A Unified Framework for Modeling Traffic Crashes from Hierarchical Spatial Resolutions
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ABSTRACT
Independent traffic crash modeling approaches do not account for the embedded relationships related to the multi-resolution data structure, leading to mis-specified estimations. The recently developed integrated frameworks demonstrate the capability of addressing this drawback. The current study proposes an integrated framework that accommodates information from multiple spatial units and observation resolutions. Specifically, the study develops an integrated model system that allows for the influence of independent variables from disaggregate crash record, micro-facility (segment and intersection) and macro (traffic analysis zone) level simultaneously within the macro level propensity estimation. The empirical analysis considers disaggregate crash records of 1,818 segments and 4,184 intersections from 300 traffic analysis zones in the City of Orlando, Florida. These crash records contain crash-specific factors, driver and vehicle factors, roadway, road environmental and weather information of each crash record. For micro-facility and macro levels, an exhaustive set of independent variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are considered. The proposed model system can also accommodate for hierarchical correlations among the data across observation resolutions and parameter variability across the system. The empirical analysis is augmented by employing several goodness of fit and predictive measures. The results clearly demonstrate the improved performance offered by the proposed integrated model system relative to the non-integrated model. A validation exercise also highlights the superiority of the proposed framework. The application of the proposed integrated framework can allow transportation professionals to adopt policy-based, site-specific, and outcome-specific solutions simultaneously. 
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BACKGROUND
[bookmark: _Hlk197195378]Transportation safety professionals apply statistical and econometric models to analyze road traffic crashes, identify the causes of crash occurrence and the consequences, forecast future situations, and devise appropriate crash countermeasures to alleviate the situations. These models are applied at different spatial units and for different observation resolutions. For instance, researchers apply macro level (such as zonal or county level) models to formulate long-term policy and planning level strategic solutions while micro-facility level (such as segment facility or intersection facility level) models are employed to design facility-specific engineering solutions (Cai et al., 2019; Pervaz et al., 2022). Both the macro level and micro level models use aggregated crash data and examine crash occurrence via crash frequency models. In these crash frequency models, a host of variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are aggregated at different spatial resolutions such as zones, corridors, segments and intersections (Cai et al., 2019; Ding et al., 2023; Pervaz et al., 2022)[footnoteRef:1]. Alternatively, disaggregate level (such as crash record or driver record) models are employed to obtain outcome-specific solutions using individual record level details including crash specific, driver, vehicle, roadway, weather and road environmental variables (Abdel-Aty, 2003).  [1:  For the macro level models, the choice of a certain unit (traffic analysis zones, census tracts or blocks) over an area of interest is closely related to the well-known modifiable areal unit problem (MAUP) and boundary crash issues. Several studies used various areal units and identified the level of data aggregation that minimizes the impact of the modifiable areal unit problem (Briz-Redón et al., 2019; Xu et al., 2018, 2014; Zhai et al., 2025) and the allocation of crashes that occur in the boundary of spatial analysis units while estimating crash frequency data (Ding et al., 2023).] 

Transportation safety literature has traditionally developed independent model systems for each of these observation resolutions. However, crash analysis should account for the following fundamental considerations. First, macro level crashes are obtained by summing up the micro level crashes (i.e., zonal level crashes are obtained by summing up the crashes from road segment and intersection levels). Second, macro level independent variables are often aggregated from micro level information (i.e., in macro models zonal speed limit is obtained by considering weighted average of the speed limits of the roads of that zone). Third, both the macro level and micro level crashes are aggregated from disaggregate crash records (i.e., total crashes of a zone/road segment are aggregated from the individual crashes that occurred within the zone/road segment). Since both the dependent and independent variables for aggregate resolutions are obtained from the smaller resolutions, there could be potential relationships in the information transfer across these levels. In model systems where these dependent variables are modeled separately the embedded relationships within the data relating to the analysis resolutions are often neglected or ignored leading to a biased model output. Further, the recovered impact of independent variables might not reflect the true impact of these variables due to mis-specification. 
[bookmark: _Hlk197196875][bookmark: _Hlk197196992][bookmark: _Hlk197196355][bookmark: _Hlk197196156]In recent safety literature, several econometric model frameworks have addressed the limitations of the traditional independent model systems by introducing models that consider data from different analysis resolutions simultaneously. These multi-resolution data structure modeling efforts can be categorized in two directions: a) hierarchical models and b) integrated models. Within multi-level hierarchical modeling approaches, research efforts considered upper level (such as zone/corridor) information while modeling crashes at lower level (such as segment, intersection or crash record) to accommodate for unobserved heterogeneity and correlation in crash analysis. For instance, Huang and Abdel-Aty (2010) presented a potential hierarchical structure of geographic region level − traffic site level − traffic crash level − driver-vehicle unit level − occupant level and suggested to properly accommodate the potential cross-group heterogeneity and spatiotemporal correlation due to the multilevel data structure in crash analysis. Xie et al. (2014) modeled intersection crashes in high-density road networks and revealed strong evidence for the presence of heterogeneity across corridors and spatial correlation among intersections. Lee et al. (2017) developed intersection crash models for total, severe, pedestrian, and bicycle crashes with macro level sociodemographic and land-use data for spatial units and concluded that the intersection crash prediction models with macro level observed and unobserved variables outperform the models with intersection level variables only. Han et al. (2018) considered the hierarchical structure where road entity is nested within the geographic region and examined the variations in effect of road-level factors on crash frequency across different regions. Pew et al. (2020) considered a hierarchical structure of the intersections under urban area classification to allow the effects of a given intersection attribute to vary across urban classifications and found that allowing such hierarchy significantly improved the fit and prediction accuracy. Recent studies have introduced multiple membership multilevel models to estimate intersection crashes and pedestrian crashes (Park et al., 2022, 2020; Zhu et al., 2024). These studies employed a distance based weighting approach to account for the spatial dependency in safety modeling. The overall goal of these studies is to reduce heterogeneity issues between zones in the crash prediction model while avoiding model misspecification. Research efforts also employed hierarchical data structure models for crash outcome analysis (Islam et al., 2023; Kim et al., 2017; Park et al., 2017). All these research efforts suggest the consideration of zone/corridor level observed and unobserved variables in analyzing crashes at road entity or disaggregate level. Another group of studies within multilevel hierarchical models jointly explore traffic safety at the segment and intersection level, with the consideration of zonal/corridor-level and sub corridor-level variables (Alarifi et al., 2018a, 2018b, 2017; Wang and Huang, 2016).[footnoteRef:2] These modeling efforts also captured spatial effects, the effect of different neighboring structures as well as the correlations among individual road entity and between adjacent entities. All these joint modeling efforts highlight that micro level models are improved while considering macro level observed and unobserved variables in the analysis. However, none of these studies considered variables from lower level to study crashes at upper level. In other words, these studies did not consider observed and unobserved variables from both levels simultaneously within the model structure to enhance the aggregate level predictions. [2:  The reader would note that joint modeling approaches were proposed to simultaneously model the crash counts by attributes including crash counts by crash severity levels (Afghari et al., 2020; Ahmad et al., 2023; Wang et al., 2021; Xie et al., 2019; Yasmin and Eluru, 2018), collision types (Bhowmik et al., 2021, 2019, 2018; Hosseinpour et al., 2018; Jahan et al., 2024), number of vehicles (Ahmad et al., 2023), and transport modes (Cai et al., 2017; Cheng et al., 2018; Huang et al., 2017; Yasmin et al., 2018). However, these studies considered a single analysis level such as zones, census tracts or census blocks for their analysis.] 

[bookmark: _Hlk197195696]The integrated model systems – an emerging safety analysis area – improve on the other approaches by considering observed and unobserved variables from different analysis resolutions simultaneously within a unified framework. Within these approaches, studies explicitly recognize that macro level (zonal) crashes are obtained from the micro level (segments and intersections) crashes, and hence crash counts at the two levels are correlated (Cai et al., 2019; Pervaz et al., 2022). Thus, by considering both micro and macro level variables simultaneously, these integrated models found significantly improved macro level predictions. These integrated modeling efforts recognize that crash frequency data are generated by aggregating individual crash records and capture rich information flow from disaggregate level crash type and/or severity models to aggregate level crash frequency by crash type and/or severity estimation (Haddad et al., 2024; Pervaz et al., 2024, 2023). For instance, Pervaz et al. (2023) proposed a unified model system that enhances the accuracy of the aggregate level crash frequency by severity estimation by incorporating the influence of independent variables from the crash record level severity model. The authors extended the framework by incorporating disaggregate level information from unordered crash type and ordered severity models within the aggregate level propensity to jointly estimate crash frequency by crash type and severity (Pervaz et al., 2024). Another study by Haddad et al. (2024) proposed a novel integrated parametric framework that links the information at the disaggregate crash level from an unordered model structure and the aggregate level crash count and found a significant positive association between the dimensions. These integrated frameworks used disaggregate level information such as crash-specific factors, driver and vehicle factors, roadway characteristics, road environmental and weather information, and facility level or aggregate level roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics for the analysis. All these integrated frameworks illustrated that consideration of additional observed and unobserved information from different observation resolutions simultaneously within the unified framework enhances the performance of macro or aggregate level crash frequency estimation. In addition, these integrated approaches can capture systemwide effects and individual level information simultaneously that can contribute to minimizing MAUP and boundary-crash issues. 

