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ABSTRACT 

Independent traffic crash modeling approaches do not account for the embedded relationships 

related to the multi-resolution data structure, leading to mis-specified estimations. The recently 

developed integrated frameworks demonstrate the capability of addressing this drawback. The 

current study proposes an integrated framework that accommodates information from multiple 

spatial units and observation resolutions. Specifically, the study develops an integrated model 

system that allows for the influence of independent variables from disaggregate crash record, 

micro-facility (segment and intersection) and macro (traffic analysis zone) level simultaneously 

within the macro level propensity estimation. The empirical analysis considers disaggregate crash 

records of 1,818 segments and 4,184 intersections from 300 traffic analysis zones in the City of 

Orlando, Florida. These crash records contain crash-specific factors, driver and vehicle factors, 

roadway, road environmental and weather information of each crash record. For micro-facility and 

macro levels, an exhaustive set of independent variables including roadway and traffic factors, 

land-use and built environment attributes, and sociodemographic characteristics are considered. 

The proposed model system can also accommodate for hierarchical correlations among the data 

across observation resolutions and parameter variability across the system. The empirical analysis 

is augmented by employing several goodness of fit and predictive measures. The results clearly 

demonstrate the improved performance offered by the proposed integrated model system relative 

to the non-integrated model. A validation exercise also highlights the superiority of the proposed 

framework. The application of the proposed integrated framework can allow transportation 

professionals to adopt policy-based, site-specific, and outcome-specific solutions simultaneously.  

 

Keywords: Integrated framework, Multi-level data, Crash frequency, Crash severity, Unobserved 

effects. 
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1. BACKGROUND 

Transportation safety professionals apply statistical and econometric models to analyze road traffic 

crashes, identify the causes of crash occurrence and the consequences, forecast future situations, 

and devise appropriate crash countermeasures to alleviate the situations. These models are applied 

at different spatial units and for different observation resolutions. For instance, researchers apply 

macro level (such as zonal or county level) models to formulate long-term policy and planning 

level strategic solutions while micro-facility level (such as segment facility or intersection facility 

level) models are employed to design facility-specific engineering solutions (Cai et al., 2019; 

Pervaz et al., 2022). Both the macro level and micro level models use aggregated crash data and 

examine crash occurrence via crash frequency models. In these crash frequency models, a host of 

variables including roadway and traffic factors, land-use and built environment attributes, and 

sociodemographic characteristics are aggregated at different spatial resolutions such as zones, 

corridors, segments and intersections (Cai et al., 2019; Ding et al., 2023; Pervaz et al., 2022)1. 

Alternatively, disaggregate level (such as crash record or driver record) models are employed to 

obtain outcome-specific solutions using individual record level details including crash specific, 

driver, vehicle, roadway, weather and road environmental variables (Abdel-Aty, 2003).  

Transportation safety literature has traditionally developed independent model systems for 

each of these observation resolutions. However, crash analysis should account for the following 

fundamental considerations. First, macro level crashes are obtained by summing up the micro level 

crashes (i.e., zonal level crashes are obtained by summing up the crashes from road segment and 

intersection levels). Second, macro level independent variables are often aggregated from micro 

level information (i.e., in macro models zonal speed limit is obtained by considering weighted 

average of the speed limits of the roads of that zone). Third, both the macro level and micro level 

crashes are aggregated from disaggregate crash records (i.e., total crashes of a zone/road segment 

are aggregated from the individual crashes that occurred within the zone/road segment). Since both 

the dependent and independent variables for aggregate resolutions are obtained from the smaller 

resolutions, there could be potential relationships in the information transfer across these levels. 

In model systems where these dependent variables are modeled separately the embedded 

relationships within the data relating to the analysis resolutions are often neglected or ignored 

leading to a biased model output. Further, the recovered impact of independent variables might 

not reflect the true impact of these variables due to mis-specification.  

In recent safety literature, several econometric model frameworks have addressed the 

limitations of the traditional independent model systems by introducing models that consider data 

from different analysis resolutions simultaneously. These multi-resolution data structure modeling 

efforts can be categorized in two directions: a) hierarchical models and b) integrated models. 

Within multi-level hierarchical modeling approaches, research efforts considered upper level 

(such as zone/corridor) information while modeling crashes at lower level (such as segment, 

intersection or crash record) to accommodate for unobserved heterogeneity and correlation in crash 

analysis. For instance, Huang and Abdel-Aty (2010) presented a potential hierarchical structure of 

geographic region level − traffic site level − traffic crash level − driver-vehicle unit level − 

occupant level and suggested to properly accommodate the potential cross-group heterogeneity 

 
1 For the macro level models, the choice of a certain unit (traffic analysis zones, census tracts or blocks) over an area 

of interest is closely related to the well-known modifiable areal unit problem (MAUP) and boundary crash issues. 

Several studies used various areal units and identified the level of data aggregation that minimizes the impact of the 

modifiable areal unit problem (Briz-Redón et al., 2019; Xu et al., 2018, 2014; Zhai et al., 2025) and the allocation of 

crashes that occur in the boundary of spatial analysis units while estimating crash frequency data (Ding et al., 2023). 
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and spatiotemporal correlation due to the multilevel data structure in crash analysis. Xie et al. 

(2014) modeled intersection crashes in high-density road networks and revealed strong evidence 

for the presence of heterogeneity across corridors and spatial correlation among intersections. Lee 

et al. (2017) developed intersection crash models for total, severe, pedestrian, and bicycle crashes 

with macro level sociodemographic and land-use data for spatial units and concluded that the 

intersection crash prediction models with macro level observed and unobserved variables 

outperform the models with intersection level variables only. Han et al. (2018) considered the 

hierarchical structure where road entity is nested within the geographic region and examined the 

variations in effect of road-level factors on crash frequency across different regions. Pew et al. 

(2020) considered a hierarchical structure of the intersections under urban area classification to 

allow the effects of a given intersection attribute to vary across urban classifications and found 

that allowing such hierarchy significantly improved the fit and prediction accuracy. Recent studies 

have introduced multiple membership multilevel models to estimate intersection crashes and 

pedestrian crashes (Park et al., 2022, 2020; Zhu et al., 2024). These studies employed a distance 

based weighting approach to account for the spatial dependency in safety modeling. The overall 

goal of these studies is to reduce heterogeneity issues between zones in the crash prediction model 

while avoiding model misspecification. Research efforts also employed hierarchical data structure 

models for crash outcome analysis (Islam et al., 2023; Kim et al., 2017; Park et al., 2017). All these 

research efforts suggest the consideration of zone/corridor level observed and unobserved 

variables in analyzing crashes at road entity or disaggregate level. Another group of studies within 

multilevel hierarchical models jointly explore traffic safety at the segment and intersection level, 

with the consideration of zonal/corridor-level and sub corridor-level variables (Alarifi et al., 2018a, 

2018b, 2017; Wang and Huang, 2016).2 These modeling efforts also captured spatial effects, the 

effect of different neighboring structures as well as the correlations among individual road entity 

and between adjacent entities. All these joint modeling efforts highlight that micro level models 

are improved while considering macro level observed and unobserved variables in the analysis. 

However, none of these studies considered variables from lower level to study crashes at upper 

level. In other words, these studies did not consider observed and unobserved variables from both 

levels simultaneously within the model structure to enhance the aggregate level predictions. 

The integrated model systems – an emerging safety analysis area – improve on the other 

approaches by considering observed and unobserved variables from different analysis resolutions 

simultaneously within a unified framework. Within these approaches, studies explicitly recognize 

that macro level (zonal) crashes are obtained from the micro level (segments and intersections) 

crashes, and hence crash counts at the two levels are correlated (Cai et al., 2019; Pervaz et al., 

2022). Thus, by considering both micro and macro level variables simultaneously, these integrated 

models found significantly improved macro level predictions. These integrated modeling efforts 

recognize that crash frequency data are generated by aggregating individual crash records and 

capture rich information flow from disaggregate level crash type and/or severity models to 

aggregate level crash frequency by crash type and/or severity estimation (Haddad et al., 2024; 

Pervaz et al., 2024, 2023). For instance, Pervaz et al. (2023) proposed a unified model system that 

 
2 The reader would note that joint modeling approaches were proposed to simultaneously model the crash counts by 

attributes including crash counts by crash severity levels (Afghari et al., 2020; Ahmad et al., 2023; Wang et al., 2021; 

Xie et al., 2019; Yasmin and Eluru, 2018), collision types (Bhowmik et al., 2021, 2019, 2018; Hosseinpour et al., 

2018; Jahan et al., 2024), number of vehicles (Ahmad et al., 2023), and transport modes (Cai et al., 2017; Cheng et 

al., 2018; Huang et al., 2017; Yasmin et al., 2018). However, these studies considered a single analysis level such as 

zones, census tracts or census blocks for their analysis. 
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enhances the accuracy of the aggregate level crash frequency by severity estimation by 

incorporating the influence of independent variables from the crash record level severity model. 

