and a weight component. In the choice model component, we consider the natural 515 

logarithm of the energy usage (separately for electricity and natural gas) as our dependent variable 516 

and employ linear regression model for analyzing the continuous outcome variable.  517 



 

 

Let us assume that there are 𝑖𝑖 (1.2,…N, N=4,000) HHs in RECS survey data and 𝐾𝐾 possible 518 

matches from the NHTS dataset. 𝑑𝑑 be an index to represent the residential energy usage by 519 

different sources (electricity and natural gas). Let 𝑦𝑦𝑑𝑑,𝑖𝑖 and  𝑄𝑄𝑑𝑑,𝑖𝑖𝑖𝑖 is the observed and predicted 520 

lognormal of the energy usage in HH 𝑖𝑖 for the 𝐾𝐾𝑡𝑡ℎ fused records by energy source 𝑑𝑑 respectively 521 

(the 𝑦𝑦𝑑𝑑,𝑖𝑖 will be same across all the 𝐾𝐾 fused records for HH 𝑖𝑖). In the current study context, separate 522 

linear regression models are estimated for electricity and natural gas consumption and hence 𝑑𝑑 is 523 

omitted in the following equations for simplicity. Following this, the formulation of the linear 524 

regression model can be written as: 525 

𝑄𝑄𝑖𝑖𝑖𝑖 =  𝛽𝛽′𝑋𝑋𝑖𝑖𝑖𝑖 +  𝛾𝛾′𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜀𝜀 𝑖𝑖𝑖𝑖 (1) 

where, 𝑋𝑋𝑖𝑖𝑖𝑖is a vector of attributes from the source dataset that influence energy demand and 𝛽𝛽′ is 526 

the corresponding coefficients to be estimated (including a scalar constant). 𝑆𝑆𝑖𝑖𝑖𝑖is the vector of 527 

attributes from the donor dataset that affect energy demand and 𝛾𝛾′ is the corresponding vector of 528 

coefficients to be estimated. The reader would note that to estimate the unfused model using source 529 

data only, we restrict 𝑆𝑆𝑖𝑖𝑖𝑖to be empty. 𝜀𝜀 𝑖𝑖𝑖𝑖 is independently and identically distributed error term 530 

with zero mean and variance 𝜎𝜎2. Based on this, the probability for HH 𝑖𝑖 for the 𝐾𝐾𝑡𝑡ℎ fused records 531 

to have 𝑦𝑦𝑖𝑖 energy demand is given by: 532 

𝑃𝑃(𝑄𝑄𝑖𝑖𝑖𝑖)|𝛽𝛽′, 𝛾𝛾′ =  
ϕ �𝑦𝑦𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖

𝜎𝜎 �
𝜎𝜎

   (2) 

where ϕ(. ) is the standard normal probability density function.  533 

On the other hand, the weight component takes the form of a latent multinomial logit 534 

structure (MNL) allocating the probability for each RECS HH being paired with an NHTS HH. 535 



 

 

The matched weightage propensity is determined based on a latent probability value estimated 536 

using a multinomial logit model as follows: 537 

𝑃𝑃𝑖𝑖𝑖𝑖 =
exp(∝ 𝑍𝑍𝑖𝑖𝑖𝑖)

∑ exp(∝ 𝑍𝑍𝑖𝑖𝑖𝑖)𝐾𝐾
𝑖𝑖=1

 (3) 

where 𝑍𝑍𝑖𝑖𝑖𝑖 is a vector of attributes considered for matching, ∝ is a corresponding vector to be 538 

estimated. Based on this notation, let’s assume 𝑄𝑄𝑖𝑖 is the weighted probability that HH 𝑖𝑖 has 𝑦𝑦𝑖𝑖 539 

energy demand which can be written as: 540 

𝑄𝑄𝑖𝑖 = �𝑃𝑃(𝑄𝑄𝑖𝑖𝑖𝑖)𝑥𝑥𝑃𝑃𝑖𝑖𝑖𝑖 
𝐾𝐾

𝑖𝑖=1

 (4) 

This matching, when executed, will provide us a relationship between the RECS and NHTS 541 

datasets. Specifically, employing equation 4, several additional variables from the NHTS dataset 542 

will be employed to generate the missing dimension for the RECS dataset. Finally, the log-543 

likelihood function for the fused dataset energy demand is defined as: 544 

𝐿𝐿𝐿𝐿 = � log (𝑄𝑄𝑖𝑖) 
𝑁𝑁

𝑖𝑖=1

 (5) 

 545 

6 Empirical Analysis 546 

6.1 Model Fit 547 

The experimental set up and the corresponding results establish the best model estimated using the 548 

fused dataset. We estimate multiple models to serve as a benchmark for the proposed models. First, 549 

we estimate a simple linear regression model (SLR) employing the RECS survey (with 4,000 HHs) 550 

data without fusing any record from the NHTS database. Second, we employ the fused dataset 551 



 

 

with K=15 and N=15 and estimate a linear regression model with equal weights (EWLR) 552 

allocation i.e. each fused record is weighted at (1/15). Finally, these two models are compared with 553 

the fused latent weight linear regression (LWLR) model. The models are estimated for two use 554 

cases: electricity energy use and natural gas energy use.  555 

The performance of these models is compared based on the log-likelihood (LL) at 556 

convergence, the number of parameters estimated, and Bayesian Information Criterion (BIC). For 557 

the electricity demand model, the BIC (LL) values at convergence are: 1) SLR model (with 16 558 

parameters) – 6,126.73 (-2997.01); 2) EWLR model (with 21 parameters) – 5,859.04 (-2814.00); 559 

and 3) LWLR model (with 23 parameters) – 5,806.38 (-2776.67). For the natural gas demand 560 

model, the values are: 1) SLR model (with 9 parameters) – 9,882.92 (-4891.95); 2) EWLR model 561 