STUDY CONTEXT
The current study builds on the aforementioned integrated modeling approaches by accommodating information from multiple spatial units and analysis resolutions (as shown in Figure 1). The proposed approach seamlessly integrates data from multiple disaggregate levels within the appropriate aggregate levels thus generalizing the overall crash analysis processes. In Pervaz et al. (2022), micro (segment and intersection facility) level information was incorporated in the macro (zone) level crash frequency models (Pervaz et al., 2022). On the other hand, Pervaz et al. (2023, 2024) incorporated disaggregate level (crash record) information in the modeling of zonal level crash frequency by crash type and/or severity (Pervaz et al., 2024, 2023). Haddad et al. (2024) developed an integrated parametric framework linking the information at the disaggregate crash level and the aggregate level (census block group) crash count (Haddad et al., 2024). These frameworks consider either macro-micro or aggregate-disaggregate combination to estimate zonal crashes and highlight that the estimated models offer superior performances than the independent model system. Therefore, it might be beneficial to consider macro−micro−disaggregate combination to accommodate for the information flow from crash record level−segment/intersection level−zonal level while also considering hierarchical relationships across the levels. The approach would involve summing up the crash propensity of each disaggregate level (crash record) within the micro resolutions (segment and intersection facility) and adding the generated values as new variables in the micro level propensities while also considering summed up micro level crash propensities as new variables for the macro level (zone) propensity equation. To summarize, in our current paper, a unified framework that explicitly allows for the information flow of observed and unobserved variables from the crash record level models into the micro and from the micro level models to macro level crash frequency by severity model is proposed and estimated. 

[image: A diagram of a micro-zone
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[bookmark: _Ref170840180]Figure 1: Hierarchical Data Structure of the Study

In our study, econometric building blocks including negative binomial-ordered probit fractional split (NB-OPFS) and ordered probit (OP) are employed to develop the integrated framework. For independent model system, the NB-OPFS framework can be employed separately at micro (for segment and intersection facility) and macro level (zone) to jointly estimate crash frequency by severity where the NB component models the total crashes and the OPFS component determines the proportion of crashes by severity class for each spatial analysis level. At disaggregate level, the crash severity variable can be examined using an OP model for crash records from each facility type (segment and intersection). The integrated model system can employ these econometric building blocks to consider information flow from the disaggregate and micro levels through propensity equations within a unified framework to estimate crashes at macro level. With these models, the integrated approach can take four potential forms as shown in Table 1. The different forms of integrated models arise in how the propensity sum variables from the lower-level models are accommodated as independent variables in the upper-level models. The propensity sum variables can be treated as fixed (as obtained from the micro/disaggregate model predictions) or allowed to vary and re-estimated on the integrated model. The different levels and the different decisions to fix or allow the parameters to vary will result in different integrated approaches.

[bookmark: _Ref170838900]Table 1: Integrated Modeling Approaches
	Integrated Model Approaches
	Count Component 
(NB Model Propensity)
	Fraction Component 
(OPFS Model Propensity)

	
	Macro Level Parameters
	Micro Level Parameters
	Disaggregate Level Parameters
	Macro Level Parameters
	Micro Level Parameters
	Disaggregate Level Parameters

	Integrated 
Approach 1

	Allowed to vary
	Fixed
	Fixed
	Allowed to vary
	Fixed
	Fixed

	Integrated 
Approach 2

	Allowed to vary
	Allowed to vary
	Fixed
	Allowed to vary
	Allowed to vary
	Fixed

	Integrated 
Approach 3

	Allowed to vary
	Fixed
	Allowed to vary
	Allowed to vary
	Fixed
	Allowed to vary

	Integrated 
Approach 4

	Allowed to vary
	Allowed to vary
	Allowed to vary
	Allowed to vary
	Allowed to vary
	Allowed to vary

	Number of Additional Coefficients Estimated

	Integrated 
Approaches 1-4
	Count Component 
(NB Model Propensity)
	Fraction Component 
(OPFS Model Propensity)

	
	Micro level propensity sums: 2 
[Segment facility: 1, Intersection facility: 1]
Disaggregate level propensity sums: 4 
[Segment crash record within micro: 1, Segment crash record within macro: 1, Intersection crash record within micro: 1, Intersection crash record within macro: 1]
	Micro level propensity sums: 2 
[Segment facility: 1, Intersection facility: 1]
Disaggregate level propensity sums: 4 
[Segment crash record within micro: 1, Segment crash record within macro: 1, Intersection crash record within micro: 1, Intersection crash record within macro: 1]



Table 1 outlines the different variants based on how the propensity sum variables can be treated as fixed as obtained from the micro/disaggregate model predictions (Approach 1) and the parameters within the propensity sum variables can be treated as endogenous and be allowed to vary (Approaches 2, 3, and 4). Approach 4 is computationally more involved as it allows for feedback from all the observational resolutions simultaneously. Table 1 also presents the number of additional parameters estimated for composite variables (propensity sum scores) in the integrated model system. The different approaches can be estimated and the data fit of these approaches can be compared to identify the most appropriate model for the data considered (more details are provided in the methodology section). The model selection process can be accomplished using model fit measures such as Bayesian Information Criterion (BIC). Finally, it is important to highlight that the integrated approach accommodates for a host of unobserved factors within each econometric building block and across all econometric blocks (exact formulation details are included in the methodology section). 
The proposed model system is estimated using data drawn from the City of Orlando, Florida for the year 2019. The study obtained 21,189 crash records (5,669 segment and 15,520 intersection crashes) for the disaggregate level model analysis. The records contain crash-specific factors, driver and vehicle factors, roadway attributes, road environmental and weather information of each crash record. For micro and macro level analysis, the study aggregated the crash records over 1,818 segments, 4,184 intersections and 300 traffic analysis zones (TAZs). An exhaustive set of independent variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are considered in these levels.

METHODOLOGY
In this study, a negative binomial-ordered probit fractional split (NB-OPFS) model structure is employed to analyze crash frequency by severity at the micro level and macro level model analysis. Alternatively, for disaggregate level analysis an ordered probit (OP) model structure is employed. The NB-OPFS and OP model structures are employed to develop the integrated framework. Thus, the overall econometric framework of the study can be described along three components: the disaggregate level model structure (ordered probit), micro level and macro level model structure (NB-OPFS), and the integrated model structure. 

[bookmark: _Toc100457751]Disaggregate Level Model Structure (Ordered Probit Model)
In the traditional ordered response model, the discrete injury severity levels  for segment  or intersection  are assumed to be associated with an underlying continuous latent variable . This latent variable is typically specified as the following linear function:  
	
	(1) 


where  represents the crash record for segment or intersection .  is a vector of exogenous variables for segment or intersection  (excluding a constant).  is a vector of unknown parameters to be estimated for segment or intersection .  is a vector of unobserved effects specific to the facility type (segment or intersection ) for the crash records, highlighting the spatial arrangement within the same facility. This  will be same across the crash records if they correspond to the same segment or intersection and thus the spatial dependency will be captured. The reader would note that the spatial unobserved heterogeneity can vary across the crash records. Therefore, in the current study, we parameterize the correlation parameter  as a function of observed attributes as follows:
	
	(2) 


where  is a vector of exogenous variables at the facility level (including a constant) employed for crash records,  is a vector of parameters to be estimated.  is the random disturbance term assumed to be standard normal distribution. Let us assume    be the index to represent injury severity categories. In this study,  take the values of ‘no-injury’ , ‘possible injury’ , ‘non-incapacitating injury’  and ‘fatal and incapacitating injury’ .  represents the thresholds associated with these severity levels. These unknown s are assumed to partition the propensity into  intervals. The unobservable latent variable is related to the observable ordinal variable  by the  with a response mechanism of the following form:
	, for 
	(3) 