The authors extended the framework by incorporating disaggregate level information from 

unordered crash type and ordered severity models within the aggregate level propensity to jointly 

estimate crash frequency by crash type and severity (Pervaz et al., 2024). Another study by Haddad 

et al. (2024) proposed a novel integrated parametric framework that links the information at the 

disaggregate crash level from an unordered model structure and the aggregate level crash count 

and found a significant positive association between the dimensions. These integrated frameworks 

used disaggregate level information such as crash-specific factors, driver and vehicle factors, 

roadway characteristics, road environmental and weather information, and facility level or 

aggregate level roadway and traffic factors, land-use and built environment attributes, and 

sociodemographic characteristics for the analysis. All these integrated frameworks illustrated that 

consideration of additional observed and unobserved information from different observation 

resolutions simultaneously within the unified framework enhances the performance of macro or 

aggregate level crash frequency estimation. In addition, these integrated approaches can capture 

systemwide effects and individual level information simultaneously that can contribute to 

minimizing MAUP and boundary-crash issues.  

 

2. STUDY CONTEXT 

The current study builds on the aforementioned integrated modeling approaches by 

accommodating information from multiple spatial units and analysis resolutions (as shown in 

Figure 1). The proposed approach seamlessly integrates data from multiple disaggregate levels 

within the appropriate aggregate levels thus generalizing the overall crash analysis processes. In 

Pervaz et al. (2022), micro (segment and intersection facility) level information was incorporated 

in the macro (zone) level crash frequency models (Pervaz et al., 2022). On the other hand, Pervaz 

et al. (2023, 2024) incorporated disaggregate level (crash record) information in the modeling of 

zonal level crash frequency by crash type and/or severity (Pervaz et al., 2024, 2023). Haddad et al. 

(2024) developed an integrated parametric framework linking the information at the disaggregate 

crash level and the aggregate level (census block group) crash count (Haddad et al., 2024). These 

frameworks consider either macro-micro or aggregate-disaggregate combination to estimate zonal 

crashes and highlight that the estimated models offer superior performances than the independent 

model system. Therefore, it might be beneficial to consider macro−micro−disaggregate 

combination to accommodate for the information flow from crash record 

level−segment/intersection level−zonal level while also considering hierarchical relationships 

across the levels. The approach would involve summing up the crash propensity of each 

disaggregate level (crash record) within the micro resolutions (segment and intersection facility) 

and adding the generated values as new variables in the micro level propensities while also 

considering summed up micro level crash propensities as new variables for the macro level (zone) 

propensity equation. To summarize, in our current paper, a unified framework that explicitly 

allows for the information flow of observed and unobserved variables from the crash record level 

models into the micro and from the micro level models to macro level crash frequency by severity 

model is proposed and estimated.  
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Figure 1: Hierarchical Data Structure of the Study 

 

In our study, econometric building blocks including negative binomial-ordered probit fractional 

split (NB-OPFS) and ordered probit (OP) are employed to develop the integrated framework. For 

independent model system, the NB-OPFS framework can be employed separately at micro (for 

segment and intersection facility) and macro level (zone) to jointly estimate crash frequency by 

severity where the NB component models the total crashes and the OPFS component determines 

the proportion of crashes by severity class for each spatial analysis level. At disaggregate level, 

the crash severity variable can be examined using an OP model for crash records from each facility 

type (segment and intersection). The integrated model system can employ these econometric 

building blocks to consider information flow from the disaggregate and micro levels through 

propensity equations within a unified framework to estimate crashes at macro level. With these 

models, the integrated approach can take four potential forms as shown in Table 1. The different 

forms of integrated models arise in how the propensity sum variables from the lower-level models 

are accommodated as independent variables in the upper-level models. The propensity sum 

variables can be treated as fixed (as obtained from the micro/disaggregate model predictions) or 

allowed to vary and re-estimated on the integrated model. The different levels and the different 

decisions to fix or allow the parameters to vary will result in different integrated approaches. 

 

Table 1: Integrated Modeling Approaches 

Integrated 

Model 

Approaches 

Count Component  

(NB Model Propensity) 

Fraction Component  

(OPFS Model Propensity) 

Macro 

Level 

Parameters 

Micro Level 

Parameters 

Disaggregate 

Level 

Parameters 

Macro 

Level 

Parameters 

Micro Level 

Parameters 

Disaggregate 

Level 

Parameters 

Integrated  

Approach 1  

Allowed to 

vary 
Fixed Fixed 

Allowed to 

vary 
Fixed Fixed 

Integrated  

Approach 2  

Allowed to 

vary 

Allowed to 

vary 
Fixed 

Allowed to 

vary 

Allowed to 

vary 
Fixed 

Integrated  

Approach 3  

Allowed to 

vary 
Fixed 

Allowed to 

vary 

Allowed to 

vary 
Fixed 

Allowed to 

vary 
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Integrated 

Model 

Approaches 

Count Component  

(NB Model Propensity) 

Fraction Component  

(OPFS Model Propensity) 

Macro 

Level 

Parameters 

Micro Level 

Parameters 

Disaggregate 

Level 

Parameters 

Macro 

Level 

Parameters 

Micro Level 

Parameters 

Disaggregate 

Level 

Parameters 

Integrated  

Approach 4  

Allowed to 

vary 

Allowed to 

vary 

Allowed to 

vary 

Allowed to 

vary 

Allowed to 

vary 

Allowed to 

vary 

Number of Additional Coefficients Estimated 

Integrated  

Approaches 1-4 

Count Component  

(NB Model Propensity) 

Fraction Component  

(OPFS Model Propensity) 

Micro level propensity sums: 2  

[Segment facility: 1, Intersection facility: 1] 

Disaggregate level propensity sums: 4  

[Segment crash record within micro: 1, 

Segment crash record within macro: 1, 

Intersection crash record within micro: 1, 

Intersection crash record within macro: 1] 

Micro level propensity sums: 2  

[Segment facility: 1, Intersection facility: 1] 

Disaggregate level propensity sums: 4  

[Segment crash record within micro: 1, 

Segment crash record within macro: 1, 

Intersection crash record within micro: 1, 

Intersection crash record within macro: 1] 

 

Table 1 outlines the different variants based on how the propensity sum variables can be treated 

as fixed as obtained from the micro/disaggregate model predictions (Approach 1) and the 

parameters within the propensity sum variables can be treated as endogenous and be allowed to 

vary (Approaches 2, 3, and 4). Approach 4 is computationally more involved as it allows for 

feedback from all the observational resolutions simultaneously. Table 1 also presents the number 

of additional parameters estimated for composite variables (propensity sum scores) in the 

integrated model system. The different approaches can be estimated and the data fit of these 

approaches can be compared to identify the most appropriate model for the data considered (more 

details are provided in the methodology section). The model selection process can be accomplished 

using model fit measures such as Bayesian Information Criterion (BIC). Finally, it is important to 

highlight that the integrated approach accommodates for a host of unobserved factors within each 

econometric building block and across all econometric blocks (exact formulation details are 

included in the methodology section).  

The proposed model system is estimated using data drawn from the City of Orlando, 

Florida for the year 2019. The study obtained 21,189 crash records (5,669 segment and 15,520 

intersection crashes) for the disaggregate level model analysis. The records contain crash-specific 

factors, driver and vehicle factors, roadway attributes, road environmental and weather 

information of each crash record. For micro and macro level analysis, the study aggregated the 

crash records over 1,818 segments, 4,184 intersections and 300 traffic analysis zones (TAZs). An 

exhaustive set of independent variables including roadway and traffic factors, land-use and built 

environment attributes, and sociodemographic characteristics are considered in these levels. 

 

3. METHODOLOGY 

In this study, a negative binomial-ordered probit fractional split (NB-OPFS) model structure is 

employed to analyze crash frequency by severity at the micro level and macro level model analysis. 

Alternatively, for disaggregate level analysis an ordered probit (OP) model structure is employed. 

The NB-OPFS and OP model structures are employed to develop the integrated framework. Thus, 

the overall econometric framework of the study can be described along three components: the 

disaggregate level model structure (ordered probit), micro level and macro level model structure 

(NB-OPFS), and the integrated model structure.  
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3.1 Disaggregate Level Model Structure (Ordered Probit Model) 

In the traditional ordered response model, the discrete injury severity levels (𝑣𝑗(𝑠/𝑖)) for segment 𝑠 

or intersection 𝑖 are assumed to be associated with an underlying continuous latent variable 

(𝑣𝑗(𝑠/𝑖)
∗ ). This latent variable is typically specified as the following linear function:   

𝑣𝑗(𝑠/𝑖)
∗ = 𝑋𝑗(𝑠/𝑖)Θ(𝑠/𝑖) + 𝜽(𝑠/𝑖) + 𝜀𝑗(𝑠/𝑖) (1) 

where 𝑗(𝑠/𝑖) = 1,2, ……… , 𝐽(𝑠/𝑖) represents the crash record for segment 𝑠 or intersection 𝑖. 

𝑋𝑗(𝑠/𝑖)  is a vector of exogenous variables for segment 𝑠 or intersection 𝑖 (excluding a constant). 