(with 12 parameters) – 9,685.34 (-4,776.60); and 3) LWLR model (with 14 parameters) – 9,635.35 562 

(-4740.66). Two important observations can be made from the model fit measures. First, models 563 

incorporating additional variable information from the NHTS dataset always provide improved 564 

performance irrespective of the dependent variable (electricity and natural gas usage). Second, 565 

within the models using fused dataset, the LWLR model outperforms the EWLR model as 566 

indicated by the lower BIC value associated with the LWLR model. This result clearly supports 567 

our proposed approach that a donor record’s contribution can be optimized using the weight 568 

function based on the similarity/dissimilarity of the common attributes. Overall, the model fit 569 

measures provide strong evidence for model improvement via fusion as well as weighted 570 

contribution estimation.   571 

 572 



 

 

6.2 Estimation Results 573 

This section offers a discussion of the exogenous variable effects on energy usage for electricity 574 

and natural gas. Results obtained from the final model are presented in Table 2. It should be noted 575 

that the final specification of the model development was based on removing the statistically 576 

insignificant (90% significance level) variables from the model. A positive (negative) sign in the 577 

Table (2) indicates the increased (decreased) energy usage for the corresponding source 578 

(electricity/natural gas). The results are presented by variable groups.  579 

Table 2: Latent Weight Linear Regression (LWLR) Model Estimation Results 580 

Variable 
Electricity 

Consumption 
Natural Gas 

Consumption 
Estimates t-statistics Estimates t-statistics 

RECS Data 
Constant 0.642 3.564 -5.109 -22.914 

HH Characteristics 
Ln (Total square footage) 0.336 7.269 0.638 9.309 
Number of bedrooms 0.060 4.794 0.081 5.133 
Total number of rooms 0.028 4.481 -- -- 
Housing type - Mobile home 0.217 6.065 -- -- 
Housing type - Apartment -- -- -0.372 -8.582 
Construction year 1981 - 2000 0.040 1.793 -- -- 
Construction year 2001 - 2010 0.049 2.232 -0.097 -2.684 
Construction year after 2010 0.012 2.297 -0.392 -5.652 
High income HH (>120k) -- -- 0.177 5.149 

Appliance Use 
AC Used 0.249 10.043 -- -- 
Number of refrigerators used 0.137 10.776 -- -- 
Number of desktop computers 0.049 4.228 -- -- 
Space heating used 0.158 4.148 -- -- 
Number of smart phones 0.029 4.116 -- -- 
Humidifier used -0.107 -5.364 -- -- 

Climatic Variables 
Ln (Total cooled square footage) 0.329 12.997 -- -- 
Ln (Total heating square footage) -- -- 0.873 20.934 



 

 

Variables form NHTS 
Population Density     

Medium -0.385 -12.197 -- -- 
High -0.631 -16.792 -- -- 

Number of females in HH 0.069 2.588 0.079 2.842 
Number of vehicles in HH 0.041 2.795 -- -- 
Number of drivers in HH -- -- -0.047 -1.807 
Mean age of HH members  -0.005 -5.176 -- -- 
HH average annual miles -- -- 0.401 92.361 

scale 0.430 51.838 0.553 61.640 
Weight Component 

HH member difference -0.636 -5.196 -- -- 
No. of adult differences -0.543 -2.785 -0.180 -2.137 
HH race match -- -- 0.397 3.164 

 581 

6.2.1 RECS variables 582 

From our analysis, we find significant impacts of several RECS variables on energy consumption, 583 

as indicated in Table 1. To better illustrate these impacts for the readers, we present our findings 584 

graphically in Figure 7. 585 

 586 

Constant: The constant parameter does not have any interpretation after incorporating other 587 

variables.  588 

HH Characteristics: In terms of household characteristics, several attributes influence the usage of 589 

electricity and natural gas in residential dwellings. For instance, housing unit size (total square 590 

footage) reveals a positive impact on energy mix indicating a higher usage of electricity and natural 591 

gas in larger houses. This is intuitive as capital costs for installation for non-electricity sources 592 

might be high for smaller houses. On the other hand, in bigger houses, a mix of energy sources 593 

might be economical in the long run (see (30, 32) for similar results).  594 



 

 

 595 

Further, higher number of bedrooms contribute to increased energy usage (both electricity 596 

and natural gas) as indicated by the positive coefficient in Table 2. In addition to the bedrooms, 597 

we also explored the impact of total number of rooms in a household on energy demand. 598 

Interestingly, we find that the variable has a significant positive impact on electricity consumption 599 



 

 

only. The reader would note that though all these variable seem to be influenced by each other, we 600 

did not find any significant correlation across them and thus are simultaneously considered in the 601 

model. The results associated with housing type show significant impact on energy usage. 602 

