

Global Initiative of Academic Networks (GIAN)

BRINGING SYNERGY ACROSS DIFFERENT TRANSIT MODES IN INDIA BY ADDRESSING CHALLENGES FOR SUSTAINABLE TRANSPORT MODES

JUNE 23 - 27, WARANGAL, INDIA

Instructors

Naveen Eluru, University of Central Florida Raghuram Kadali, NIT, Warangal CSRK Prasad, NIT, Warangal

Introductions

Course Objectives

Course Schedule

Course Logistics

Introduction

INTRODUCTIONS

Faculty

Students

Follow

Naveen Eluru 🖉

gasoline prices on household vehicle holdings and use

Professor, Civil, Envir. and Constr. Engg, University of Central Florida Verified email at ucf.edu - Homepage Transportation travel behavior discrete choice models transportation safety

Emerging Transportation M...

TITLE	٥	:	CITED BY	YEAR
A mixed severity N Eluru, (Accident.)	d genera / level in CR Bhat, Analysis &	Ilized ordered response model for examining pedestrian and bicyclist injury traffic crashes DA Hensher & Prevention 40 (3), 1033-1054	804	2008
How lar system A Faghih- Journal o	nd-use a (BIXI) ir Imani, N f transpor	and urban form impact bicycle flows: Evidence from the bicycle-sharing n Montreal Eluru, AM El-Geneidy, M Rabbat, U Haq t geography 41, 306-314	647	2014
An anal IN Sener, Transport	I <mark>ysis of t</mark> N Eluru, tation 36,	bicycle route choice preferences in Texas, US CR Bhat 511-539	563	2009
A copulation behavior CR Bhat, Transport	a-based or model N Eluru tation Res	approach to accommodate residential self-selection effects in travel ing earch Part B: Methodological 43 (7), 749-765	382	2009
The imp	bact of d	emographics, built environment attributes, vehicle characteristics, and	360	2009

Cited by		VIEW ALL
	All	Since 2020
Citations	12859	7500
h-index	57	47
i10-index	149	134
		1500
- 1 B	ш	1125
		750
ш	ш	375
		0

Public access VIEW ALL 34 articles 0 articles available not available

Based on funding mandates

Professor and Graduate Program Director

Department of Civil, Environmental and Construction Engineering, **University of Central** Florida

https://people.cecs.ucf.edu /neluru/publications/

RESEARCH OVERVIEW

Build choice/econometric models for understanding behavioral processes

Focus on explainable data analytics drawing on microeconomic theory to predict the decision processes into the future

Incorporate econometrics, data analytics, optimization and microsimulation in large scale quantitative regional transportation models

Utilize these advances to study the interaction among individuals, households, firms, and communities in a system of systems framework

The quantitative frameworks have been applied in transportation and other inter-disciplinary areas

RESEARCH OVERVIEW

Travel Demand Modeling	 Build high fidelity regional travel demand models for a changing world (hybrid work, increasing vehicle ownership and freight) Quantify the impact of urbanization on mobility demand, infrastructure, energy transition, pollution and climate change
Transportation Safety	 Improve stand alone econometric methods for modeling crashes to enhance current understanding of crash occurrence and severity Enhance current approaches to safety modeling by exploring multiresolution interactions in a unified framework
Emerging Mobility	 Develop approaches to proactively predict the impact of emerging mobility alternatives and non-motorized last mile modes Incorporate these new mobility alternatives within travel demand modeling approaches

RESEARCH OVERVIEW

Public Transportation	 Study current public transportation systems to understand current ridership numbers and provide improvement strategies Improve complementarity between traditional public transportation and personalized emerging mobility alternatives
Resilience	 Improving transportation infrastructure resilience for disasters (floods, heat waves and cyclones) Decision making during disasters and community recovery post- disasters
Climate Change and Sustainability	 Impact of transportation on energy demand and air pollution with changing vehicle fleets Proactive land use planning to improve sustainable patterns of urban evolution

We will introduce emerging opportunities and challenges for public transportation across India. Then we will provide exposure to quantitative approaches that can offer datadriven solutions to address the various challenges