Θ(𝑠/𝑖) is a vector of unknown parameters to be estimated for segment 𝑠 or intersection 𝑖. 𝜽(𝑠/𝑖) is 

a vector of unobserved effects specific to the facility type (segment 𝑠 or intersection 𝑖) for the crash 

records, highlighting the spatial arrangement within the same facility. This 𝜽(𝑠/𝑖) will be same 

across the crash records if they correspond to the same segment or intersection and thus the spatial 

dependency will be captured. The reader would note that the spatial unobserved heterogeneity can 

vary across the crash records. Therefore, in the current study, we parameterize the correlation 

parameter 𝜽(𝑠/𝑖) as a function of observed attributes as follows: 

𝜽(𝑠/𝑖) = Ԍ(𝑠/𝑖)𝑅(𝑠/𝑖) (2) 

where 𝑅(𝑠/𝑖) is a vector of exogenous variables at the facility level (including a constant) 

employed for crash records, Ԍ(𝑠/𝑖) is a vector of parameters to be estimated. 𝜀𝑗(𝑠/𝑖) is the random 

disturbance term assumed to be standard normal distribution. Let us assume  𝑘 (𝑘 = 1,2,3, … , 𝑘) 
be the index to represent injury severity categories. In this study, 𝑘 take the values of ‘no-injury’ 

(𝑘 = 1), ‘possible injury’ (𝑘 = 2), ‘non-incapacitating injury’ (𝑘 = 3) and ‘fatal and 

incapacitating injury’ (𝑘 = 4). 𝑡𝑘(s/i) represents the thresholds associated with these severity 

levels. These unknown 𝑡𝑘s are assumed to partition the propensity into 𝑘 − 1 intervals. The 

unobservable latent variable 𝑣𝑗(𝑠/𝑖)
∗  is related to the observable ordinal variable 𝑣𝑗(𝑠/𝑖) by the 𝑡𝑘(s/i) 

with a response mechanism of the following form: 

𝑣𝑗(𝑠/𝑖) = 𝑘, 𝑖𝑓 𝑡(s/i)(𝑘−1) < 𝑣𝑗(𝑠/𝑖)
∗ < 𝑡(s/i)𝑘, for 𝑘 = 1,2, ……… , 𝑘 (3) 

In order to ensure the well-defined intervals and natural ordering of observed severity, the 

thresholds are assumed to be ascending in order, such that 𝑡(𝑠/𝑖)0 < 𝑡(𝑠/𝑖)1 < ……… < 𝑡(𝑠/𝑖)𝑘 

where 𝑡(𝑠/𝑖)0 = −∞ and 𝑡(𝑠/𝑖)𝑘 = +∞. Given these relationships across the different parameters, 

the resulting probability expressions for record 𝑗(𝑠/𝑖) and alternative 𝑘 for the ordered probit take 

the following form: 

 

𝜋𝑗(𝑠/𝑖)𝑘 = 𝑃𝑟 (𝑣𝑗(𝑠/𝑖) = 𝑘|𝑋𝑗(𝑠/𝑖))

= Υ (𝑡(𝑠/𝑖)𝑘 − (𝑋𝑗(𝑠/𝑖)Θ(𝑠/𝑖) + 𝜽(𝑠/𝑖))) −Υ(𝑡(𝑠/𝑖)(𝑘−1)

− (𝑋𝑗(𝑠/𝑖)Θ(𝑠/𝑖) + 𝜽(𝑠/𝑖))) 

(4) 

 

where Υ(. ) represents the standard normal cumulative distribution function. 
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3.2 Micro and Macro Level Model Structure (NB-OPFS Model) 

 

3.2.1 Count framework 

In our research, crash counts per TAZ (for macro), per segment and per intersection (for micro) 

are considered as the dependent variables in the model estimations. Since crash counts are non-

negative integers, count-data modeling techniques are appropriate for crash frequency data 

analysis. Among the count-modeling techniques, a Poisson model may not always be appropriate 

because the Poisson distribution restricts the mean and variance to be equal whereas crash 

frequency data are generally over-dispersed (Lord and Mannering, 2010). Therefore, in our 

research, we consider the negative binomial regression framework to account for over-dispersed 

data. The approach can be extended readily to any possible mathematical model such as Poisson 

lognormal and other variants of negative binomial such as the zero inflated negative binomial 

model.  

For a spatial unit 𝑙 (segment 𝑠, intersection 𝑖, or zone 𝑧), negative binomial (NB) model is 

employed to estimate total crash count. The probability density function of NB model can be 

written as, 

 

𝑃(𝑐𝑙) =  
Γ (𝑐𝑙 +

1
𝛼𝑙
)

Γ(𝑐𝑙 + 1)Γ (
1
𝛼𝑙
)
(

1

1 + 𝛼𝑙𝜇𝑙
)

1
𝛼𝑙
(1 −

1

1 + 𝛼𝑙𝜇𝑙
)
𝑐𝑙

 (5) 

 

where 𝑐𝑙 be the index for crashes occurring over a period of time in a spatial unit 𝑙 (segment 

𝑠, intersection 𝑖, or zone 𝑧). 𝑃(𝑐𝑙) is the probability that unit 𝑙 has 𝑐𝑙 number of crashes. Γ(∙) is the 

gamma function, 𝛼𝑙 is negative binomial overdispersion parameter and 𝜇𝑙 is the expected number 

of crashes occurring in the unit 𝑙 over a given time period. The equation for 𝜇𝑙 can be written as 

follows, 

𝜇𝑙 = 𝐸(𝑐𝑙|𝒀𝑙) = 𝑒𝑥𝑝((𝜹𝑙+ 𝜻𝑙)𝑌𝑙 + 𝜽𝑧(𝑠/𝑖) + 𝜀𝑙 + 𝜂𝑙) (6) 

where 𝒀𝑙 is a vector of explanatory variables associated with the analysis unit 𝑙. 𝜹𝑙 is a 

vector of coefficients to be estimated for the unit 𝑙.  𝜻𝑙 a vector of unobserved factors on crash 

count propensity for unit 𝑙. 𝜽𝑧(𝑠/𝑖) is a vector of unobserved effects specific to the zone exclusively 

for segments or intersections, highlighting the spatial arrangement of segments or intersections 

within the same zone. This 𝜽𝑧 will be same across all the segments or all the intersections if they 

correspond to the same zone, highlighting the spatial dependency. This spatial unobserved 

heterogeneity can vary across the segments or intersections. Therefore, in the current study, we 

parameterize the correlation parameter 𝜽𝑧 as a function of observed attributes as follows: 

𝜽𝑧(𝑠/𝑖) = Ԍ𝑧(𝑠/𝑖)𝑅𝑧(𝑠/𝑖) (7) 

where 𝑅𝑧(𝑠/𝑖) is a vector of exogenous variables at zonal level (including a constant) 

employed for facility type (segment or intersection), Ԍ𝑧(𝑠/𝑖) is a vector of parameters to be 

estimated. 𝜀𝑙 is a gamma distributed error term with mean 1 and variance 𝛼𝑙. 𝜂𝑙 captures the 

influence of common unobserved factors that impact the total number of crashes and proportion 

of crashes by severity for unit 𝑙.  
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3.2.2 Fractional split framework 

The modeling of crash proportions by severity levels is undertaken using the ordered probit 

fractional split model (OPFS). In the ordered outcome framework, the actual injury severity 

proportions (𝑦𝑙𝑘) are assumed to be associated with an underlying continuous latent variable (𝑦𝑙
∗) 

as follows: 

𝑦𝑙
∗ = ((𝜷𝒍+Ƹ𝒍)𝑭𝑙 + 𝜽𝑧(𝑠/𝑖) + 𝜉𝑙 ± 𝜂𝑙), 𝑦𝑙𝑘 = 𝑘 𝑖𝑓 𝜏𝑙(𝑘−1) < 𝑦𝑙

∗ < 𝜏𝑙𝑘 (8) 

The latent propensity 𝑦𝑙
∗ is mapped to the actual severity proportion categories 𝑦𝑙𝑘 by 𝜏𝑙 

thresholds (𝜏𝑙0 = −∞ 𝑎𝑛𝑑 𝜏𝑙𝐾 = +∞) as presented in equation 8. 𝑭𝑙 is a vector of attributes (not 

including a constant) that influences the propensity associated with severity proportion categories 

for unit 𝑙. 𝜷𝒍 is the corresponding vector of mean effects. Ƹ𝒍 a vector of unobserved factors on 

severity proportion propensity for unit 𝑙.  𝜉𝑙 is an idiosyncratic error term assumed to be identically 

and independently standard normally distributed across unit 𝑙. 𝜂𝑙 term generates the correlation 

between equations for total number of crashes and crash proportions by severity levels and also 

allows for considering the influence of various unobserved factors affecting the frequency and 

proportion variables. The ± sign in front of 𝜂𝑙 indicates that the correlation in unobserved 

individual factors between total crashes and crash proportions by severity levels may be positive 

or negative. A positive sign implies that units with higher number of crashes are intrinsically more 

likely to incur higher proportions for severe crashes. On the other hand, negative sign implies that 

units with higher number of crashes intrinsically incur lower proportions for severe crashes. To 

determine the appropriate sign one can empirically test the models with both ′ + ′ and ′ − ′ signs 

independently. The model structure that offers superior data fit is considered as the final model. 