Electricity consumption is likely to be higher in mobile homes while a lower usage of natural gas 603 

usage is observed in apartments. The results  perhaps indicate inefficient cooling and heating in 604 

mobile homes resulting in increased electricity usage (52). Further, building construction period is 605 

also found to have a significant impact on energy consumption. Specifically, we find an increased 606 

electricity usage in houses constructed after 1980 relative to the older houses (before 1980) while 607 

the natural gas usage is gradually declining in newer houses (after year 2000) as indicated by the 608 

negative sign in Table 2. The result is consistent with the overall trend of natural gas consumption 609 

in US. Newer buildings are associated with improved insulation, building materials and efficient 610 

heating systems contributing to lower benefits from employing natural gas consumption compared 611 

to the benefits of natural gas in to older buildings (32, 53). The growing adoption of all-electric 612 

homes in recent years is another important factor affecting natural gas consumption (54). Finally, 613 

the income variable highlights a higher natural gas consumption in high-income households 614 

(greater than 120k).  615 

 616 

Appliance Use: The intensity of appliance use in residential buildings potentially contributes to 617 

the overall energy usage. As expected, all of the appliance related attributes (use of ac and space 618 

heating; number of refrigerators, computers and smart phones in HH) positively impacted the 619 

electricity usage in a house (31) except the variable that corresponds to the use of humidifier. This 620 

result (humidifier) while counterintuitive at first glance, is presumably capturing the indirect 621 

relationship with the cooling and heating behaviour in a household. For instance, humidifier helps 622 



 

 

in creating a soothing environment by adding moisture in the air appropriately both in summer and 623 

winter season, thus minimizing the need of raising/lowering the temperature in a household (52) 624 

and hence possibly reducing electricity consumption.   625 

 626 

Climatic Variables: The results related to climatic variables highlight the important role of weather 627 

in household energy usage. For representing the climatic variables, we considered heating and 628 

cooling degree days (please see (31) for detail) in a household that quantifies the demand for 629 

energy needed for heating and cooling requirements of a building respectively. Higher heating and 630 

cooling degree days directly refer to the cold and hot weather respectively. As expected, we find 631 

electricity usage to be positively associated with cooling degree days revealing an increased 632 

electricity consumption during hot days, perhaps alluding to the higher usage of AC during those 633 

times (55). Contrastingly, natural gas consumption is higher during cold weather as evidenced by 634 

the positive sign specific to the heating degree days variable. Households in colder regions usually 635 

have higher space heating needs and natural gas is one of the predominant sources of fuel for space 636 

heaters. Similar findings are also observed in earlier research (31, 32).  637 

 638 

6.2.2 NHTS Variables 639 

In the fused dataset, several variables fused from NHTS are tested in our analysis. Figure 8 640 

provides a quick mechanism for the reader to understand the impact of different NHTS related 641 

variables on energy consumptions.  642 



 

 

 643 

The findings clearly highlight the reduced electricity usage in densely populated areas, 644 

perhaps indicative of the lower exposed floor area per capita (55). In general, it appears that 645 

household with more females tend to use more electricity and natural gas relative to other 646 

households. This effect is perhaps the manifestation of the link between female and different 647 

activities in home including cooking, water heating, nurturing and cleaning (55). Further, the 648 



 

 

estimated results show that the number of vehicles in a household is positively associated with 649 

household electricity consumption while a negative relationship is observed between the usage of 650 

natural gas and number of drivers in the household. The negative effect of the number of drivers 651 

in the household on its natural gas consumption may be attributed to the lesser time spent in houses 652 

as the ability to drive might encourage activities outside the home (56). Interestingly, average age 653 

of a household (considering all members) reveals a negative effect on overall electricity 654 

consumption suggesting a reduced electricity use in a unit with older individuals. While this might 655 

seem counter intuitive on first glance as you would expect senior individuals to spend more time 656 

at home. However, the use of certain appliances such as deep freezer, dishwasher, tumble dryer 657 

and computers (and other devices) are relatively lower in houses with senior individuals and thus 658 

contribute to reduced electricity use (57, 58). Finally, average annual miles driven variable is found 659 

to be positively associated with natural gas consumption. This result is quite interesting and 660 

warrants further research. Overall, the findings are consistent with expectations and speak to the 661 

important role played by different factors in affecting residential energy demand. 662 

6.2.3 Weight Component  663 

As discussed earlier, variables used in the weight component are common variables present in both 664 

datasets that are not considered for matching. In terms of the electricity demand model, we find 665 

two variables: difference in household size and number of adults to exert significant impact on the 666 

weight component. The reader would note that a 0 difference means household from RECS and 667 

the fused household from NHTS has similar characteristics with respect to household size and 668 

number of adults. As expected, we find a negative impact for both of these variables on the 669 

electricity consumption model. The results indicates that the records having higher differences in 670 

household size and no. of adults will have lower weight contributions to the electricity 671 



 

 

consumption model. In the natural gas model, we observe a similar finding for “number of adults” 672 

variable difference. In the natural gas model, we also observe that contribution of a record is 673 

substantially higher when the ethnicity of the household matches with the fused household 674 

ethnicity.  675 

 676 

6.3 Validation Analysis 677 

The model estimation results clearly illustrate the improved performance of the proposed model. 678 

In this section, we conduct a validation exercise, to evaluate the performance of the proposed 679 

LWLR model on the records not used for model estimation (hold-out sample). In the validation 680 

exercise, the performance of the fused LWLR model (with additional variables from NHTS and 681 

latent weight) is compared with the simple SLR model (employed with data form RECS only 682 

without fusing any record from the NHTS database) and equal weight EWLR model (with 683 

additional variables from NHTS and equal weight). The comparison exercise across the three 684 

models is conducted based on the predictive log-likelihood (LL) and BIC values.  685 