TEACHING PHILOSOPHY

- I want the course to be interactive
- I encourage you to be open and discuss any questions
- My objective is not to cover syllabus but to "uncover" material, so you learn [quote attributed to Dr. Chandra Bhat]
 I am ok repeating the material as needed so all of you understand
- The slides and course material are online at <u>https://people.cecs.ucf.edu/neluru/courses/gian-2025/</u>
- If typing, try <u>https://tinyurl.com/5eawhun2</u>
- I will use Mentimeter to seek feedback

STUDENT BACKGROUND

Connect to Mentimeter

Course expectation Survey

(https://www.mentimeter.com/app/presentation/alllaovg6ypdxq gz9f4i7ofsdd43sok9/edit?source=share-invite-modal)

Student Background

(https://www.mentimeter.com/app/presentation/alczcroxks4i3vbw jd9t94jtyz5ubq8u/edit?source=share-invite-modal)

Software experience

(https://www.mentimeter.com/app/presentation/alnemmua6gipivj 2twp2nugqdofmfar2/edit?source=share-invite-modal)

COURSE OBJECTIVES

Overview of public transportation systems in India

Introduce modelling approaches that can identify determinants of public transit and emerging mobility demand

Provide an in-depth discussion of methods relevant for public transportation data in India

Illustrate the methods developed with real world use case data from the Indian context

Devise strategies to promote public transportation usage by leveraging emerging mobility alternatives synergistically

COURSE MODULES

Introduction	 Public Transportation – An Introduction
Public transport data	 Background on data components useful for public transportation system analysis, their compilation and consistency analysis
Modeling approaches for public transit analysis	 Introduce traditional frameworks for public transit analysis – linear regression, discrete choice models (such as multinomial logit, ordered logit, and count models)
Emerging models for public transit data analysis	 Flexible discrete choice models (NL, ML, discrete continuous models) and machine learning models (KNN, RF, SVM, Decision Tress and Gradient Boost)
Integrating emerging modes with public transit	 Bringing it all together to leverage emerging modes and data analytics to improve public transportation across India

B INTRODUCTION MODULE

PUBLIC TRANSPORTATION

A mode of transport that serves all users in the community for a predetermined fare

Offer increased accessibility to members that either do not own or rely on private vehicles

Can potentially offer capacity and environmental benefits by reducing the need for private vehicle modes

Often the only mode of transportation for disabled, low income and vulnerable populations

PUBLIC TRANSPORTATION – IMPORTANT TERMS

What is public transportation

• A shared transportation service usually operated on a fixed schedule and route

Operators

Operated by public or private operators

Service Area

• Include an urban area, states, country or world

Traditional Modes

• Bus, train, light rail, trams, metro, ferry and air

Emerging Modes

• Ridesharing, car-pooling, micro-mobility (Bike sharing, e-scooter) and micro-transit

PUBLIC TRANSPORTATION AROUND THE WORLD

Source: Journeys - http://www.lta.gov.sg/ltaacademy/doc/Jl1Nov-p60PassengerTransportModeShares.pdf

PUBLIC TRANSPORTATION AROUND THE WORLD

Source: Journeys - http://www.lta.gov.sg/ltaacademy/doc/Jl1Nov-p60PassengerTransportModeShares.pdf

URBAN MOBILITY READINESS INDEX

The index has an overall ranking and three sub-indices that provide insights into three distinct and important facets of urban mobility

Urban Mobility Readiness Index

Mobility readiness is holistically measured by 71 KPIs across social impact, infrastructure, market attractiveness, system efficiency, and innovation.

Sustainable Mobility sub-index

First launched in 2021, the sub-index measures cities' efforts to build greener, more efficient and sustainable mobility ecosystems.

Public Transit sub-index

In its third year, the sub-index measures cities on public transit density, efficiency, and utilization rate.

Technology Adoption sub-index

New this year, the sub-index measures cities' preparedness for new mobility solutions and technologies.