It is important to note here that the unobserved heterogeneity between total crashes and 

crash proportions by severity levels can vary across units. Therefore, in the current study, the 

correlation parameter 𝜂𝑙 is parameterized as a function of observed attributes as follows: 

𝜂𝑙 = 𝑀𝑙𝑸𝑙 (9) 

where 𝑄𝑙 is a vector of exogenous variables, 𝑴𝑙 is a vector of unknown parameters to be 

estimated (including a constant). 

To estimate the model presented in equation 8, we assume that:    

𝐸(𝑦𝑙𝑘|𝐹𝑙) = 𝐻𝑙𝑘(𝛽𝑙, 𝜏𝑙), 0 ≤ 𝐻𝑙𝑘 ≤ 1,∑ 𝐻𝑙𝑘 = 1
𝐾
𝑘=1  (10) 

𝐻𝑙𝑘 in our model takes the ordered probit probability (Λ) form for the severity category 𝑘.  

Given these relationships across different parameters, the resulting probability (Λ) for the 

ordered probit fractional split model takes the following form:  

Λ(𝑦𝑙𝑘 = 𝑘) = φ{𝜏𝑙𝑘 − 𝑦𝑙
∗} − φ{𝜏𝑙(𝑘−1) − 𝑦𝑙

∗} (11) 

where φ(∙) is the standard normal cumulative distribution function.  
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3.3 Integrated Model Structure 

To develop integrated model framework, we use propensity equations from disaggregate level OP 

model structure, and micro and macro level NB-OPFS model structure. To be specific, we 

incorporate composite sums of the disaggregate level OP model propensities (from segment crash 

OP model and intersection crash OP model) and sums for the micro level NB-OPFS model 

propensities (from segment facility NB-OPFS model and intersection facility NB-OPFS model) 

within the macro level (zonal) propensity equation to estimate crash frequency by severity. For 

example, if 5 crashes occur in a segment, we sum the OP model propensity for these 5 crashes and 

the composite score (summation of propensities) is incorporated as an independent variable within 

the NB-OPFS model equation for segment facility. Similarly, if a zone has 5 segments, we sum 

the propensities from NB and OPFS model components and incorporate the composite scores (one 

from NB and one from OPFS) within the zonal level crash propensities to estimate crash frequency 

by severity. We can also incorporate disaggregate level composite sum directly into the zonal 

propensity equation. For each composite score, we estimate a scalar parameter (coefficient) in the 

model system. These scalar parameters can be estimated by considering the composite scores as 

fixed value obtained from the respective OP or NB-OPFS model components or be allowed to vary 

based on the model fit. With these considerations, four model structures can be estimated. For NB 

model component, the propensity structures are: 

    

𝜇′𝑧 = 𝐸(𝑐𝑧|𝑌𝑧) = 𝑒𝑥𝑝

(

 
 
(𝜹𝑧+ 𝜻𝑧)𝑌𝑧 + 𝜌𝑐𝑠 ∗ ln∑(𝑒𝑥𝑝(ln 𝜇𝑠 + 𝜌𝑐𝑑𝑠 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑠

∗ ))

𝑠𝑗𝑠

𝑝=1

))

𝑠𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑠𝑧 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑠
∗ ))

𝑧𝑗𝑠

𝑝=1

+ 𝜌𝑐𝑖

∗ ln∑(𝑒𝑥𝑝 (ln𝜇𝑖 + 𝜌𝑐𝑑𝑖 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑖
∗))

𝑖𝑗𝑖

𝑝=1

))

𝑖𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑖𝑧 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑖
∗))

𝑧𝑗𝑖

𝑝=1

+ 𝜀𝑧 + 𝜂𝑧

)

 
 

 

(12) 
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𝜇′𝑧 = 𝐸(𝑐𝑧|𝑌𝑧) = 𝑒𝑥𝑝

(

 
 
(𝜹𝑧+ 𝜻𝑧)𝑌𝑧 + 𝜌𝑐𝑠

∗ ln∑(𝑒𝑥𝑝((𝜹𝑠 +  𝜻𝑠)𝑌𝑠 + 𝜽𝑧(𝑠) + 𝜌𝑐𝑑𝑠 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑠
∗ ))

𝑠𝑗𝑠

𝑝=1

))

𝑠𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑠𝑧 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑠
∗ ))

𝑧𝑗𝑠

𝑝=1

+ 𝜌𝑐𝑖

∗ ln∑(𝑒𝑥𝑝((𝜹𝑖 +  𝜻𝑖)𝑌𝑖 + 𝜽𝑧(𝑖) + 𝜌𝑐𝑑𝑖 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑖
∗))

𝑖𝑗𝑖

𝑝=1

))

𝑖𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑖𝑧 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑖
∗))

𝑧𝑗𝑖

𝑝=1

+ 𝜀𝑧 + 𝜂𝑧

)

 
 

 

(13) 

𝜇′𝑧 = 𝐸(𝑐𝑧|𝑌𝑧) = 𝑒𝑥𝑝

(

 
 
(𝜹𝑧+ 𝜻𝑧)𝑌𝑧 + 𝜌𝑐𝑠

∗ ln∑(𝑒𝑥𝑝(ln 𝜇𝑠 + 𝜌𝑐𝑑𝑠 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑠𝑗𝑠

𝑝=1

))

𝑠𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑠𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑧𝑗𝑠

𝑝=1

+ 𝜌𝑐𝑖

∗ ln∑(𝑒𝑥𝑝(ln 𝜇𝑖 + 𝜌𝑐𝑑𝑖 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑖𝑗𝑖

𝑝=1

))

𝑖𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑖𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑧𝑗𝑖

𝑝=1

+ 𝜀𝑧 + 𝜂𝑧

)

 
 

 

(14) 
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𝜇′𝑧 = 𝐸(𝑐𝑧|𝑌𝑧) = 𝑒𝑥𝑝

(

 
 
(𝜹𝑧+ 𝜻𝑧)𝑌𝑧 + 𝜌𝑐𝑠

∗ ln∑(𝑒𝑥𝑝((𝜹𝑠 +  𝜻𝑠)𝑌𝑠 + 𝜽𝑧(𝑠)

𝑠𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑠 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑠𝑗𝑠

𝑝=1

))

+ 𝜌𝑐𝑑𝑠𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑧𝑗𝑠

𝑝=1

+ 𝜌𝑐𝑖

∗ ln∑(𝑒𝑥𝑝((𝜹𝑖 +  𝜻𝑖)𝑌𝑖 + 𝜽𝑧(𝑖)

𝑖𝑧

𝑝=1

+ 𝜌𝑐𝑑𝑖 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑖𝑗𝑖

𝑝=1

))

+ 𝜌𝑐𝑑𝑖𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑧𝑗𝑖

𝑝=1

+ 𝜀𝑧 + 𝜂𝑧

)

 
 

 

(15) 

where 𝜌𝑐𝑠 is the scalar (coefficient) for segment facility propensity sum for count 

component,  𝜌𝑐𝑑𝑠 is the scalar for disaggregate segment crash propensity sum within segment 

facility propensity for count component, 𝜌𝑐𝑑𝑠𝑧 is the scalar for disaggregate segment crash 

propensity sum within zone for count component, 𝜌𝑐𝑖 is the scalar for intersection facility 

propensity sum for count component,  𝜌𝑐𝑑𝑖 is the scalar for disaggregate intersection crash 

propensity sum within intersection facility propensity for count component, 𝜌𝑐𝑑𝑖𝑧 is the scalar for 

disaggregate intersection crash propensity sum within zone for count component. 

In the first structure, the micro level and disaggregate model parameters are fixed (as 

obtained from facility-specific NB models and OP models) and only scalar parameters will be 

estimated along with the macro level variables. In the second approach, micro level parameters 

within the propensity will be allowed to vary based on model fit while estimating the scalar 

parameters and the macro level variables. In the third approach, disaggregate level parameters 

within the propensity will be allowed to vary based on model fit and in the fourth approach, both 

micro level and disaggregate level parameters will be allowed to vary while estimating the scalar 

parameters and the macro level parameters. Similar to the count component, the equations for 

OPFS component are: 
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𝑦𝑧
∗′ = ((𝜷𝒛 + Ƹ𝒛)𝑭𝑧 + 𝜌𝑓𝑠 ∗ ln∑ (𝑒𝑥𝑝 (𝑦𝑠

∗ + 𝜌𝑓𝑑𝑠 ln∑ (𝑒𝑥𝑝(𝑣𝑗𝑠
∗ ))

𝑠𝑗𝑠

𝑝=1
))

𝑠𝑧

𝑝=1

+

𝜌𝑓𝑑𝑠𝑧 ln∑ (𝑒𝑥𝑝(𝑣𝑗𝑠
∗ ))

𝑧𝑗𝑠

𝑝=1
+ 𝜌𝑓𝑖 ∗ ln

∑ (𝑒𝑥𝑝 (𝑦𝑖
∗ + 𝜌𝑓𝑑𝑖 ln∑ (𝑒𝑥𝑝(𝑣𝑗𝑖

∗))
𝑖𝑗𝑖

𝑝=1
))

𝑖𝑧

𝑝=1

+

𝜌𝑓𝑑𝑖𝑧 ln∑ (𝑒𝑥𝑝(𝑣𝑗𝑖
∗))