In order to ensure the well-defined intervals and natural ordering of observed severity, the thresholds are assumed to be ascending in order, such that where  and . Given these relationships across the different parameters, the resulting probability expressions for record and alternative  for the ordered probit take the following form:

	
	(4) 



where  represents the standard normal cumulative distribution function.
[bookmark: _Toc100457752]Micro and Macro Level Model Structure (NB-OPFS Model)

Count framework
In our research, crash counts per TAZ (for macro), per segment and per intersection (for micro) are considered as the dependent variables in the model estimations. Since crash counts are non-negative integers, count-data modeling techniques are appropriate for crash frequency data analysis. Among the count-modeling techniques, a Poisson model may not always be appropriate because the Poisson distribution restricts the mean and variance to be equal whereas crash frequency data are generally over-dispersed (Lord and Mannering, 2010). Therefore, in our research, we consider the negative binomial regression framework to account for over-dispersed data. The approach can be extended readily to any possible mathematical model such as Poisson lognormal and other variants of negative binomial such as the zero inflated negative binomial model. 
For a spatial unit (segment intersection , or zone ), negative binomial (NB) model is employed to estimate total crash count. The probability density function of NB model can be written as,

	
	(5) 



where  be the index for crashes occurring over a period of time in a spatial unit  (segment intersection , or zone ).  is the probability that unit  has  number of crashes.  is the gamma function,  is negative binomial overdispersion parameter and  is the expected number of crashes occurring in the unit  over a given time period. The equation for  can be written as follows,
	
	(6) 


where  is a vector of explanatory variables associated with the analysis unit .  is a vector of coefficients to be estimated for the unit .  a vector of unobserved factors on crash count propensity for unit .  is a vector of unobserved effects specific to the zone exclusively for segments or intersections, highlighting the spatial arrangement of segments or intersections within the same zone. This  will be same across all the segments or all the intersections if they correspond to the same zone, highlighting the spatial dependency. This spatial unobserved heterogeneity can vary across the segments or intersections. Therefore, in the current study, we parameterize the correlation parameter  as a function of observed attributes as follows:
	
	(7) 


where  is a vector of exogenous variables at zonal level (including a constant) employed for facility type (segment or intersection),  is a vector of parameters to be estimated.  is a gamma distributed error term with mean 1 and variance .  captures the influence of common unobserved factors that impact the total number of crashes and proportion of crashes by severity for unit  
Fractional split framework
The modeling of crash proportions by severity levels is undertaken using the ordered probit fractional split model (OPFS). In the ordered outcome framework, the actual injury severity proportions  are assumed to be associated with an underlying continuous latent variable  as follows:
	, 
	(8) 


The latent propensity  is mapped to the actual severity proportion categories  by  thresholds  as presented in equation 8.  is a vector of attributes (not including a constant) that influences the propensity associated with severity proportion categories for unit .  is the corresponding vector of mean effects.  a vector of unobserved factors on severity proportion propensity for unit .   is an idiosyncratic error term assumed to be identically and independently standard normally distributed across unit .  term generates the correlation between equations for total number of crashes and crash proportions by severity levels and also allows for considering the influence of various unobserved factors affecting the frequency and proportion variables. The  sign in front of  indicates that the correlation in unobserved individual factors between total crashes and crash proportions by severity levels may be positive or negative. A positive sign implies that units with higher number of crashes are intrinsically more likely to incur higher proportions for severe crashes. On the other hand, negative sign implies that units with higher number of crashes intrinsically incur lower proportions for severe crashes. To determine the appropriate sign one can empirically test the models with both  and  signs independently. The model structure that offers superior data fit is considered as the final model.
It is important to note here that the unobserved heterogeneity between total crashes and crash proportions by severity levels can vary across units. Therefore, in the current study, the correlation parameter  is parameterized as a function of observed attributes as follows:
	
	(9) 


where  is a vector of exogenous variables,  is a vector of unknown parameters to be estimated (including a constant).
To estimate the model presented in equation 8, we assume that:   
	, 
	(10) 


 in our model takes the ordered probit probability  form for the severity category . 
Given these relationships across different parameters, the resulting probability  for the ordered probit fractional split model takes the following form: 
	
	(11) 


where  is the standard normal cumulative distribution function. 

[bookmark: _Toc100457753]Integrated Model Structure
To develop integrated model framework, we use propensity equations from disaggregate level OP model structure, and micro and macro level NB-OPFS model structure. To be specific, we incorporate composite sums of the disaggregate level OP model propensities (from segment crash OP model and intersection crash OP model) and sums for the micro level NB-OPFS model propensities (from segment facility NB-OPFS model and intersection facility NB-OPFS model) within the macro level (zonal) propensity equation to estimate crash frequency by severity. For example, if 5 crashes occur in a segment, we sum the OP model propensity for these 5 crashes and the composite score (summation of propensities) is incorporated as an independent variable within the NB-OPFS model equation for segment facility. Similarly, if a zone has 5 segments, we sum the propensities from NB and OPFS model components and incorporate the composite scores (one from NB and one from OPFS) within the zonal level crash propensities to estimate crash frequency by severity. We can also incorporate disaggregate level composite sum directly into the zonal propensity equation. For each composite score, we estimate a scalar parameter (coefficient) in the model system. These scalar parameters can be estimated by considering the composite scores as fixed value obtained from the respective OP or NB-OPFS model components or be allowed to vary based on the model fit. With these considerations, four model structures can be estimated. For NB model component, the propensity structures are:
   
	
	(12) 

	
	(13) 

	
	(14) 

	
	(15) 


where  is the scalar (coefficient) for segment facility propensity sum for count component,   is the scalar for disaggregate segment crash propensity sum within segment facility propensity for count component,  is the scalar for disaggregate segment crash propensity sum within zone for count component,  is the scalar for intersection facility propensity sum for count component,   is the scalar for disaggregate intersection crash propensity sum within intersection facility propensity for count component,  is the scalar for disaggregate intersection crash propensity sum within zone for count component.
In the first structure, the micro level and disaggregate model parameters are fixed (as obtained from facility-specific NB models and OP models) and only scalar parameters will be estimated along with the macro level variables. In the second approach, micro level parameters within the propensity will be allowed to vary based on model fit while estimating the scalar parameters and the macro level variables. In the third approach, disaggregate level parameters within the propensity will be allowed to vary based on model fit and in the fourth approach, both micro level and disaggregate level parameters will be allowed to vary while estimating the scalar parameters and the macro level parameters. Similar to the count component, the equations for OPFS component are:


	, 
	(16) 

	
	(17) 

	
	(18) 

	
	(19) 



where  is the scalar (coefficient) for segment facility propensity sum for severity proportion,   is the scalar for disaggregate segment crash propensity sum within segment facility propensity for severity proportion,  is the scalar for disaggregate segment crash propensity sum within zone for severity proportion,  is the scalar for intersection facility propensity sum for severity proportion,  is the scalar for disaggregate intersection crash propensity sum within intersection facility propensity for severity proportion, and  is the scalar for disaggregate intersection crash propensity sum within zone for severity proportion.
The correlation parameter  is parameterized as a function of observed zonal attributes as follows (with the notation from equation 9):
	
	(20) 


With the integrated propensity, the updated probability equation for macro level NB is:
	
	(21) 


And fractional split component probability for macro level is,
	
	(22) 


Model Estimation
In examining the model structure of total crash count and proportions of crashes by severity level, it is necessary to specify the structure for the unobserved vectors,  represented by Ω. In this study, it is assumed that the elements are drawn from independent realization from normal population: Ω. Thus, conditional on Ω, the likelihood function for the integrated probability can be expressed as:

	
	(23) 



where  () is a dummy variable taking a value of 1 if the corresponding zone  has segments (intersections) in it and 0 otherwise.  is a dummy with  if zone  has at least one crash over the study period and  otherwise.  is the proportion of crashes in severity category  in zone . () is a dummy with  if segment  (intersection ) has at least one crash over the study period and  otherwise.  is the proportion of crashes in severity category  at segment  and  is the proportion of crashes in severity category  at intersection . Finally, the log-likelihood function is:    
	  
	(24) 


All the parameters in the model are estimated by maximizing the logarithmic function  presented in equation 24. To estimate the proposed model, we apply Quasi-Monte Carlo simulation techniques based on the scrambled Halton sequence to approximate the integral in the likelihood function and maximize the logarithm of the resulting simulated likelihood function across individuals (please see Bhat, 2001; Yasmin and Eluru, 2013 for details). In our research, we tested the model specification with several Halton realization levels (such as 50, 100, 300, …, 500, 1000). We found that model parameters were stable at around 500 and 1000 levels. We use the GAUSS matrix programming software to run the models (Aptech, 2015). 
 