Urban Mobility Readiness Index (Edition 6) Accessed from https://tinyurl.com/mskrn7y2

RANKING OF URBAN PUBLIC TRANSPORTATION

Urban Mobility Readiness Index regional scores (%)

CITIES

Source: Oliver Wyman Forum and University of California, Berkeley

SCORES ACROSS COUNTRIES

Regional and global sub-indices average scores (%)

Source: Oliver Wyman Forum and University of California, Berkeley

Dimensions of the Urban Mobility Readiness Index score

Regional scores in percentage across the five dimensions compared with global average

North America 📕 Global

Top scorers

Source: Oliver Wyman Forum and University of California, Berkeley

City	2024	vs. 2023
San Francisco	1	↑ +3
New York	8	↑ +4
Boston	14	↑ +5
Los Angeles	15	↑ +8
Washington, DC	21	↓ -3
Montreal	22	↑ +5
Vancouver	23	↓ -1

Chicago	24	↓ -5
Toronto	28	↓ -2
Atlanta	30	↓ -2
Houston	34	↓ -2
Dallas	35	↑ +1
Detroit	38	n/a
Austin	39	n/a

Source: Oliver Wyman Forum and University of California, Berkeley

EUROPE

Dimensions of the Urban Mobility Readiness Index score

Regional scores in percentage across the five dimensions compared with global average

Regional Urban Mobility Readiness Index and sub-indices overview

Distribution of European cities' scores in percentage

Top scorers

Source: Oliver Wyman Forum and University of California, Berkeley

City	2024	vs. 2023			
Paris	2	↑ +6	Oslo	17	.13
Munich	4	↑ +1	USIO NO	17	¥ 5
Ametordam	5	1 -2	Vienna	19	n/a
Anisterdam	5	₩ -3	Madrid	26	↓ -5
Stockholm	6	↓ -3	Parcolona	27	1 -2
Berlin	7	↑ +3	Barcelona	27	
			Milan	31	↑ +3
Zurich	9	↓ -2	Dublin	36	↓ -1
London	10	↑ +1	200111	00	• •
Heleinki	11	1 -10	Warsaw	37	= 0
Heisinki		↓ -10	Rome	40	↑ +3
Copenhagen	13	↓ -4	Linkan	44	- 1-
			LISDON	41	n/a
			Istanbul	42	↓ -1

Source: Oliver Wyman Forum and University of California, Berkeley

ASIA-PACIFIC

Dimensions of the Urban Mobility Readiness Index score

Regional scores in percentage across the five dimensions compared with global average

📕 Asia Pacific 📕 Global

Regional Urban Mobility Readiness Index and sub-indices overview

Distribution of Asian Pacific cities' scores in percentage

Top scorers

City	2024	vs. 2023
Singapore	3	↑ +3
Seoul	12	↑ +1
Hong Kong	16	↓ -1
Tokyo	18	↓ -2
Beijing	20	↑ +11
Shanghai	25	↑ +8

ydney	29	\downarrow	-6
Aelbourne	33	1	-3
(uala Lumpur	46	=	0
langkok	48	1	-1
akarta	51	\downarrow	-2
)elhi	55	\mathbf{V}	-3
lumbai	60	=	0
Aanila	65	=	0

Source: Oliver Wyman Forum and University of California, Berkeley

MOBILITY INDEX COMPONENTS

What should we use as a metric

- Measurable components (travel time, accessibility to jobs, grocery and health care, public transit density, utilization and affordability)
- Subjective components (perception, comfort, information, safety and convenience)
- Aspirational components (technology adoption rate, and system goals)

Important elements for metric

- Data on public transit ridership and fare collection
- Impact on employment
- Effect on community [property values, transit oriented developments]

USEFUL RESOURCES

 Littman T. A., Evaluating Public Transit Benefits and Costs Best Practices Guidebook (accessible from https://www.vtpi.org/tranben.pdf)

CASE STUDY

We recently developed a framework to understand the equitable consideration of transportation demand for Transportation Network Companies (such as Uber/Lyft)

- Parvez D. A., Tirtha S. D., Bhowmik T., Peeta S., Eluru N., (2024) "Understanding the Role of Transportation Network Companies in Addressing Transportation Demand: A Chicago Case Study", Presented at the Transportation Research Board (TRB) Annual Meeting, Washington D.C., 2024
- We present this case study to illustrate a mechanism to develop useful data driven metrics for analysis of public transit systems

REFERENCES

 Urban Mobility Readiness Index 2024, accessed from <u>https://www.oliverwymanforum.com/mobility/urban-</u> <u>mobility-readiness-index.html</u> on June 15, 2025