 The validation exercise is initially conducted with the 4000 record RECS estimation 686 

sample and 1686 record RECS validation sample. However, we realize that sample size in 687 

estimation could play a critical role in model performances (59) and hence we considered the 688 

influence of different sample sizes in model estimation by estimating the two model systems for 689 

different samples. Subsequently, to account for the impact of RECS sample size, we also conduct 690 

the validation exercise for different estimation and validation samples. In particular, from the 691 

RECS data, we randomly draw samples with 1,000; 2,000; 3,000; 4,000 and 5,000 households for 692 

estimation and for each estimation sample, the remaining households are considered as the hold-693 



 

 

out samples. For example, RECS survey data provides information on 5,686 households. Out of 694 

these, for the first scenario, we considered 1,000 households as our estimation sample and the 695 

remaining 4,686 households are used for our validation exercise. For all these estimation and hold-696 

out samples, we fused 15 records (K-15) from the NHTS dataset to the RECS dataset based on 697 

similar census division and location of the household. For the fused dataset, SLR, EWLR and 698 

LWLR models are estimated, and their performances based on predictive LL is compared. Further, 699 

as discussed earlier, for each record in the RECS data, there could be several potential matching 700 

records from the NHTS database and selecting 15 randomly out of these might introduce bias. 701 

Therefore, within each estimation and hold-out samples, we create 15 fused datasets (N), estimate 702 

(for estimation sample)/predict (for validation sample) the LL for each dataset across each model 703 

and finally compare the two models based on the average LL measures. The validation results are 704 

presented in Table 3.  705 
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Table 3: Model Validation Results 706 

Energy 
Source 

Sample 
size 

Avg. LL* comparison for Estimation Sample Avg. LL comparison for Validation Sample 

SLR EWLR LWLR Improvement 
(EWLR~SLR) 

Improvement 
(LWLR~EWLR) SLR EWLR LWLR. Improvement 

(EWLR~SLR) 
Improvement 

(LWLR~EWLR) 

E
le

ct
ri

ci
ty

 

Est.* 1000 
Val** 4686 -766.69 -717.79 -708.68 97.80 18.22 -3566.73 -3398.23 -3351.86 337.00 92.73 

Est. 2000 
Val. 3686 -1543.77 -1471.97 -1451.86 143.61 40.21 -2784.64 -2643.57 -2607.82 282.16 71.49 

Est. 3000 
Val. 2686 -2274.54 -2147.40 -2120.08 254.29 54.62 -2048.79 -1954.14 -1921.53 189.31 65.22 

Est. 4000 
Val. 1686 -2997.01 -2814.00 -2776.67 366.02 74.66 -1288.75 -1245.62 -1233.79 86.26 23.67 

Est. 5000 
Val. 686 -3805.91 -3609.82 -3557.94 392.19 103.76 -511.79 -481.86 -472.56 59.86 18.61 

N
at

ur
al

 G
as

 

Est. 1000 
Val. 4686 -1232.66 -1203.77 -1202.05 57.78 3.45 -5716.43 -5534.19 -5527.69 364.48 13.01 

Est. 2000 
Val. 3686 -2358.39 -2305.03 -2300.19 106.72 9.69 -4584.61 -4407.48 -4402.18 354.26 10.59 

Est. 3000 
Val. 2686 -3557.13 -3444.75 -3437.98 224.78 13.53 -3381.99 -3283.52 -3280.42 196.95 6.19 

Est. 4000 
Val. 1686 -4891.95 -4722.44 -4712.96 339.01 18.98 -2035.04 -1945.81 -1943.74 178.48 4.14 

Est. 5000 
Val. 686 -6086.97 -5881.82 -5871.24 410.30 21.16 -837.01 -829.00 -827.29 16.03 3.41 

Note:  Est* = Estimation sample size 707 
  Val** = Validation sample size 708 
 709 
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Table 3 presents the validation results for two energy use for electricity and natural gas. 710 

For each sample size, the average log-likelihood over N=15 samples for SLR, EWLR, LWLR 711 

model and the improvement (computed as 2*(LL EWLR- LLSLR) and 2*(LL LWLR- LLEWLR) are 712 

presented. In all cases, the LWLR model shows clear improvement. The improvement is 713 

consistent i.e. the improvement is higher as the dataset size increases for estimation and 714 

validation samples. We compare these improvements to the critical chi-square values for the 715 

models. For electricity EWLR model, we have 5 additional variables compared to SLR model 716 

providing a critical 95% chi-square value of 11.070. The improvements values presented are 717 

clearly higher than the critical value. Further, the LWLR model with 2 additional variables 718 

outperformed the EWLR model as indicated by the higher log-likelihood ratio value relative to 719 

the corresponding critical chi-square value (5.991 for 2 variables). Similar findings are also 720 

observed in the natural gas model. The EWLR model (3 additional variables from SLR model 721 

for natural gas)  improvement for all the samples are also well over the critical chi-square value. 722 

The LWLR model provides superior performance for majority of the samples (7 out of 10 723 

samples) compared to the EWLR model in predicting the natural gas consumption. So, from 724 

the results, we can conclude that model improvement via fusion and latent weight is consistent 725 

across estimation and validation samples. The validation results clearly highlight how new 726 

variables from the NHTS dataset contribute to improvement in predicting energy consumption. 727 