𝑧𝑗𝑖

𝑝=1
+ 𝜉𝑧 ± 𝜂𝑧), 𝑦′

𝑧𝑘
= 𝑘 𝑖𝑓 𝜏𝑧(𝑘−1) < 𝑦𝑧

∗′ < 𝜏𝑧𝑘 

(16) 

𝑦𝑧
∗′ =

(

 
 
(𝜷𝒛 + Ƹ𝒛)𝑭𝑧 + 𝜌𝑓𝑠

∗ ln∑(𝑒𝑥𝑝((𝜷𝒔 + Ƹ𝒔)𝑭𝑠 + 𝜽𝑧(𝑠) + 𝜌𝑓𝑑𝑠 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑠
∗ ))

𝑠𝑗𝑠

𝑝=1

))

𝑠𝑧

𝑝=1

+ 𝜌𝑓𝑑𝑠𝑧 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑠
∗ ))

𝑧𝑗𝑠

𝑝=1

+ 𝜌𝑓𝑖

∗ ln∑(𝑒𝑥𝑝((𝜷𝒊 + Ƹ𝒊)𝑭𝑖 + 𝜽𝑧(𝑖) + 𝜌𝑓𝑑𝑖 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑖
∗))

𝑖𝑗𝑖

𝑝=1

))

𝑖𝑧

𝑝=1

+ 𝜌𝑓𝑑𝑖𝑧 ln∑(𝑒𝑥𝑝(𝑣𝑗𝑖
∗))

𝑧𝑗𝑖

𝑝=1

+ 𝜉𝑧 ± 𝜂𝑧

)

 
 
, 𝑦′

𝑧𝑘
= 𝑘 𝑖𝑓 𝜏𝑧(𝑘−1) < 𝑦𝑧

∗′ < 𝜏𝑧𝑘 

(17) 

𝑦𝑧
∗′ =

(

 
 
(𝜷𝒛 + Ƹ𝒛)𝑭𝑧 + 𝜌𝑓𝑠 ∗ ln∑(𝑒𝑥𝑝(𝑦𝑠

∗ + 𝜌𝑓𝑑𝑠 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑠𝑗𝑠

𝑝=1

))

𝑠𝑧

𝑝=1

+ 𝜌𝑓𝑑𝑠𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑧𝑗𝑠

𝑝=1

+ 𝜌𝑓𝑖

∗ ln∑(𝑒𝑥𝑝(𝑦𝑖
∗ + 𝜌𝑓𝑑𝑖 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑖𝑗𝑖

𝑝=1

))

𝑖𝑧

𝑝=1

+ 𝜌𝑓𝑑𝑖𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑧𝑗𝑖

𝑝=1

+ 𝜉𝑧 ± 𝜂𝑧

)

 
 
, 𝑦′

𝑧𝑘
= 𝑘 𝑖𝑓 𝜏𝑧(𝑘−1) < 𝑦𝑧

∗′

< 𝜏𝑧𝑘 

(18) 
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𝑦𝑧
∗′ =

(

 
 
(𝜷𝒛 + Ƹ𝒛)𝑭𝑧 + 𝜌𝑓𝑠

∗ ln∑(𝑒𝑥𝑝((𝜷𝒔 + Ƹ𝒔)𝑭𝑠 + 𝜽𝑧(𝑠)

𝑠𝑧

𝑝=1

+ 𝜌𝑓𝑑𝑠 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑠𝑗𝑠

𝑝=1

))

+ 𝜌𝑓𝑑𝑠𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑠Θ𝑠 + 𝜽𝑠 + 𝜀𝑗𝑠))

𝑧𝑗𝑠

𝑝=1

+ 𝜌𝑓𝑖

∗ ln∑(𝑒𝑥𝑝((𝜷𝒊 + Ƹ𝒊)𝑭𝑖 + 𝜽𝑧(𝑖)

𝑖𝑧

𝑝=1

+ 𝜌𝑓𝑑𝑖 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑖𝑗𝑖

𝑝=1

))

+ 𝜌𝑓𝑑𝑖𝑧 ln∑(𝑒𝑥𝑝(𝑋𝑗𝑖Θ𝑖 + 𝜽𝑖 + 𝜀𝑗𝑖))

𝑧𝑗𝑖

𝑝=1

+ 𝜉𝑧 ± 𝜂𝑧

)

 
 
, 𝑦′

𝑧𝑘
= 𝑘 𝑖𝑓 𝜏𝑧(𝑘−1) < 𝑦𝑧

∗′

< 𝜏𝑧𝑘 

(19) 

 

where 𝜌𝑓𝑠 is the scalar (coefficient) for segment facility propensity sum for severity 

proportion,  𝜌𝑓𝑑𝑠 is the scalar for disaggregate segment crash propensity sum within segment 

facility propensity for severity proportion, 𝜌𝑓𝑑𝑠𝑧 is the scalar for disaggregate segment crash 

propensity sum within zone for severity proportion, 𝜌𝑓𝑖 is the scalar for intersection facility 

propensity sum for severity proportion, 𝜌𝑓𝑑𝑖 is the scalar for disaggregate intersection crash 

propensity sum within intersection facility propensity for severity proportion, and 𝜌𝑓𝑑𝑖𝑧 is the 

scalar for disaggregate intersection crash propensity sum within zone for severity proportion. 

The correlation parameter 𝜂𝑧 is parameterized as a function of observed zonal attributes as 

follows (with the notation from equation 9): 

𝜂𝑧 = 𝑀𝑧𝑸𝑧 (20) 

With the integrated propensity, the updated probability equation for macro level NB is: 

𝑃′(𝑐𝑧) =  
Γ (𝑐𝑧 +

1
𝛼𝑧
)

Γ(𝑐𝑧 + 1)Γ (
1
𝛼𝑧
)
(

1

1 + 𝛼𝑧𝜇′𝑧
)

1
𝛼𝑧
(1 −

1

1 + 𝛼𝑧𝜇′𝑧
)

𝑐𝑧

 (21) 
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And fractional split component probability for macro level is, 

Λ(𝑦′
𝑧𝑘
= 𝑘) = φ{𝜏𝑧𝑘 − 𝑦𝑧

∗′} − φ{𝜏𝑧(𝑘−1) − 𝑦𝑧
∗′} (22) 

3.4 Model Estimation 

In examining the model structure of total crash count and proportions of crashes by severity level, 

it is necessary to specify the structure for the unobserved vectors 𝑮, 𝑀, 𝜻, Ƹ represented by Ω. In 

this study, it is assumed that the elements are drawn from independent realization from normal 

population: Ω~𝑁(0, (𝝈1
2, 𝝈2

2, 𝝈3
2, 𝝈4

2)). Thus, conditional on Ω, the likelihood function for the 

integrated probability can be expressed as: 

 

𝐿𝑧 = ∫ 𝑃′(𝑐𝑧) ×∏𝑃(𝑐𝑠)
𝑤𝑠

𝑆𝑧

𝑝=1

×∏𝑃(𝑐𝑖)
𝑤𝑖

𝐼𝑧

𝑝=1

×∏(Λ(𝑦′
𝑧𝑘
= 𝑘))

𝜛𝑧𝑑𝑧𝑘
𝐾

𝑘=1Ω

×∏∏(Λ(𝑦𝑠𝑘 = 𝑘))
𝜛𝑠𝑑𝑠𝑘

𝐾

𝑘=1

𝑆𝑧

𝑝=1

×∏∏(Λ(𝑦𝑖𝑘 = 𝑘))
𝜛𝑖𝑑𝑖𝑘

𝐾

𝑘=1

𝐼𝑧

𝑝=1

×∏∏𝜋𝑗𝑠𝑘

𝐾

𝑘=1

𝑗𝑠𝑧

𝑝=1

×∏∏𝜋𝑗𝑖𝑘

𝐾

𝑘=1

𝑗𝑖𝑧

𝑝=1

𝑑Ω 

(23) 

 

where 𝑤𝑠 (𝑤𝑖) is a dummy variable taking a value of 1 if the corresponding zone 𝑧 has 

segments (intersections) in it and 0 otherwise. 𝜛𝑧 is a dummy with 𝜛𝑧 = 1 if zone 𝑧 has at least 

one crash over the study period and 0 otherwise. 𝑑𝑧𝑘 is the proportion of crashes in severity 

category 𝑘 in zone 𝑧. 𝜛𝑠 (𝜛𝑖) is a dummy with 𝜛𝑠(𝜛𝑖) = 1 if segment 𝑠 (intersection 𝑖) has at 

least one crash over the study period and 0 otherwise. 𝑑𝑠𝑘 is the proportion of crashes in severity 

category 𝑘 at segment 𝑠 and 𝑑𝑖𝑘 is the proportion of crashes in severity category 𝑘 at intersection 

𝑖. Finally, the log-likelihood function is:     

  𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑧)𝑧  (24) 

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 24. To estimate the proposed model, we apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate the integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function across 

individuals (please see Bhat, 2001; Yasmin and Eluru, 2013 for details). In our research, we tested 

the model specification with several Halton realization levels (such as 50, 100, 300, …, 500, 1000). 

We found that model parameters were stable at around 500 and 1000 levels. We use the GAUSS 

matrix programming software to run the models (Aptech, 2015).  