DATA PREPARATION 
[bookmark: _Hlk99286358]The current study conducts empirical analysis using data from the Orlando city region of Florida. The study area is composed of 300 traffic analysis zones (TAZs), 1,818 segments, and 4,184 intersections. The study extracted crash record level data for the year 2019 from Signal Four Analytics database. Each record contains details of crash level information. After processing and cleaning the data, we obtained 21,189 crash records (5,669 segment and 15,520 intersection crashes) for the disaggregate level analysis. For assigning intersection crashes, a 250 feet buffer around the center of each intersection was considered and the crashes were spatially assigned by using ArcGIS tools (see Cai et al., 2019; Ingle and Gates, 2021; Sharafeldin et al., 2022; Yue, 2024 that adopted this approach). Based on the severity class, these crashes could be classified into a five-point severity scale: fatal injury (FI), incapacitating injury (II), non-incapacitating injury (NII), possible injury (PI), and no-injury crashes (NI). The distributions of FI, II, NII, PI and NI are 0.32%, 1.89%, 8.20%, 17.27%, and 72.32%, respectively for segment facility and 0.28%, 1.66%, 8.94%, 18.88%, and 70.24%, respectively for intersection facility. This study combines FI and II as FII for the disaggregate level models estimation.  
For micro and macro levels model estimation, the study aggregated crash records by facility level and TAZ level, respectively. For micro and macro level crash count components, total crash counts at the observation resolutions are considered as the dependent variable while for severity proportion components, crash proportions by severity level (number of crashes of specific severity level/total crashes) are considered as the dependent variable. The four severity proportions are: (1) proportion of no-injury crashes (PNI), (2) proportion of possible injury crashes (PPI), (3) proportion of non-incapacitating injury crashes (PNII), and (4) proportion of fatal and incapacitating injury crashes (PFII). A comprehensive set of independent variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are considered in these levels. This study randomly selects 270 TAZs that cover 1,613 segments with 4,635 crash records, and 3,746 intersections with 13,784 crash records for model estimation and set aside the remaining 30 TAZs that include 205 segments with 1,034 crash records, and 438 intersections with 1,736 crash records for the validation of the models.

[bookmark: _Toc99056090]Variables Considered
The variables for disaggregate, micro, and macro level analysis were sourced from different databases including Signal Four Analytics (S4A), Florida Department of Transportation (FDOT) Transportation Statistics Division, US Census Bureau and American Community Survey, Florida Department of Revenue, and Florida Geographic Data Library. Disaggregate level segment and intersection OP models consider the information present in the crash records including  crash-specific variables (such as first harmful events), driver and vehicle factors (such as driving under influence related, distraction related, presence of passengers), roadway factors (such as location of the crashes, speed limit, shoulder type), road environmental factors (such as time of the day, lighting condition) and weather information (such as clear, rain, fog). 
For the segment facility level, the variables were spatially assigned to the segments while for intersection facility level, variables were aggregated by taking 0.5-mile buffer zone around each intersection by using ArcGIS tools. The segment level variables include roadway and traffic factors (such as AADT, Truck AADT, functional class, number of lanes, speed limit, median width, and shoulder width). The intersection level variables include roadway and traffic factors (such as AADT, proportion of roads by functional class, number of lanes, and average shoulder width), land-use attributes (such as proportion of residential, commercial, institutional, industrial, recreational and mixed area), built environment attributes (such as number of restaurants, business centers, commercial centers, educational centers, and shopping centers), and sociodemographic characteristics (such as population density, proportion of males and females, household density, median household income, proportion of car, drive alone, non-motorized means of transport, different population group by age level, household with vehicle availability, and population with different races). For macro level analysis, the explanatory variables were aggregated at the TAZ level. Macro level analysis uses roadway and traffic factors (such as AADT, truck AADT, proportion of roads by functional class, number of lanes, average speed limit, average shoulder width, average sidewalk width and median width, intersection density, and traffic signal density), and land-use, built environment, and sociodemographic characteristics similar to the intersection facility. 
In estimating the model, several functional forms, and combination of variables are considered and those that provide the best fit are retained in the final specification. The final specification of the model was based on removing the statistically insignificant variables in a systematic process based on 90% confidence level.
Figure 2 shows the sample share of the variables at disaggregate levels considered for the final model estimation while the micro level and macro level variables are presented in Table 2 with the appropriate definition and summary statistics.

EMPIRICAL ANALYSIS 

Model Specification and Overall Measure of Fit
A series of models are estimated to conduct empirical analysis of the proposed framework and the independent model systems. First, we estimate OP models for segment crash records and intersection crash records, NB-OPFS models for segment facility, intersection facility and zonal level to estimate crash counts by severity class. These model frameworks together provide the non-integrated model system. Second, we develop our proposed integrated model system following four approaches as discussed in the methodology section. 

Integrated approach 1: Focuses on optimizing the joint log-likelihood of the macro, micro, and disaggregate level models by only estimating the scalar parameters for the micro level and disaggregate model propensity sums (we tested statistical significance of six additional coefficients for count component: two for facility-specific propensity from NB, two for facility specific crash record level propensity from OP incorporated within the facility level NB, two for facility specific crash record level propensity from OP incorporated directly within the zonal NB, and six additional coefficients for severity proportion component: two for facility-specific propensity from OPFS, two for facility specific crash record level propensity from OP incorporated within the facility level OPFS, two for facility specific crash record level propensity from OP incorporated directly within the zonal OPFS) along with macro level factors as shown in equations 12 and 16. 

Integrated approach 2: The micro level parameters in the segment propensity and intersection propensity are allowed to vary along with macro level factors and scalars for propensity sums within the integrated model equations as shown in equations 13 and 17.

Integrated approach 3: The disaggregate level parameters in the segment OP propensity and intersection OP propensity are allowed to vary along with macro level factors and scalars for propensity sums within the integrated model equations as shown in equations 14 and 18.

Integrated approach 4: The micro level and disaggregate level parameters are allowed to vary along with macro level factors and scalars for propensity sums within the integrated model equations as shown in equations 15 and 19.
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[bookmark: _Ref173188934][bookmark: _Ref173188926]Figure 2: Sample Share of the Variables at Disaggregate Levels
[bookmark: _Ref170838936]Table 2: Summary Statistics of the Variables at Micro and Macro Levels
	Variables
	Min.
	Max.
	Mean
	Std. Dev.

	Segment Facility Level (Micro)
	
	
	
	

	Total segment crash count
	0.000
	242.000
	3.118
	9.530

	Proportion of fatal and incapacitating injury crashes
	0.000
	1.000
	0.014
	0.084

	Proportion of non-incapacitating injury crashes
	0.000
	1.000
	0.042
	0.141

	Proportion of possible injury crashes
	0.000
	1.000
	0.072
	0.177

	Proportion of no-injury crashes
	0.000
	1.000
	0.364
	0.427

	Ln (Segment length, miles)
	-12.852
	1.144
	-2.758
	1.770

	Ln (AADT)
	6.686
	12.095
	9.987
	0.891

	Speed limit <=40 mph
	0.000
	1.000
	0.457
	0.498

	Number of lanes
	1.000
	5.000
	2.128
	0.720

	Ln (Sidewalk width +1, feet)
	0.000
	2.708
	1.789
	0.491

	Traffic signal density 
	0.000
	74.048
	0.862
	13.620

	Intersection Facility Level (Micro)
	
	
	
	

	Total intersection crash count
	0.000
	99.000
	3.709
	8.422

	Proportion of fatal and incapacitating injury crashes
	0.000
	1.000
	0.011
	0.069

	Proportion of non-incapacitating injury crashes
	0.000
	1.000
	0.051
	0.155

	Proportion of possible injury crashes
	0.000
	1.000
	0.100
	0.215

	Proportion of no-injury crashes
	0.000
	1.000
	0.359
	0.412

	Proportion of arterial roads
	0.000
	1.000
	0.416
	0.275

	Proportion of minor roads
	0.000
	1.000
	0.312
	0.257

	Proportion of >=3-lane roads
	0.000
	1.000
	0.222
	0.207

	Average inside shoulder width, feet
	0.000
	21.000
	4.005
	3.878

	Proportion of institutional area
	0.000
	1.000
	0.069
	0.091

	Proportion of recreational area
	0.000
	1.000
	0.068
	0.138

	Number of finance centers
	0.000
	5.000
	4.604
	9.302

	TAZ Level (Macro)
	