In summary, the results clearly provide evidence that the proposed algorithm offers enhanced 728 

explanatory power and predictive capability. The reader would note the adoption of other 729 

metrics such as BIC offer similar results and are not included for the sake of brevity 730 

 731 

7 Conclusion 732 

The current research is geared towards proposing and testing the efficacy of a simple yet 733 

statistically valid fusion approach to link the information from two disparate datasets into a 734 



 

 

unified database. In particular, the current approach augments RECS (source) data with 735 

additional variables from NHTS (donor) dataset with a focus on improving the quality of the 736 

energy model (two energy sources are considered: electricity and natural gas). The NHTS 737 

dataset was considered to incorporate additional variables such as socio-demographics, vehicle 738 

ownership, household location and travel patterns that are not available in the RECS data. The 739 

effectiveness of the proposed fusion method is rigorously tested with a well-crafted 740 

experimental design evaluating the influence of multiple independent variables for matching 741 

and fusing, fusion sample sizes and weight functions.  742 

The analysis involves a series of model estimations, starting with a model focusing 743 

solely on RECS data (unfused model, SLR) and extending to models considering fused datasets 744 

with equal (EWLR model) and probabilistic weight allocations (LWLR model). The model fit 745 

comparison exercise demonstrates a clear improvement in the performance of the fused models, 746 

thereby supporting our hypothesis that the fusion of RECS and NHTS datasets enhances the 747 

performance of the energy model. Notably, within the fused models, the probabilistic weighting 748 

approach outperforms the equal weight approach, underscoring the critical role of the weight 749 

function in further improving the energy model’s accuracy. To further illustrate the 750 

applicability of the proposed fusion algorithm, we conduct a validation exercise comparing the 751 

fused model with probabilistic weight allocation to its counterparts across different estimation 752 

and validation samples. The results consistently show that the LWLR model with probabilistic 753 

weighting approach maintains its superior performance regardless of sample size and variable 754 

of interest, reinforcing the robustness of the fusion methodology. In terms of findings, we found 755 

several variables from the NHTS dataset to significantly impact residential energy demand, 756 

which are absent in the RECS data. Specifically, energy consumption is likely to be higher in 757 

houses with higher number of female and vehicles while factors like population density, 758 



 

 

number of drivers in the house and average age of household members reveals a negative 759 

relationship with the overall energy consumption.   760 

In summary, the behavioral fusion algorithm proposed in the paper is simple to 761 

implement and relies on federally compiled NHTS and RECS data. The findings of the study 762 

clearly highlight the significant benefits of fusing two distinct datasets, as it results in better 763 

model fit, improved prediction accuracy, and enhanced explanatory power. For instance, the 764 

shift towards electric vehicles and the increasing trend of working from home significantly 765 

impact energy consumption patterns. The NHTS dataset, with its information on vehicle 766 

ownership and time spent at home, allows the proposed approach to address these evolving 767 

trends effectively. Further, the proposed fusion algorithm can be applied across various sectors, 768 

such as energy use and transportation planning. One possible application could be to integrate 769 

household travel survey data with location-based smartphone data to enhance spatiotemporal 770 

coverage and improve demand analysis. Additionally, the algorithm can be used to develop 771 

short-term forecasting methods for energy use by combining smart energy sensor data with 772 

RECS and NHTS data, offering a more dynamic and continuous prediction framework.  773 

The reader will note that the data fusion process can be time-intensive for large datasets. 774 

The overall fusion process relies on two important steps: what variables to use for matching 775 

and how many matches to consider. Now, for any two datasets, if we have p number of 776 

matching variables, the potential combinations of variables that need to be explored in the 777 

analysis is 2𝑝𝑝 − 1 (𝑝𝑝𝐶𝐶1 + 𝑝𝑝𝐶𝐶2 + ⋯𝑝𝑝𝐶𝐶𝑝𝑝−1). After determining the best set of matching 778 

variables, the next step is to find the optimal number of fused records as including all possible 779 

matching records could result in an excessively large dataset, making the model 780 

computationally demanding to run. The reader would note that a higher number of matching 781 

records does not always contribute to an improvement in the model (as shown in our analysis). 782 

Therefore, it is essential to optimize both the matching variables and the number of fused 783 



 

 

records to achieve a balance between model accuracy and computational efficiency. While this 784 

process can be time-consuming, it is not computationally complex, especially with the 785 

advanced computational power available today. The same considerations apply to large 786 

datasets, where the methodology remains feasible due to the scalability of modern 787 

computational resources. Thus, the computational cost, although significant, is manageable and 788 

does not pose a major limitation to applying the proposed method to very large datasets. 789 

 790 

Acknowledgements 791 

The authors are also thankful to two anonymous reviewers for insightful feedback on a previous 792 

version of the paper.  793 

 794 

Author Contribution Statement 795 

The authors confirm contribution to the paper as follows: study conception and design: Naveen 796 

Eluru, Tanmoy Bhowmik, Naveen Chandra Iraganaboina; data collection: Tanmoy Bhowmik, 797 

Naveen Chandra Iraganaboina; model estimation and validation: Tanmoy Bhowmik, Naveen 798 

Chandra Iraganaboina, Naveen Eluru; analysis and interpretation of results: Tanmoy Bhowmik, 799 

Naveen Eluru, Naveen Chandra Iraganaboina; draft manuscript preparation: Tanmoy 800 

Bhowmik, Naveen Eluru, Naveen Chandra Iraganaboina. All authors reviewed the results and 801 

approved the final version of the manuscript. 802 

 803 

 804 

 805 



 