  

4. DATA PREPARATION  

The current study conducts empirical analysis using data from the Orlando city region of Florida. 

The study area is composed of 300 traffic analysis zones (TAZs), 1,818 segments, and 4,184 

intersections. The study extracted crash record level data for the year 2019 from Signal Four 

Analytics database. Each record contains details of crash level information. After processing and 
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cleaning the data, we obtained 21,189 crash records (5,669 segment and 15,520 intersection 

crashes) for the disaggregate level analysis. For assigning intersection crashes, a 250 feet buffer 

around the center of each intersection was considered and the crashes were spatially assigned by 

using ArcGIS tools (see Cai et al., 2019; Ingle and Gates, 2021; Sharafeldin et al., 2022; Yue, 2024 

that adopted this approach). Based on the severity class, these crashes could be classified into a 

five-point severity scale: fatal injury (FI), incapacitating injury (II), non-incapacitating injury 

(NII), possible injury (PI), and no-injury crashes (NI). The distributions of FI, II, NII, PI and NI 

are 0.32%, 1.89%, 8.20%, 17.27%, and 72.32%, respectively for segment facility and 0.28%, 

1.66%, 8.94%, 18.88%, and 70.24%, respectively for intersection facility. This study combines FI 

and II as FII for the disaggregate level models estimation.   

For micro and macro levels model estimation, the study aggregated crash records by 

facility level and TAZ level, respectively. For micro and macro level crash count components, 

total crash counts at the observation resolutions are considered as the dependent variable while for 

severity proportion components, crash proportions by severity level (number of crashes of specific 

severity level/total crashes) are considered as the dependent variable. The four severity proportions 

are: (1) proportion of no-injury crashes (PNI), (2) proportion of possible injury crashes (PPI), (3) 

proportion of non-incapacitating injury crashes (PNII), and (4) proportion of fatal and 

incapacitating injury crashes (PFII). A comprehensive set of independent variables including 

roadway and traffic factors, land-use and built environment attributes, and sociodemographic 

characteristics are considered in these levels. This study randomly selects 270 TAZs that cover 

1,613 segments with 4,635 crash records, and 3,746 intersections with 13,784 crash records for 

model estimation and set aside the remaining 30 TAZs that include 205 segments with 1,034 crash 

records, and 438 intersections with 1,736 crash records for the validation of the models. 

 

4.1 Variables Considered 

The variables for disaggregate, micro, and macro level analysis were sourced from different 

databases including Signal Four Analytics (S4A), Florida Department of Transportation (FDOT) 

Transportation Statistics Division, US Census Bureau and American Community Survey, Florida 

Department of Revenue, and Florida Geographic Data Library. Disaggregate level segment and 

intersection OP models consider the information present in the crash records including  crash-

specific variables (such as first harmful events), driver and vehicle factors (such as driving under 

influence related, distraction related, presence of passengers), roadway factors (such as location of 

the crashes, speed limit, shoulder type), road environmental factors (such as time of the day, 

lighting condition) and weather information (such as clear, rain, fog).  

For the segment facility level, the variables were spatially assigned to the segments while 

for intersection facility level, variables were aggregated by taking 0.5-mile buffer zone around 

each intersection by using ArcGIS tools. The segment level variables include roadway and traffic 

factors (such as AADT, Truck AADT, functional class, number of lanes, speed limit, median 

width, and shoulder width). The intersection level variables include roadway and traffic factors 

(such as AADT, proportion of roads by functional class, number of lanes, and average shoulder 

width), land-use attributes (such as proportion of residential, commercial, institutional, industrial, 

recreational and mixed area), built environment attributes (such as number of restaurants, business 

centers, commercial centers, educational centers, and shopping centers), and sociodemographic 

characteristics (such as population density, proportion of males and females, household density, 

median household income, proportion of car, drive alone, non-motorized means of transport, 

different population group by age level, household with vehicle availability, and population with 
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different races). For macro level analysis, the explanatory variables were aggregated at the TAZ 

level. Macro level analysis uses roadway and traffic factors (such as AADT, truck AADT, 

proportion of roads by functional class, number of lanes, average speed limit, average shoulder 

width, average sidewalk width and median width, intersection density, and traffic signal density), 

and land-use, built environment, and sociodemographic characteristics similar to the intersection 

facility.  

In estimating the model, several functional forms, and combination of variables are 

considered and those that provide the best fit are retained in the final specification. The final 

specification of the model was based on removing the statistically insignificant variables in a 

systematic process based on 90% confidence level. 

Figure 2 shows the sample share of the variables at disaggregate levels considered for the 

final model estimation while the micro level and macro level variables are presented in Table 2 

with the appropriate definition and summary statistics. 
 

5. EMPIRICAL ANALYSIS  

 

5.1 Model Specification and Overall Measure of Fit 

A series of models are estimated to conduct empirical analysis of the proposed framework and the 

independent model systems. First, we estimate OP models for segment crash records and 

intersection crash records, NB-OPFS models for segment facility, intersection facility and zonal 

level to estimate crash counts by severity class. These model frameworks together provide the non-

integrated model system. Second, we develop our proposed integrated model system following 

four approaches as discussed in the methodology section.  

 

Integrated approach 1: Focuses on optimizing the joint log-likelihood of the macro, micro, and 

disaggregate level models by only estimating the scalar parameters for the micro level and 

disaggregate model propensity sums (we tested statistical significance of six additional coefficients 

for count component: two for facility-specific propensity from NB, two for facility specific crash 

record level propensity from OP incorporated within the facility level NB, two for facility specific 

crash record level propensity from OP incorporated directly within the zonal NB, and six additional 

coefficients for severity proportion component: two for facility-specific propensity from OPFS, 

two for facility specific crash record level propensity from OP incorporated within the facility level 

OPFS, two for facility specific crash record level propensity from OP incorporated directly within 

the zonal OPFS) along with macro level factors as shown in equations 12 and 16.  

 

Integrated approach 2: The micro level parameters in the segment propensity and intersection 

propensity are allowed to vary along with macro level factors and scalars for propensity sums 

within the integrated model equations as shown in equations 13 and 17. 

 

Integrated approach 3: The disaggregate level parameters in the segment OP propensity and 

intersection OP propensity are allowed to vary along with macro level factors and scalars for 

propensity sums within the integrated model equations as shown in equations 14 and 18. 

 

Integrated approach 4: The micro level and disaggregate level parameters are allowed to vary 

along with macro level factors and scalars for propensity sums within the integrated model 

equations as shown in equations 15 and 19. 
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Figure 2: Sample Share of the Variables at Disaggregate Levels 
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Table 2: Summary Statistics of the Variables at Micro and Macro Levels 

Variables Min. Max. Mean Std. Dev. 

Segment Facility Level (Micro)     

Total segment crash count 0.000 242.000 3.118 9.530 

Proportion of fatal and incapacitating injury crashes 0.000 1.000 0.014 0.084 

Proportion of non-incapacitating injury crashes 0.000 1.000 0.042 0.141 

Proportion of possible injury crashes 0.000 1.000 0.072 0.177 

Proportion of no-injury crashes 0.000 1.000 0.364 0.427 

Ln (Segment length, miles) -12.852 1.144 -2.758 1.770 

Ln (AADT) 6.686 12.095 9.987 0.891 

Speed limit <=40 mph 0.000 1.000 0.457 0.498 

Number of lanes 1.000 5.000 2.128 0.720 

Ln (Sidewalk width +1, feet) 0.000 2.708 1.789 0.491 

Traffic signal density  0.000 74.048 0.862 13.620 

Intersection Facility Level (Micro)     

Total intersection crash count 0.000 99.000 3.709 8.422 

Proportion of fatal and incapacitating injury crashes 0.000 1.000 0.011 0.069 

Proportion of non-incapacitating injury crashes 0.000 1.000 0.051 0.155 

Proportion of possible injury crashes 0.000 1.000 0.100 0.215 

Proportion of no-injury crashes 0.000 1.000 0.359 0.412 

Proportion of arterial roads 0.000 1.000 0.416 0.275 

Proportion of minor roads 0.000 1.000 0.312 0.257 

Proportion of >=3-lane roads 0.000 1.000 0.222 0.207 

Average inside shoulder width, feet 0.000 21.000 4.005 3.878 

Proportion of institutional area 0.000 1.000 0.069 0.091 

Proportion of recreational area 0.000 1.000 0.068 0.138 

Number of finance centers 0.000 5.000 4.604 9.302 

TAZ Level (Macro)     

Total TAZ crash count 0.000 342.000 70.630 65.789 

Proportion of fatal and incapacitating injury crashes 0.000 0.500 0.022 0.040 

Proportion of non-incapacitating injury crashes 0.000 0.333 0.084 0.059 

Proportion of possible injury crashes 0.000 1.000 0.173 0.104 

Proportion of no-injury crashes 0.000 1.000 0.671 0.190 

Ln (Truck AADT +1) 0.000 11.302 8.326 1.613 

Proportion of >=3-lane roads 0.000 1.000 0.231 0.274 

Average inside shoulder width, feet 0.000 18.000 3.008 3.742 

Proportion of divided roads  0.000 1.000 0.610 0.357 

Intersection density 0.000 0.770 0.085 0.115 

Traffic signal density 0.000 1.000 0.058 0.106 

Number of restaurants 0.000 4.000 3.357 5.626 

Proportion of residential area 0.000 0.998 0.490 0.350 

Proportion of commercial area 0.000 1.000 0.242 0.274 

Proportion of African American population 0.000 0.978 0.222 0.246 

 

In the third step, we identify the best model by comparing model performance based on 

Bayesian Information Criterion (BIC) and corrected Akaike Information Criterion (AICc). The 

BIC and AICc for a given empirical model are equal to: 

BIC= -2LL+𝑁𝑝ln (𝑂𝑏𝑠.) (25) 



21 

 

AICc= -2LL+2𝑁𝑝+
2𝑁𝑝(𝑁𝑝+1)

𝑂𝑏𝑠.−𝑁𝑝−1
 (26) 

where LL is the log-likelihood value at convergence, 𝑁𝑝 is the number of parameters and Obs. is 

the number of observations. The model with the lower BIC and AICc is the preferred model. The 

corresponding LL, NP, BIC and AICc values are presented in Table 3. 