	
	
	

	Total TAZ crash count
	0.000
	342.000
	70.630
	65.789

	Proportion of fatal and incapacitating injury crashes
	0.000
	0.500
	0.022
	0.040

	Proportion of non-incapacitating injury crashes
	0.000
	0.333
	0.084
	0.059

	Proportion of possible injury crashes
	0.000
	1.000
	0.173
	0.104

	Proportion of no-injury crashes
	0.000
	1.000
	0.671
	0.190

	Ln (Truck AADT +1)
	0.000
	11.302
	8.326
	1.613

	Proportion of >=3-lane roads
	0.000
	1.000
	0.231
	0.274

	Average inside shoulder width, feet
	0.000
	18.000
	3.008
	3.742

	Proportion of divided roads 
	0.000
	1.000
	0.610
	0.357

	Intersection density
	0.000
	0.770
	0.085
	0.115

	Traffic signal density
	0.000
	1.000
	0.058
	0.106

	Number of restaurants
	0.000
	4.000
	3.357
	5.626

	Proportion of residential area
	0.000
	0.998
	0.490
	0.350

	Proportion of commercial area
	0.000
	1.000
	0.242
	0.274

	Proportion of African American population
	0.000
	0.978
	0.222
	0.246



[bookmark: _Hlk197267791]In the third step, we identify the best model by comparing model performance based on Bayesian Information Criterion (BIC) and corrected Akaike Information Criterion (AICc). The BIC and AICc for a given empirical model are equal to:
	
	(25) 

	+
	(26) 


where LL is the log-likelihood value at convergence,  is the number of parameters and Obs. is the number of observations. The model with the lower BIC and AICc is the preferred model. The corresponding LL, NP, BIC and AICc values are presented in Table 3.

[bookmark: _Ref170838953][bookmark: _Hlk197267559]Table 3: Comparison of the Models
	Model
	LL
	NP
	BIC
	AICc

	Non-integrated 
(Separate OP and NB-OPFS models for observation units)
	-29,969.460
	64
	60,297.219
	60,107.505

	Integrated models
	
	
	
	

	  Approach 1
	-29,464.830
	62
	59,276.762
	59,091.399

	  Approach 2
	-29,945.160
	59
	60,220.627
	60,042.034

	  Approach 3
	-29,461.320
	61
	59,264.144
	59,081.005

	  Approach 4
	-29,939.490
	57
	60,198.090
	60,024.169

	Integrated models with unobserved heterogeneity
	
	
	
	

	   Approach 3 with unobserved heterogeneity
	-29,401.650
	66
	59,172.796
	58,978.867



[bookmark: _Hlk131518393]Based on these BIC and AICc values, several observations could be drawn. First, all the integrated models provide improved data fit as evidenced by the lower BIC and AICc values in comparison to the non-integrated model system. Second, within the integrated systems, our proposed integrated approach 3 provides the lowest BIC and AICc indicating the best data fit in comparison to the proposed other integrated approaches. For this selected model, we capture unobserved heterogeneity in the model and find that integrated model accounting for unobserved heterogeneity further improves model performance. 

Model Estimation Results
The results of the proposed integrated model approach 3 with unobserved heterogeneity are discussed in this section. Table 4 presents the model estimation results for the proposed model. The reader would note that a positive (negative) sign for a variable in Table 4 indicates that an increase in the variable is likely to result in more (less) crashes as well as exhibit a higher (lower) impact on severity. The results of the non-integrated model system are presented in Table A1 in the Appendix.

Disaggregate Level Attributes 
The threshold parameters demarcate the various severity categories and do not have any substantive interpretation. 
For the disaggregate level crash severity model, with respect to the driver and vehicle attributes, driving under influence of drugs and alcohol, distracted driving, and presence of passengers in the vehicle contribute to the likelihood of higher severity across the facility types while single vehicle crashes such as roll over and run-off-road crashes are likely to result in severe crashes for segment facility (see Das et al., 2009; Marcoux et al., 2024, 2018; Paleti et al., 2010; Pervaz et al., 2023; Yasmin and Eluru, 2013 for similar results). 
With regards to roadway attributes, the results show that divided roadways show lower impact on severity of segment crashes. 

[bookmark: _Ref170838965]Table 4: Estimation Results of the Proposed Integrated Model Approach 3 with Unobserved Heterogeneity
	Disaggregate Level

	Variables
	Segment OP
	Intersection OP

	
	Est.
	t-stat.
	Est.
	t-stat.

	Threshold between NI-PI
	0.507
	4.661
	0.722
	37.327

	Threshold between PI-NII
	1.206
	11.287
	1.453
	59.456

	Threshold between NII-FII
	2.001
	17.142
	2.300
	66.553

	DUI related
	0.361
	2.241
	0.659
	7.609

	Distraction related
	0.249
	4.822
	0.240
	8.528

	Single vehicle
	0.435
	7.149
	--
	--

	Driving with passengers
	0.361
	9.006
	0.265
	13.205

	Divided road 
	-0.395
	-3.879
	--
	--

	Late night 
	--
	--
	0.091
	1.873

	Dark lighted
	0.083
	2.047
	0.098
	3.123

	Dark not lighted
	0.294
	2.666
	0.128
	1.655

	Micro Level

	Variables
	Segment NB
	Segment OPFS

	
	Est.
	t-stat.
	Est.
	t-stat.

	Constant
	-0.464
	-0.790
	--
	--

	Threshold between PNI-PPI
	--
	--
	0.493
	10.476

	Threshold between PPI-PNII
	--
	--
	1.062
	20.394

	Threshold between PNII-PFII
	--
	--
	1.746
	25.455

	Ln (AADT)
	0.224
	3.813
	--
	--

	Ln (Segment length)
	0.645
	7.747
	0.043
	1.927

	Speed limit <=40mph
	--
	--
	-0.217
	-2.981

	Number of lanes
	0.303
	4.029
	--
	--

	Ln (Sidewalk width+1)
	-0.158
	-2.088
	--
	--

	Traffic signal density
	0.031
	5.191
	--
	--

	Standard deviation
	0.009
	2.589
	--
	--

	Over dispersion parameter
	1.797
	10.541
	--
	--

	Variables
	Intersection NB
	Intersection OPFS

	
	Est.
	t-stat.
	Est.
	t-stat.

	Constant
	1.161
	13.024
	--
	--

	Threshold between PNI-PPI
	--
	--
	0.405
	8.303

	Threshold between PPI-PNII
	--
	--
	1.094
	21.267

	Threshold between PNII-PFII
	--
	--
	1.933
	32.844

	Proportion of arterial roads
	0.143
	1.650
	--
	--

	Proportion of minor roads
	--
	--
	-0.107
	-1.888

	Proportion of >= 3lane roads
	--
	--
	-0.179
	-1.842

	Average inside shoulder width
	0.016
	2.024
	--
	--

	Proportion of institutional area
	-0.667
	-1.650
	--
	--

	Proportion of recreational area
	--
	--
	0.232
	1.650

	Number of financial centers
	-0.075
	-2.211
	--
	--

	Over dispersion parameter
	3.863
	34.054
	--
	--

	Macro Level

	Variables
	TAZ NB
	TAZ OPFS

	
	Est.
	t-stat
	Est.
	t-stat

	Constant 
	-1.391
	-5.192
	--
	--

	Threshold between PNI-PPI
	--
	--
	0.590
	10.564

	Threshold between PPI-PNII
	--
	--
	1.271
	24.968

	Threshold between PNII-PFII
	--
	--
	2.034
	29.141

	Ln (Truck AADT+1)
	0.228
	5.736
	--
	--

	Proportion of >= 3lane roads
	0.511
	3.660
	--
	--

	Average inside shoulder width
	--
	--
	-0.016
	-4.113

	Traffic signal density
	0.706
	2.647
	-0.213
	-1.823

	Number of restaurants 
	--
	--
	-0.056
	-3.902

	Proportion of commercial area
	0.311
	3.224
	--
	--

	Proportion of African American population
	0.141
	1.655
	--
	--

	Over dispersion parameter
	0.798
	5.692
	--
	--

	Parameters for Propensity Sum

	
	Count Component 
	Fraction Component

	Segment crash record level (within micro) (
	0.536
	13.244
	--
	--

	Segment facility level (
	0.251
	7.588
	--
	--

	Intersection crash record level (within micro) 
	0.519
	34.574
	--
	--

	Intersection facility level (
	0.584
	9.263
	--
	--

	Segment crash record level (within macro) 
	--
	--
	0.047
	2.743

	Unobserved Heterogeneity (Spatial Dependency)

	Correlation between segments in a zone 
	0.344
	4.665
	0.344
	4.665

	Correlation between intersections in a zone 
	0.404
	8.813
	0.404
	8.813

	Correlation between crash records at a segment 
	0.178
	5.731
	0.178
	5.731

	Correlation between crash records at an intersection 
	0.126
	7.256
	0.126
	7.256

	Log-likelihood: -29,401.650; Number of parameters: 66; BIC: 59,172.796; AICc: 58,978.867	


Note: “--” indicates variables are not statistically significant at 90% confidence level; NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal and incapacitating injury crashes; PNI = proportion of no-injury crashes, PPI = proportion of possible injury crashes, PNII = proportion of non-incapacitating injury crashes, and PFII = proportion of fatal and incapacitating injury crashes.