 

References 806 

1.  US-EIA2020. Frequently Asked Questions (FAQs) - U.S. Energy Information 807 

Administration (EIA). https://www.eia.gov/tools/faqs/faq.php?id=87&t=1. Accessed 808 

Nov. 11, 2022. 809 

2.  2022, W. United States Population (2022) - Worldometer. 810 

https://www.worldometers.info/world-population/us-population/. Accessed Nov. 11, 811 

2022. 812 

3.  US-DOE, 2019. Energy Data Facts | Residential Program Solution Center. 813 

https://rpsc.energy.gov/energy-data-facts. Accessed Jul. 26, 2021. 814 

4.  US-EIA, 2019. U.S. Energy Information Administration - EIA - Independent Statistics 815 

and Analysis. 816 

https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T02.01#/?f=A&start=201817 

9&end=2020&charted=3-6-9-12. Accessed May 10, 2022. 818 

5.  Bhowmik T, Tirtha SD, Iraganaboina NC, Eluru N. A Comprehensive Analysis of 819 

COVID-19 Transmission and Mortality Rates at the County Level in the United States 820 

Considering Socio-Demographics, Health Indicators, Mobility Trends and Health Care 821 

Infrastructure Attributes. PLoS ONE. 2021;16(4):e0249133. Available from: 822 

https://doi.org/10.1371/journal.pone.0249133. 823 

6.  US-EIA2021. Total Energy Monthly Data - U.S. Energy Information Administration 824 

(EIA). https://www.eia.gov/totalenergy/data/monthly/. Accessed May 10, 2022. 825 

7.  Electrek. Global Market Share of Electric Cars More than Doubled in 2021 as the EV 826 

Revolution Gains Steam - Electrek. Available from: 827 

https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-828 

than-double-global-sales, Accessed May 10, 2022. 829 



 

 

8.  Kapustin NO, Grushevenko DA. Long-term electric vehicles outlook and their potential 830 

impact on electric grid. Energy Policy. 2020 Feb 1;137:111103. 831 

9.  Data Fusion - an Overview | ScienceDirect Topics. 832 

https://www.sciencedirect.com/topics/computer-science/data-fusion. Accessed Jul. 24, 833 

2021. 834 

10.  Varlamis I, Sardianos C, Chronis C, Dimitrakopoulos G, Himeur Y, Alsalemi A, et al. 835 

Smart fusion of sensor data and human feedback for personalized energy-saving 836 

recommendations. Appl Energy. 2022 Jan 1;305:117775.  837 

11.  Wang Z, Hong T, Piette MA. Data fusion in predicting internal heat gains for office 838 

buildings through a deep learning approach. Appl Energy. 2019 Apr 15;240:386–98.  839 

12.  Guarino F, Croce D, Tinnirello I, Cellura M. Data fusion analysis applied to different 840 

climate change models: An application to the energy consumptions of a building office. 841 

Energy Build. 2019 Aug 1;196:240–54.  842 

13.  Gouveia JP. Understanding electricity consumption patterns in households through data 843 

fusion of smart meters and door-to-door surveys. Eceee 2015. 2015;(1983):957–66.  844 

14.  Himeur Y, Alsalemi A, Al-Kababji A, Bensaali F, Amira A. Data fusion strategies for 845 

energy efficiency in buildings: Overview, challenges and novel orientations. Inf Fusion. 846 

2020 Dec 1;64:99–120.  847 

15.  Yang C, Zhang Y, Zhan X, Ukkusuri S V., Chen Y. Fusing Mobile Phone and Travel 848 

Survey Data to Model Urban Activity Dynamics. J Adv Transp. 2020;2020.  849 

16.  Montero L, Ros-Roca X, Herranz R, Barceló J. Fusing mobile phone data with other 850 

data sources to generate input OD matrices for transport models. Transp Res Procedia. 851 

2019 Jan 1;37:417–24.  852 

17.  Sivakumar A, Polak J. An exploration of data pooling techniques : Modelling activity 853 

participation and household technology holdings Abstract : 2013;7228.  854 



 

 

18.  Liao C-F. Fusing Public and Private Truck Data to Support Regional Freight Planning 855 

and Modeling Traffic Information for People with Vision Impairment View project 856 

Fusing Public and Private Truck Data to Support Regional Freight Planning and 857 

Modeling. 2016 [cited 2021 Jul 25]; Available from: 858 

https://www.researchgate.net/publication/229038251 859 

19.  Momtaz SU, Eluru N, Anowar S, Keya N, Dey BK, Pinjari A, et al. Fusing Freight 860 

Analysis Framework and Transearch Data: Econometric Data Fusion Approach with 861 

Application to Florida. J Transp Eng Part A Syst [Internet]. 2020 [cited 2021 Jul 862 

25];146(2):04019070. Available from: https://orcid.org/0000-0003 863 

20.  Zhao D, Balusu SK, Sheela PV, Li X, Pinjari AR, Eluru N. Weight-categorized truck 864 

flow estimation: A data-fusion approach and a Florida case study. Transp Res Part E 865 