 

Table 3: Comparison of the Models 

Model LL NP BIC AICc 

Non-integrated  

(Separate OP and NB-OPFS models for observation units) 
-29,969.460 64 60,297.219 60,107.505 

Integrated models     

  Approach 1 -29,464.830 62 59,276.762 59,091.399 

  Approach 2 -29,945.160 59 60,220.627 60,042.034 

  Approach 3 -29,461.320 61 59,264.144 59,081.005 

  Approach 4 -29,939.490 57 60,198.090 60,024.169 

Integrated models with unobserved heterogeneity     

   Approach 3 with unobserved heterogeneity -29,401.650 66 59,172.796 58,978.867 

 

Based on these BIC and AICc values, several observations could be drawn. First, all the 

integrated models provide improved data fit as evidenced by the lower BIC and AICc values in 

comparison to the non-integrated model system. Second, within the integrated systems, our 

proposed integrated approach 3 provides the lowest BIC and AICc indicating the best data fit in 

comparison to the proposed other integrated approaches. For this selected model, we capture 

unobserved heterogeneity in the model and find that integrated model accounting for unobserved 

heterogeneity further improves model performance.  

 

5.2 Model Estimation Results 

The results of the proposed integrated model approach 3 with unobserved heterogeneity are 

discussed in this section. Table 4 presents the model estimation results for the proposed model. 

The reader would note that a positive (negative) sign for a variable in Table 4 indicates that an 

increase in the variable is likely to result in more (less) crashes as well as exhibit a higher (lower) 

impact on severity. The results of the non-integrated model system are presented in Table A1 in 

the Appendix. 

 

5.3 Disaggregate Level Attributes  

The threshold parameters demarcate the various severity categories and do not have any 

substantive interpretation.  

For the disaggregate level crash severity model, with respect to the driver and vehicle 

attributes, driving under influence of drugs and alcohol, distracted driving, and presence of 

passengers in the vehicle contribute to the likelihood of higher severity across the facility types 

while single vehicle crashes such as roll over and run-off-road crashes are likely to result in severe 

crashes for segment facility (see Das et al., 2009; Marcoux et al., 2024, 2018; Paleti et al., 2010; 

Pervaz et al., 2023; Yasmin and Eluru, 2013 for similar results).  

With regards to roadway attributes, the results show that divided roadways show lower 

impact on severity of segment crashes.  
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Table 4: Estimation Results of the Proposed Integrated Model Approach 3 with 

Unobserved Heterogeneity 

Disaggregate Level 

Variables 
Segment OP Intersection OP 

Est. t-stat. Est. t-stat. 

Threshold between NI-PI 0.507 4.661 0.722 37.327 

Threshold between PI-NII 1.206 11.287 1.453 59.456 

Threshold between NII-FII 2.001 17.142 2.300 66.553 

DUI related 0.361 2.241 0.659 7.609 

Distraction related 0.249 4.822 0.240 8.528 

Single vehicle 0.435 7.149 -- -- 

Driving with passengers 0.361 9.006 0.265 13.205 

Divided road  -0.395 -3.879 -- -- 

Late night  -- -- 0.091 1.873 

Dark lighted 0.083 2.047 0.098 3.123 

Dark not lighted 0.294 2.666 0.128 1.655 

Micro Level 

Variables 
Segment NB Segment OPFS 

Est. t-stat. Est. t-stat. 

Constant -0.464 -0.790 -- -- 

Threshold between PNI-PPI -- -- 0.493 10.476 

Threshold between PPI-PNII -- -- 1.062 20.394 

Threshold between PNII-PFII -- -- 1.746 25.455 

Ln (AADT) 0.224 3.813 -- -- 

Ln (Segment length) 0.645 7.747 0.043 1.927 

Speed limit <=40mph -- -- -0.217 -2.981 

Number of lanes 0.303 4.029 -- -- 

Ln (Sidewalk width+1) -0.158 -2.088 -- -- 

Traffic signal density 0.031 5.191 -- -- 

Standard deviation 0.009 2.589 -- -- 

Over dispersion parameter 1.797 10.541 -- -- 

Variables 
Intersection NB Intersection OPFS 

Est. t-stat. Est. t-stat. 

Constant 1.161 13.024 -- -- 

Threshold between PNI-PPI -- -- 0.405 8.303 

Threshold between PPI-PNII -- -- 1.094 21.267 

Threshold between PNII-PFII -- -- 1.933 32.844 

Proportion of arterial roads 0.143 1.650 -- -- 

Proportion of minor roads -- -- -0.107 -1.888 

Proportion of >= 3lane roads -- -- -0.179 -1.842 

Average inside shoulder width 0.016 2.024 -- -- 

Proportion of institutional area -0.667 -1.650 -- -- 

Proportion of recreational area -- -- 0.232 1.650 

Number of financial centers -0.075 -2.211 -- -- 

Over dispersion parameter 3.863 34.054 -- -- 

Macro Level 

Variables 
TAZ NB TAZ OPFS 

Est. t-stat Est. t-stat 

Constant  -1.391 -5.192 -- -- 

Threshold between PNI-PPI -- -- 0.590 10.564 

Threshold between PPI-PNII -- -- 1.271 24.968 

Threshold between PNII-PFII -- -- 2.034 29.141 

Ln (Truck AADT+1) 0.228 5.736 -- -- 
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Proportion of >= 3lane roads 0.511 3.660 -- -- 

Average inside shoulder width -- -- -0.016 -4.113 

Traffic signal density 0.706 2.647 -0.213 -1.823 

Number of restaurants  -- -- -0.056 -3.902 

Proportion of commercial area 0.311 3.224 -- -- 

Proportion of African American population 0.141 1.655 -- -- 

Over dispersion parameter 0.798 5.692 -- -- 

Parameters for Propensity Sum 

 Count Component  Fraction Component 

Segment crash record level (within micro) (𝜌𝑐𝑑𝑠) 0.536 13.244 -- -- 

Segment facility level (𝜌𝑐𝑠) 0.251 7.588 -- -- 

Intersection crash record level (within micro) 𝜌𝑐𝑑𝑖) 0.519 34.574 -- -- 

Intersection facility level (𝜌𝑐𝑖) 0.584 9.263 -- -- 

Segment crash record level (within macro) (𝜌𝑓𝑑𝑠𝑧) -- -- 0.047 2.743 

Unobserved Heterogeneity (Spatial Dependency) 

Correlation between segments in a zone (𝜽𝑧(𝑠)) 0.344 4.665 0.344 4.665 

Correlation between intersections in a zone (𝜽𝑧(𝑖)) 0.404 8.813 0.404 8.813 

Correlation between crash records at a segment (𝜽𝑠) 0.178 5.731 0.178 5.731 

Correlation between crash records at an intersection ( 𝜽𝑖) 0.126 7.256 0.126 7.256 

Log-likelihood: -29,401.650; Number of parameters: 66; BIC: 59,172.796; AICc: 58,978.867  

Note: “--” indicates variables are not statistically significant at 90% confidence level; NI = no-injury crashes, PI = 

possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal and incapacitating injury crashes; 

PNI = proportion of no-injury crashes, PPI = proportion of possible injury crashes, PNII = proportion of non-

incapacitating injury crashes, and PFII = proportion of fatal and incapacitating injury crashes. 

 

Among road, environment and weather attributes considered, the time of the day variables 

show that late night increases the likelihood of severe intersection crashes. The lower traffic 

volume and higher operating speeds during the period are likely to contribute to this higher severity 

(Pervaz et al., 2023). The results also show that compared to daylight and dawn/dusk conditions, 

dark conditions irrespective of light have a positive impact on severity across the facility types. 

This is because dark conditions often reduce visibility and increase reaction time on the roads (see 

Marcoux et al., 2018; Pervaz et al., 2023; Wang and Kim, 2019 for similar findings). The results 

highlight the role of lighting in improving safety and solutions such as improvement of intersection 

lighting, advanced warning signages for low visibility areas, educating drivers on the importance 

of using headlights, and staying alert could be effective countermeasures to reduce crashes during 

dark conditions across the facility types (FHWA, 2009). Interestingly, no weather variables are 

found to be significant in our selected integrated model. 