[bookmark: _Hlk197186681]Among road, environment and weather attributes considered, the time of the day variables show that late night increases the likelihood of severe intersection crashes. The lower traffic volume and higher operating speeds during the period are likely to contribute to this higher severity (Pervaz et al., 2023). The results also show that compared to daylight and dawn/dusk conditions, dark conditions irrespective of light have a positive impact on severity across the facility types. This is because dark conditions often reduce visibility and increase reaction time on the roads (see Marcoux et al., 2018; Pervaz et al., 2023; Wang and Kim, 2019 for similar findings). The results highlight the role of lighting in improving safety and solutions such as improvement of intersection lighting, advanced warning signages for low visibility areas, educating drivers on the importance of using headlights, and staying alert could be effective countermeasures to reduce crashes during dark conditions across the facility types (FHWA, 2009). Interestingly, no weather variables are found to be significant in our selected integrated model.

Micro Level Attributes 

Segment facility level 
In the segment facility level count component, the results show that the parameter associated with AADT is found to be positively associated with segment crash frequency. The results indicate that the segments with higher AADT have higher likelihood of crashes (as found in Alarifi et al., 2017; Cai et al., 2019; Pervaz et al., 2022; Wang et al., 2020). In addition, the parameter associated with the segment length has a positive impact on crash frequency. The result is plausible as the longer road segments typically indicate a higher exposure to traffic (Alhomaidat et al., 2020; Yu et al., 2019; Zeng et al., 2020). The parameter for the number of lanes also shows positive association with crash frequency. This is intuitive as the roads with higher number of lanes usually have higher traffic volume, higher lane changing rates and conflict risk resulting in higher number of crashes. Improving roadway markings and delineations, providing medians in multi-lane roadways, redistributing roadway space through road diet concept, driver education on lane changing risks and promoting safe driving are some proven effective safety countermeasures in this context (FHWA, 2022). The parameter associated with average sidewalk width shows negative effect on segment level crash count (as found in Bhowmik et al., 2019). Further, an increase in traffic signal per unit road length increases the likelihood of crashes. This is intuitive as a higher number of traffic signals may lead to an increase in certain types of crashes (such as rear-end crashes) in dilemma zones (Abdel-Aty and Wang, 2006; Lee et al., 2017; Park et al., 2020; Pervaz et al., 2022). Providing adequate signal visibility, appropriate signal timing based on real time traffic conditions, installation of advanced warning signs, enforcement to reduce red-light running, and promoting attentive driving habits could be some potential countermeasures to reduce these crashes.
In the segment level severity proportion component, the results found that the parameter associated with the segment length has a positive impact on crash severity proportion. The longer road segment with similar geometric attributes might encourage speeding of the vehicles, hence crash severity may increase. On the other hand, as expected, road segments with speed limit <=40 mph show negative association with the severity of the segment crashes. Following these findings, installing appropriate speed limits for all road users, automated speed enforcement in high-speed zones, speed safety cameras, and variable speed limits could be considered as potential countermeasures against speeding crashes and crashes on high-speed roadways (FHWA, 2022).
  
Intersection facility level 
In the intersection level count component, the results indicate that a higher proportion of arterial roads within intersection influence zone increase the crash frequency for intersection facility while average inside shoulder width decreases the crash frequency. Alternatively, higher proportion of institutional area and higher number of financial centers within the intersection influence zone decrease the intersection crash frequency. 
In the intersection level severity proportion component, we found that higher proportion of minor roads and proportion of roads with more than 2 lanes decrease the likelihood of the intersection crash severity. On the other hand, intersections in recreation areas are found to have a higher likelihood of severe intersection crashes. 

Macro Level Attributes 
[bookmark: _Hlk77801773]In the macro level count component, the parameter associated with the truck AADT has a positive impact on zonal crash frequency. An increased presence of trucks in the zone can affect traffic flow, visibility and increase speed variance leading to higher number of crashes (Pervaz et al., 2022). Further, a higher proportion of roads with more than 2 lanes and higher intersection density increases the likelihood of zonal crash frequency (as found in Pervaz et al., 2023). 
[bookmark: _Hlk197189147]With regards to the land-use and sociodemographic attributes, proportion of commercial areas and proportion of African American population show positive impacts on zonal crash count. These findings are intuitive as commercial areas have commerce related activities such as loading/unloading, movement of heavy vehicles and increased traffic conflicts that might contribute to higher crash risk (Cui and Xie, 2021; Mohammadnazar et al., 2021; Pervaz et al., 2023). Providing adequate turning areas for commercial vehicles, separate lanes for heavy vehicles, informative display boards and warning signages for other road users, and safe and controlled loading/unloading activities could increase safety in these areas. For the proportion of African American population, the result might be a potential manifestation of inadequate facilities in low-income and minority neighborhoods in the region (Pervaz et al., 2022). 
In the severity proportion component, wider inside shoulder width parameter indicates a negative impact on zonal crash severity. This is intuitive as wider shoulders provide additional safety margin on the road, thus, contributing to reduced severity (see Chen et al., 2017). Further, higher traffic signal density is associated with lower severity (as found in Bhowmik et al., 2021; Pervaz et al., 2023). Among the built environment attributes, an increased presence of restaurants in a zone reduces the severity of the crashes. Similar findings are reported in previous studies (Pervaz et al., 2023; Yasmin and Eluru, 2018). 

Parameter for Propensity Sums 
As mentioned earlier, our integrated framework tested the significant effect of micro level (segment and intersection facility) and disaggregate level (segment crash record and intersection crash record) attributes and twelve additional scalar parameters (six coefficients for count component and six for severity proportion component) for propensity sums (composite score values) along with the macro level attributes to estimate macro level crash frequency by severity. For the proposed integrated model approach 3 with unobserved heterogeneity, the coefficients for the propensity sum variables from the micro level and disaggregate level models in the count component and severity component are presented in the lower row panel of Table 4. The positive sign of the parameter for facility types in count and severity proportion components indicates that a higher value of micro level and disaggregate level model propensity is likely to increase the number of crashes and the crash severity in the macro level. 
Table 4 shows that segment crash record level propensity sum (within segment facility), segment facility level propensity sum, intersection crash record level propensity sum (within intersection facility), and intersection facility level propensity sum show statistically significant effect with positive linkage for the count component while segment crash record level propensity sum (within macro) shows significant positive effect in the severity proportion component. The results clearly highlight that the higher propensities for crash frequency from segment and intersection facility types and the higher propensities from severity at the crash record level for the facilities are significantly associated with the increase of the crash frequency by severity at the zonal level. 

Unobserved Heterogeneity  
The proposed model system can capture unobserved heterogeneity in the form of spatial dependency among the micro-facilities (segments or intersections) in a zone as well as among the crash records within a micro-facility, correlations between count and severity components and random parameter effects of the variables across the observational resolutions. The spatial dependencies indicate that segments or intersections in the same zone and all the crash records at a segment or intersection are spatially correlated, and ignoring these correlations might lead to inaccurate estimates. The unobserved heterogeneity variables presented in Table 4 correspond to these common spatial correlations. The significant effects of these correlation parameters  clearly highlight the presence of common unobserved factors across segments and intersections in the same zone and all the crash records in the same facility type. These common spatial correlations also highlight the unobserved interconnectedness in the hierarchical resolutions considered in this study. Further, we attempted to capture the unobserved correlation ( between total crashes and crash proportions by severity levels, and random parameter effects ( and) in our proposed model system. We found that the effect of the traffic signal density variable in the segment facility level is not same across the segments as highlighted by the significant standard deviation parameter in Table 4. However, no statistically significant correlation between crash count and severity proportion component was recovered in our dataset.