Logist Transp Rev. 2020 Apr 1;136:101890.  866 

21.  Martín Y, Cutter SL, Li Z. Bridging Twitter and Survey Data for Evacuation Assessment 867 

of Hurricane Matthew and Hurricane Irma. 2020 [cited 2021 Jul 24]; Available from: 868 

https://orcid.org/0000-0002-0375-8971. 869 

22.  Yasmin S, Eluru N, Pinjari AR. Pooling data from fatality analysis reporting system 870 

(FARS) and generalized estimates system (GES) to explore the continuum of injury 871 

severity spectrum. Accid Anal Prev. 2015 Nov 1;84:112–27.  872 

23.  Jiang S, Ferreira J, Gonzalez MC. Activity-Based Human Mobility Patterns Inferred 873 

from Mobile Phone Data: A Case Study of Singapore. IEEE Trans Big Data. 2016 Nov 874 

23;3(2):208–19.  875 

24.  Xu Y, Shaw SL, Zhao Z, Yin L, Fang Z, Li Q. Understanding aggregate human mobility 876 

patterns using passive mobile phone location data: a home-based approach. 877 

Transportation (Amst) [Internet]. 2015 Mar 26 [cited 2021 Jul 25];42(4):625–46. 878 

Available from: https://link.springer.com/article/10.1007/s11116-015-9597-y 879 



 

 

25.  Bedir M, Hasselaar E, Itard L. Determinants of electricity consumption in Dutch 880 

dwellings. Energy Build. 2013;58:194–207.  881 

26.  Huang WH. The determinants of household electricity consumption in Taiwan: 882 

Evidence from quantile regression. Energy. 2015 Jul 1;87:120–33.  883 

27.  Belaïd F, Garcia T. Understanding the spectrum of residential energy-saving behaviours: 884 

French evidence using disaggregated data. Energy Econ. 2016 Jun 1;57:204–14.  885 

28.  Wiesmann D, Lima Azevedo I, Ferrão P, Fernández JE. Residential electricity 886 

consumption in Portugal: Findings from top-down and bottom-up models. Energy 887 

Policy. 2011 May 1;39(5):2772–9.  888 

29.  Dale L, Fujita S, Vasquez F, Moezzi M, Hanemann M, Guerrero S, et al. Price Impact 889 

on the Demand for Water and Energy in California Residences. Public Interes Energy 890 

Res Progr Reports CEC-500-2009-032-D, Calif Energy Comm Sacramento, CA 891 

[Internet]. 2009 [cited 2021 Jul 25]; Available from: 892 

http://www.energy.ca.gov/2009publications/CEC-500-2009-032/CEC-500-2009-032-893 

F.PDF 894 

30.  Mansur ET, Mendelsohn R, Morrison W. Climate change adaptation: A study of fuel 895 

choice and consumption in the US energy sector. J Environ Econ Manage. 2008 Mar 896 

1;55(2):175–93.  897 

31.  Iraganaboina NC, Eluru N. An examination of factors affecting residential energy 898 

consumption using a multiple discrete continuous approach. Energy Build. 2021;240.  899 

32.  Pinjari AR, Bhat C. Computationally efficient forecasting procedures for Kuhn-Tucker 900 

consumer demand model systems: Application to residential energy consumption 901 

analysis. J Choice Model. 2021;39.  902 

33.  Sailor DJ, Muñoz JR. Sensitivity of electricity and natural gas consumption to climate 903 

in the U.S.A. - Methodology and results for eight states. Energy [Internet]. 1997 [cited 904 



 

 

2021 Jul 25];22(10):987–98. Available from: 905 

https://www.researchgate.net/publication/223168285 906 

34.  Dubin JA, McFadden DL. An Econometric Analysis of Residential Electric Appliance 907 

Holdings and Consumption. Econometrica. 1984;52(2):345.  908 

35.  Harold J, Lyons S, Cullinan J. The determinants of residential gas demand in Ireland. 909 

Energy Econ. 2015 Sep 1;51:475–83.  910 

36.  Anderson B, Lin S, Newing A, Bahaj AB, James P. Electricity consumption and 911 

household characteristics: Implications for census-taking in a smart metered future. 912 

Comput Environ Urban Syst. 2017 May 1;63:58–67.  913 

37.  Nesbakken R. Energy consumption for space heating: A discrete-continuous approach. 914 

Scand J Econ [Internet]. 2001 Mar 1 [cited 2021 Jul 25];103(1):165–84. Available from: 915 

https://onlinelibrary.wiley.com/doi/full/10.1111/1467-9442.00236 916 

38.  Boomsma C, Jones R V, Pahl S, Fuertes A. Energy Saving Behaviours Among Social 917 

Housing Tenants : Exploring the Relationship With Dwelling Characteristics , Monetary 918 

Concerns , and Psychological Motivations. 4th Eur Conf Behav Energy Effic (Behave 919 

2016) [Internet]. 2016 [cited 2021 Jul 25];(September):8–9. Available from: 920 

http://hdl.handle.net/10026.1/6662 921 

39.  Wu C, Thai J, Yadlowsky S, Pozdnoukhov A, Bayen A. Cellpath: Fusion of Cellular 922 

and Traffic Sensor Data for Route Flow Estimation via Convex Optimization. Transp 923 

Res Procedia [Internet]. 2015 [cited 2021 Jul 25];7:212–32. Available from: 924 

www.sciencedirect.com 925 

40.  Iqbal MS, Choudhury CF, Wang P, González MC. Development of origin-destination 926 

matrices using mobile phone call data. Transp Res Part C Emerg Technol. 2014 Mar 927 

1;40:63–74.  928 

41.  Li X, Wen J. System identification and data fusion for on-line adaptive energy 929 



 

 

forecasting in virtual and real commercial buildings. Energy Build. 2016;129:227–37.  930 