Predictive Performance of the Model 
We conduct a comparison exercise between the proposed integrated model approach 3 and independent macro level model (NB-OPFS) by testing model performance on estimation and holdout samples. The exercise involves comparing the performance of the models by employing four statistical predictive measures including mean percentage bias (MPB), mean absolute deviation (MAD), mean squared prediction error (MSPE) and Root Mean Square Error (RMSE) (please see Bhowmik et al., 2018; Pervaz et al., 2023 for a detailed definition of these measures). The model with the values of MPB, MAD, MSPE, and RMSE closer to zero provides better predictions for the observed data. The results are presented in Table 5. 

[bookmark: _Ref170839041]Table 5: Predictive Performance of the Models
	Dataset
	Models
	Measures
	NI
	PI
	NII
	FII
	Total

	Estimation (N=270 TAZs)
	Integrated approach 3 with unobserved heterogeneity
	MPB
	1.28
	0.06
	0.18
	0.27
	1.79

	
	Non-integrated NB-OPFS model
	
	2.36
	0.53
	0.46
	0.36
	3.71

	
	Integrated approach 3 with unobserved heterogeneity
	MAD
	14.98
	4.49
	2.53
	1.18
	20.01

	
	Non-integrated NB-OPFS model
	
	21.33
	6.55
	3.60
	1.33
	30.28

	
	Integrated approach 3 with unobserved heterogeneity
	MSPE
	503.70
	43.61
	14.03
	2.99
	907.48

	
	Non-integrated NB-OPFS model
	
	1,160.50
	106.04
	29.09
	4.26
	2,379.53

	
	Integrated approach 3 with unobserved heterogeneity
	RMSE
	22.44
	6.6
	3.75
	1.73
	30.12

	
	Non-integrated NB-OPFS model
	
	34.07
	10.3
	5.39
	2.06
	48.78

	Validation (N=30 TAZs)
	Integrated approach 3 with unobserved heterogeneity
	MPB
	-4.78
	-1.21
	-1.86
	0.06
	-7.80

	
	Non-integrated NB-OPFS model
	
	-6.66
	-1.62
	-2.02
	0.01
	-10.29

	
	Integrated approach 3 with unobserved heterogeneity
	MAD
	27.57
	4.75
	4.01
	1.42
	35.06

	
	Non-integrated NB-OPFS model
	
	39.77
	7.61
	6.08
	1.43
	52.02

	
	Integrated approach 3 with unobserved heterogeneity
	MSPE
	2,172.68
	57.07
	35.66
	4.37
	3,305.37

	
	Non-integrated NB-OPFS model
	
	3,781.79
	130.84
	59.15
	3.71
	6,222.42

	
	Integrated approach 3 with unobserved heterogeneity 
	RMSE
	46.61
	7.55
	5.97
	2.09
	57.49

	
	Non-integrated NB-OPFS model
	
	61.50
	11.44
	7.69
	1.93
	78.88


Note: NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal and incapacitating injury crashes. 

The results clearly highlight that the proposed integrated model performs better than traditional independent NB-OPFS model across almost all fit measures computed for both estimation and validation datasets (3 exceptions, see underlined values). 
ELASTICITY EFFECT ANALYSIS
The results presented in Table 4 represent a joint interaction of disaggregate, micro and macro level variables and do not directly provide the actual magnitude of the effects of the variables on crash counts. To quantify the actual effects across three dimensions, we compute aggregate level elasticity effects. This study follows the elasticity effects estimation procedure demonstrated in Eluru and Bhat (2007) (see Eluru and Bhat, 2007 for a discussion on the methodology for computing elasticities). Following this procedure, the percentage change in the expected zonal crash counts by severity caused by the change in the disaggregate, micro and macro level exogenous variables are computed. For continuous variables, we obtain these changes in response to the increase of the explanatory variables by 10%. For indicator variables, we obtain the changes by changing the value of the variable to one for the subsample of observations for which the variable takes a value of zero and to zero for the subsample of observations for which the variable takes a value of one. The computed elasticities are presented in Table 6. 

[bookmark: _Ref198921869]Table 6: Elasticity Effects of the Variables 
	Parameters
	%Total
	%NI
	%PI
	%NII
	%FII

	Segment Record Level (Disaggregate)
	
	
	
	
	

	DUI related
	3.80
	2.97
	5.24
	6.42
	7.88

	Distraction related
	2.73
	2.14
	3.77
	4.60
	5.63

	Single vehicle
	3.10
	3.71
	6.54
	8.00
	9.81

	Driving with passengers
	3.93
	3.08
	5.42
	6.62
	8.09

	Divided road 
	-4.45
	-3.48
	-6.15
	-7.53
	-9.25

	Dark lighted
	0.91
	0.71
	1.26
	1.53
	1.87

	Dark not lighted
	3.15
	2.47
	4.35
	5.32
	6.52

	Intersection Record Level (Disaggregate)
	
	
	
	
	

	DUI related
	17.44
	17.45
	17.41
	17.40
	17.38

	Distraction related
	5.86
	5.87
	5.85
	5.84
	5.83

	Driving with passengers
	6.36
	6.37
	6.35
	6.35
	6.34

	Late night 
	2.21
	2.22
	2.21
	2.21
	2.21

	Dark lighted
	2.33
	2.33
	2.33
	2.33
	2.32

	Dark not lighted
	3.21
	3.21
	3.20
	3.20
	3.19

	Segment Facility Level (Micro)
	
	
	
	
	

	Ln (AADT)
	0.51
	0.51
	0.51
	0.51
	0.51

	Ln (Segment length)
	1.48
	1.48
	1.48
	1.48
	1.48

	Number of lanes
	1.85
	1.85
	1.84
	1.84
	1.83

	Ln (Sidewalk width+1)
	-0.36
	-0.36
	-0.36
	-0.36
	-0.36

	Traffic signal density
	0.25
	0.25
	0.25
	0.25
	0.25

	Intersection Facility Level (Micro)
	
	
	
	
	

	Proportion of arterial roads
	0.71
	0.71
	0.71
	0.71
	0.71

	Average inside shoulder width
	0.42
	0.42
	0.42
	0.42
	0.42

	Proportion of institutional area
	-0.25
	-0.25
	-0.25
	-0.25
	-0.25

	Number of financial centers
	-0.01
	-0.01
	-0.01
	-0.01
	-0.01

	Zonal Level (Macro)
	
	
	
	
	

	Ln (Truck AADT+1)
	2.25
	2.25
	2.25
	2.25
	2.25

	Proportion of >= 3lane roads
	1.79
	1.79
	1.77
	1.77
	1.75

	Average inside shoulder width
	0.00
	0.33
	-0.60
	-1.02
	-1.51

	Traffic signal density
	0.50
	0.58
	0.35
	0.24
	0.11

	Number of restaurants 
	0.00
	0.22
	-0.41
	-0.66
	-0.93

	Proportion of commercial area
	0.79
	0.80
	0.78
	0.77
	0.76

	Proportion of African American population
	0.39
	0.39
	0.39
	0.39
	0.39



In this study, we consider a subset of exogenous variables to estimate the elasticity effects. The table shows the percentage change in the number of crashes by different severities due to the changes in the disaggregate, micro and macro level exogenous variable of interest. For example, the elasticity estimate for the DUI related variable at segments and intersections indicates that driving under influence increases total crashes by 3.80% and 17.44% respectively. The elasticity estimates for the variable associated with segment facility level AADT indicates that the expected mean total crashes will increase by 0.51% for a 10% increase in the AADT of the segment. The effects of all the variables presented in Table 6 can be interpreted in a similar fashion. By analyzing these effects, several observations can be drawn. First, all the significant variables across the analysis resolutions are notably affecting the zonal level crash counts and severities. Second, there are differences in the elasticity effects across the expected number of crashes for different severities. Third, the most significant variables at the disaggregate level with respect to an increase in the expected number of zonal total crashes are driving with passengers, DUI related, dark not lighted, single vehicle and distraction related at the segment level and DUI related, driving with passengers, distraction related, dark not lighted, dark lighted and late night at the intersection level. Fourth, the most significant variables at micro level with respect to an increase in the expected number of fatal and incapacitating crashes are number of lanes, segment length, AADT, and traffic signal density at the segment facility level and proportion of arterial roads and average inside shoulder width at the intersection level. Finally, zonal truck AADT, proportion of 3-lane roads in the zone, proportion of commercial area and proportion of African American population in the zone are notably contributing to an increase in total, fatal and incapacitating crashes at the zonal level.