42.  Jiang L, Wang X, Li W, Wang L, Yin X, Jia L. Hybrid Multitask Multi-Information 931 

Fusion Deep Learning for Household Short-Term Load Forecasting. IEEE Trans Smart 932 

Grid. 2021;12(6):5362–72.  933 

43.  Tan SY, Jacoby M, Saha H, Florita A, Henze G, Sarkar S. Multimodal sensor fusion 934 

framework for residential building occupancy detection. Energy Build. 935 

2022;258:111828.  936 

44.  Xie J, Zhong Y, Xiao T, Wang Z, Zhang J, Wang T, et al. A multi-information fusion 937 

model for short term load forecasting of an architectural complex considering spatio-938 

temporal characteristics. Energy Build. 2022;277:112566.  939 

45.  Peng D, Zhao J, Xu T. Intelligent building data fusion algorithm by using the internet of 940 

things technology. InJournal of Physics: Conference Series 2021 Dec 1 (Vol. 2143, No. 941 

1, p. 012030). IOP Publishing. 942 

46.  Fawzy D, Moussa S, Badr N. The spatiotemporal data fusion (Stdf) approach: Iot-based 943 

data fusion using big data analytics. Sensors [Internet]. 2021 Oct 23 [cited 2022 May 944 

24];21(21):7035. Available from: https://www.mdpi.com/1424-8220/21/21/7035/htm 945 

47.  Wang W, Chen J, Hong T. Occupancy prediction through machine learning and data 946 

fusion of environmental sensing and Wi-Fi sensing in buildings. Autom Constr. 2018 947 

Oct 1;94:233–43.  948 

48.  Nesa N, Banerjee I. IoT-Based Sensor Data Fusion for Occupancy Sensing Using 949 

Dempster-Shafer Evidence Theory for Smart Buildings. IEEE Internet Things J. 2017 950 

Oct 1;4(5):1563–70.  951 

49.  He N, Liu L, Qian C, Zhang L, Yang Z, Li S. Air Conditioning Load Prediction Based 952 

on Data Fusion Model. SSRN Electron J [Internet]. 2022 Mar 18 [cited 2022 May 10]; 953 

Available from: https://papers.ssrn.com/abstract=4059927 954 



 

 

50.  De Silva D, Alahakoon D, Yu X. A data fusion technique for smart home energy 955 

management and analysis. IECON Proc (Industrial Electron Conf. 2016 Dec 21;4594–956 

600.  957 

51.  Wijayasekara D, Manic M. Data-fusion for increasing temporal resolution of building 958 

energy management system data. IECON 2015 - 41st Annu Conf IEEE Ind Electron 959 

Soc. 2015;4550–5.  960 

52.  CBC News. Why mobile home residents are paying for more electricity | CBC News 961 

[Internet]. [cited 2021 Jul 26]. Available from: https://www.cbc.ca/news/canada/british-962 

columbia/mobile-home-bc-hydro-report-1.5861458 963 

53.  Reyna JL, Chester M V. Energy efficiency to reduce residential electricity and natural 964 

gas use under climate change. Nat Commun [Internet]. 2017 May 15 [cited 2022 May 965 

24];8(1):1–12. Available from: https://www.nature.com/articles/ncomms14916 966 

54.  2020 R. All-Electric New Homes: A Win for the Climate and the Economy - RMI 967 

[Internet]. [cited 2022 May 24]. Available from: https://rmi.org/all-electric-new-homes-968 

a-win-for-the-climate-and-the-economy/ 969 

55.  USAToday. Sustainability study shows that women consume more energy [Internet]. 970 

[cited 2021 Jul 27]. Available from: https://www.utsa.edu/today/2015/05/afamia.html 971 

56.  Golob TF, Brownstone D. The Impact of Residential Density on Vehicle Usage and 972 

Energy Consumption. J Urban Econ [Internet]. 2009;65(1):91–8. Available from: 973 

http://www.sciencedirect.com/science/article/pii/S0094119008001095 974 

57.  Brounen D, Kok N, Quigley JM. Residential energy use and conservation: Economics 975 

and demographics. Eur Econ Rev. 2012 Jul 1;56(5):931–45.  976 

58.  Leahy E, Lyons Sean S. Energy use and appliance ownership in Ireland. Energy Policy. 977 

2010 Aug 1;38(8):4265–79.  978 

59.  Bhowmik T, Yasmin S, Eluru N. A New Econometric Approach for Modeling Several 979 



 

 

Count Variables: A Case Study of Crash Frequency Analysis by Crash Type and 980 

Severity. Transp Res Part B Methodol. 2021 Nov 1;153:172–203.  981 

 982 


	ABSTRACT
	1 Introduction
	1.1 Background
	1.2 Research Approach

	2 Earlier Research and Current Study
	2.1 Literature on Energy Usage
	2.2 Literature on Data Fusion Techniques in Energy
	2.3 Current Study in Context

	3 Experimental Design
	4 Data Description
	4.1 Selecting Variables Fusion
	4.2 Selecting Number of Matching Records for Fusion
	4.3 Check Parameter Estimates Stability

	5 Methodology
	6 Empirical Analysis
	6.1 Model Fit
	6.2 Estimation Results
	6.2.1 RECS variables
	6.2.2 NHTS Variables
	6.2.3 Weight Component

	6.3 Validation Analysis

	7 Conclusion
	Acknowledgements
	Author Contribution Statement
	References