CONCLUSIONS
Transportation safety modelling techniques currently do not allow us to estimate the impact of observed and unobserved variables from different observation resolutions simultaneously within the same system. The integrated model systems overcome this limitation by capturing variable impacts from different analysis resolutions simultaneously within a unified framework while also accounting for unobserved heterogeneity. These integrated systems augment the macro level crash frequency estimation with the rich information flow from either micro level or disaggregate level. The current study proposes a unified framework that allows for the information flow of observed and unobserved variables from the micro level and disaggregate level into the macro level crash frequency by severity estimation. The approach involves summing up the crash propensities from micro level crash frequency computation and disaggregate level crash severity computation and incorporates the composite summed scores as independent variables within the macro level model estimation.
For independent model system, the NB-OPFS framework can be employed at micro (for segment and intersection facility) and macro level (TAZ) to jointly estimate crash frequency by severity where the NB component models total crashes and the OPFS component determines the proportion of crashes by severity class for each spatial analysis unit. At disaggregate level, the crash severity variable can be examined using an OP model for each facility type (segment and intersection). The integrated system incorporates these building blocks from various observational resolutions into a unified framework with four model structures based on how the lower-level parameters are estimated. The proposed model system is estimated using data drawn from the City of Orlando, Florida for the year 2019. The study obtained 21,189 crash records (5,669 segment and 15,520 intersection crashes) for the disaggregate level model analysis. The records contain crash-specific factors, driver and vehicle factors, roadway attributes, road environmental and weather information of each crash record. For macro and micro level analysis, the study aggregated the crash records over 300 traffic analysis zones (TAZs), and 1,818 segments and 4,184 intersections, respectively. An exhaustive set of independent variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are considered in these levels. 
A series of models was estimated for the empirical analysis of the proposed framework, including ordered probit model for facility-specific disaggregate level severity analysis, NB-OPFS model for micro level and macro level crash frequency by severity analysis, and four integrated models to jointly estimate crash frequency by severity. We compare the model systems and select the best model using Bayesian Information Criterion (BIC) and corrected Akaike Information Criterion (AICc). Based on the BIC and AICc values, we found that all the integrated systems provide improved data fit as evidenced by the lower BIC and AICc values in comparison to the non-integrated model system. Further, within the integrated systems, our proposed integrated approach 3 provides the lowest BIC and AICc indicating the best data fit in comparison to other integrated approaches. Finally, we captured unobserved heterogeneity in the form of spatial dependency of the segments and intersections in the same zone as well as all the crash records at a segment or intersection in the integrated approach 3 and find improved model performance. We also compared the performance of the proposed integrated model with the non-integrated model system by using several predictive performance measures using estimation and holdout samples. The measures also clearly highlighted the superiority of our proposed integrated model over the non-integrated model system. 
This study is not without limitations. The proposed integrated approach requires substantial data compilation and processing efforts for different observation resolutions as well as coding resources for model estimation. In addition, the model framework requires systematic analysis, i.e., the approach should start from disaggregate level analysis and involves step-by-step integration with micro level analysis followed by integration with zonal level analysis. The current study considered crash data for one year from Orlando city, Florida for the empirical analysis. It would be useful to consider data from multiple cities and/or states for multiple years while also accounting for potential spatial and temporal heterogeneity of the parameter estimates within the proposed integrated framework in future research efforts. It would also be useful to exhaustively test the impact of incorporating additional unobserved heterogeneity across all integrated approaches. 
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APPENDIX

Table A1: Estimation Results of the Non-integrated Model System
	Disaggregate Level

	Variables
	Segment OP
	Intersection OP

	
	Est.
	t-stat
	Est.
	t-stat

	Threshold between NI-PI
	0.713
	7.114
	0.734
	44.528

	Threshold between PI-NII
	1.402
	13.708
	1.460
	75.057

	Threshold between NII-FII
	2.185
	20.253
	2.299
	80.107

	DUI related
	0.360
	2.111
	0.667
	7.401

	Distraction related
	0.271
	5.952
	0.260
	9.763

	Single vehicle
	0.454
	8.412
	--
	--

	Driving with passengers
	0.365
	9.210
	0.277
	12.671

	Divided road 
	-0.185
	-1.879
	--
	--

	Late night 
	--
	--
	0.090
	2.104

	Dark lighted
	0.087
	1.853
	0.103
	3.561

	Dark not lighted
	0.320
	3.113
	0.150
	2.153

	Foggy weather
	--
	--
	0.757
	1.819

	Log-likelihood
	-3,724.584
	-11,585.204

	Number of parameters
	10
	10

	Micro Level

	Variables
	Segment NB
	Segment OPFS

	
	Est.
	t-stat
	Est.
	t-stat

	Constant
	-0.464
	-0.790
	--
	--

	Threshold between PNI-PPI
	--
	--
	0.493
	10.476

	Threshold between PPI-PNII
	--
	--
	1.062
	20.394

	Threshold between PNII-PFII
	--
	--
	1.746
	25.455

	Ln (Segment length)
	0.645
	7.747
	0.043
	1.927

	Ln (AADT)
	0.224
	3.813
	--
	--

	Speed limit <=40mph
	--
	--
	-0.217
	-2.981

	Number of lanes
	0.303
	4.029
	--
	--

	Ln (Sidewalk width+1)
	-0.158
	-2.088
	--
	--

	Traffic signal density
	0.031
	5.191
	--
	--

	Over dispersion parameter
	1.797
	10.541
	--
	--

	Log-likelihood
	-2,863.301
	-642.898

	Number of parameters
	7
	5

	Variables
	Intersection NB
	Intersection OPFS

	
	Est.
	t-stat
	Est.
	t-stat

	Constant
	1.161
	13.024
	--
	--

	Threshold between PNI-PPI
	--
	--
	0.405
	8.303

	Threshold between PPI-PNII
	--
	--
	1.094
	21.267

	Threshold between PNII-PFII
	--
	--
	1.933
	32.844

	Proportion of arterial roads
	0.143
	1.650
	--
	--

	Proportion of minor roads
	--
	--
	-0.107
	-1.888

	Proportion of >= 3lane roads
	--
	--
	-0.179
	-1.842

	Average inside shoulder width
	0.016
	2.024
	--
	--

	Proportion of institutional area
	-0.667
	-1.650
	--
	--

	Proportion of recreational area
	--
	--
	0.232
	1.650

	Number of financial centers
	-0.075
	-2.211
	--
	--

	Over dispersion parameter
	3.863
	34.054
	--
	--

	Log-likelihood
	-7,917.508
	-1,700.927

	Number of parameters
	6
	6

	Macro Level

	Variables
	TAZ NB
	TAZ OPFS

	
	Est.
	t-stat
	Est.
	t-stat

	Constant 
	-2.500
	-5.671
	--
	--

	Threshold between PNI-PPI
	--
	--
	0.917
	3.977

	Threshold between PPI-PNII
	--
	--
	1.597
	7.213

	Threshold between PNII-PFII
	--
	--
	2.361
	10.568

	Ln (Truck AADT+1)
	0.638
	12.609
	0.050
	1.902

	Proportion of >= 3lane roads
	0.309
	1.734
	--
	--

	Average inside shoulder width
	-0.020
	-1.762
	-0.017
	-3.499

	Proportion of divided roads
	0.635
	3.454
	--
	--

	Intersection density 
	1.283
	2.659
	--
	--

	Traffic signal density
	1.060
	1.914
	-0.272
	-2.476

	Number of restaurants 
	--
	--
	-0.037
	-2.535

	Proportion of residential area
	0.610
	3.877
	--
	--

	Proportion of commercial area
	0.454
	2.203
	-0.100
	-1.650

	Proportion of African American population
	0.362
	2.200
	0.132
	1.854

	Over dispersion parameter
	1.053
	7.453
	--
	--

	Log-likelihood
	-1,316.534
	-218.404

	Number of parameters
	11
	9

	Total log-likelihood: -29,969.460; Total number of parameters: 64; BIC: 60,297.219; AICc: 60,107.505


 Note: Note: “--” indicates variables are not statistically significant at 90% confidence level; NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal and incapacitating injury crashes; PNI = proportion of no-injury crashes, PPI = proportion of possible injury crashes, PNII = proportion of non-incapacitating injury crashes, and PFII = proportion of fatal and incapacitating injury crashes. 
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