 

5.4 Micro Level Attributes  

 

5.4.1 Segment facility level  

In the segment facility level count component, the results show that the parameter associated with 

AADT is found to be positively associated with segment crash frequency. The results indicate that 

the segments with higher AADT have higher likelihood of crashes (as found in Alarifi et al., 2017; 

Cai et al., 2019; Pervaz et al., 2022; Wang et al., 2020). In addition, the parameter associated with 

the segment length has a positive impact on crash frequency. The result is plausible as the longer 

road segments typically indicate a higher exposure to traffic (Alhomaidat et al., 2020; Yu et al., 

2019; Zeng et al., 2020). The parameter for the number of lanes also shows positive association 
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with crash frequency. This is intuitive as the roads with higher number of lanes usually have higher 

traffic volume, higher lane changing rates and conflict risk resulting in higher number of crashes. 

Improving roadway markings and delineations, providing medians in multi-lane roadways, 

redistributing roadway space through road diet concept, driver education on lane changing risks 

and promoting safe driving are some proven effective safety countermeasures in this context 

(FHWA, 2022). The parameter associated with average sidewalk width shows negative effect on 

segment level crash count (as found in Bhowmik et al., 2019). Further, an increase in traffic signal 

per unit road length increases the likelihood of crashes. This is intuitive as a higher number of 

traffic signals may lead to an increase in certain types of crashes (such as rear-end crashes) in 

dilemma zones (Abdel-Aty and Wang, 2006; Lee et al., 2017; Park et al., 2020; Pervaz et al., 

2022). Providing adequate signal visibility, appropriate signal timing based on real time traffic 

conditions, installation of advanced warning signs, enforcement to reduce red-light running, and 

promoting attentive driving habits could be some potential countermeasures to reduce these 

crashes. 

In the segment level severity proportion component, the results found that the parameter 

associated with the segment length has a positive impact on crash severity proportion. The longer 

road segment with similar geometric attributes might encourage speeding of the vehicles, hence 

crash severity may increase. On the other hand, as expected, road segments with speed limit <=40 

mph show negative association with the severity of the segment crashes. Following these findings, 

installing appropriate speed limits for all road users, automated speed enforcement in high-speed 

zones, speed safety cameras, and variable speed limits could be considered as potential 

countermeasures against speeding crashes and crashes on high-speed roadways (FHWA, 2022). 

   

5.4.2 Intersection facility level  

In the intersection level count component, the results indicate that a higher proportion of arterial 

roads within intersection influence zone increase the crash frequency for intersection facility while 

average inside shoulder width decreases the crash frequency. Alternatively, higher proportion of 

institutional area and higher number of financial centers within the intersection influence zone 

decrease the intersection crash frequency.  

In the intersection level severity proportion component, we found that higher proportion of 

minor roads and proportion of roads with more than 2 lanes decrease the likelihood of the 

intersection crash severity. On the other hand, intersections in recreation areas are found to have a 

higher likelihood of severe intersection crashes.  

 

5.5 Macro Level Attributes  

In the macro level count component, the parameter associated with the truck AADT has a positive 

impact on zonal crash frequency. An increased presence of trucks in the zone can affect traffic 

flow, visibility and increase speed variance leading to higher number of crashes (Pervaz et al., 

2022). Further, a higher proportion of roads with more than 2 lanes and higher intersection density 

increases the likelihood of zonal crash frequency (as found in Pervaz et al., 2023).  

With regards to the land-use and sociodemographic attributes, proportion of commercial 

areas and proportion of African American population show positive impacts on zonal crash count. 

These findings are intuitive as commercial areas have commerce related activities such as 

loading/unloading, movement of heavy vehicles and increased traffic conflicts that might 

contribute to higher crash risk (Cui and Xie, 2021; Mohammadnazar et al., 2021; Pervaz et al., 

2023). Providing adequate turning areas for commercial vehicles, separate lanes for heavy 
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vehicles, informative display boards and warning signages for other road users, and safe and 

controlled loading/unloading activities could increase safety in these areas. For the proportion of 

African American population, the result might be a potential manifestation of inadequate facilities 

in low-income and minority neighborhoods in the region (Pervaz et al., 2022).  

In the severity proportion component, wider inside shoulder width parameter indicates a 

negative impact on zonal crash severity. This is intuitive as wider shoulders provide additional 

safety margin on the road, thus, contributing to reduced severity (see Chen et al., 2017). Further, 

higher traffic signal density is associated with lower severity (as found in Bhowmik et al., 2021; 

Pervaz et al., 2023). Among the built environment attributes, an increased presence of restaurants 

in a zone reduces the severity of the crashes. Similar findings are reported in previous studies 

(Pervaz et al., 2023; Yasmin and Eluru, 2018).  

 

5.6 Parameter for Propensity Sums  

As mentioned earlier, our integrated framework tested the significant effect of micro level 

(segment and intersection facility) and disaggregate level (segment crash record and intersection 

crash record) attributes and twelve additional scalar parameters (six coefficients for count 

component and six for severity proportion component) for propensity sums (composite score 

values) along with the macro level attributes to estimate macro level crash frequency by severity. 

For the proposed integrated model approach 3 with unobserved heterogeneity, the coefficients for 

the propensity sum variables from the micro level and disaggregate level models in the count 

component and severity component are presented in the lower row panel of Table 4. The positive 

sign of the parameter for facility types in count and severity proportion components indicates that 

a higher value of micro level and disaggregate level model propensity is likely to increase the 

number of crashes and the crash severity in the macro level.  

Table 4 shows that segment crash record level propensity sum (within segment facility), 

segment facility level propensity sum, intersection crash record level propensity sum (within 

intersection facility), and intersection facility level propensity sum show statistically significant 

effect with positive linkage for the count component while segment crash record level propensity 

sum (within macro) shows significant positive effect in the severity proportion component. The 

results clearly highlight that the higher propensities for crash frequency from segment and 

intersection facility types and the higher propensities from severity at the crash record level for the 

facilities are significantly associated with the increase of the crash frequency by severity at the 

zonal level.  

 

5.7 Unobserved Heterogeneity   

The proposed model system can capture unobserved heterogeneity in the form of spatial 

dependency among the micro-facilities (segments or intersections) in a zone as well as among the 

crash records within a micro-facility, correlations between count and severity components and 

random parameter effects of the variables across the observational resolutions. The spatial 

dependencies indicate that segments or intersections in the same zone and all the crash records at 

a segment or intersection are spatially correlated, and ignoring these correlations might lead to 

inaccurate estimates. The unobserved heterogeneity variables presented in Table 4 correspond to 

these common spatial correlations. The significant effects of these correlation parameters 

(𝜽𝑧(𝑠), 𝜽𝑧(𝑖), 𝜽𝑠,  𝜽𝑖) clearly highlight the presence of common unobserved factors across segments 

and intersections in the same zone and all the crash records in the same facility type. These 

common spatial correlations also highlight the unobserved interconnectedness in the hierarchical 
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resolutions considered in this study. Further, we attempted to capture the unobserved correlation 

(𝜂𝑧) between total crashes and crash proportions by severity levels, and random parameter effects 

(𝜻 and 𝝆) in our proposed model system. We found that the effect of the traffic signal density 

variable in the segment facility level is not same across the segments as highlighted by the 

significant standard deviation parameter in Table 4. However, no statistically significant 

correlation between crash count and severity proportion component was recovered in our dataset. 

 

5.8 Predictive Performance of the Model  

We conduct a comparison exercise between the proposed integrated model approach 3 and 

independent macro level model (NB-OPFS) by testing model performance on estimation and 

holdout samples. The exercise involves comparing the performance of the models by employing 

four statistical predictive measures including mean percentage bias (MPB), mean absolute 

deviation (MAD), mean squared prediction error (MSPE) and Root Mean Square Error (RMSE) 

(please see Bhowmik et al., 2018; Pervaz et al., 2023 for a detailed definition of these measures). 

The model with the values of MPB, MAD, MSPE, and RMSE closer to zero provides better 

predictions for the observed data. The results are presented in Table 5.  

 

Table 5: Predictive Performance of the Models 

Dataset Models Measures NI PI NII FII Total 

Estimation 

(N=270 

TAZs) 

Integrated approach 3 with 

unobserved heterogeneity MPB 
1.28 0.06 0.18 0.27 1.79 

Non-integrated NB-OPFS model 2.36 0.53 0.46 0.36 3.71 

Integrated approach 3 with 

unobserved heterogeneity MAD 
14.98 4.49 2.53 1.18 20.01 

Non-integrated NB-OPFS model 21.33 6.55 3.60 1.33 30.28 

Integrated approach 3 with 

unobserved heterogeneity MSPE 
503.70 43.61 14.03 2.99 907.48 

Non-integrated NB-OPFS model 1,160.50 106.04 29.09 4.26 2,379.53 

Integrated approach 3 with 

unobserved heterogeneity RMSE 
22.44 6.6 3.75 1.73 30.12 

Non-integrated NB-OPFS model 34.07 10.3 5.39 2.06 48.78 

Validation 

(N=30 

TAZs) 

Integrated approach 3 with 

unobserved heterogeneity MPB 
-4.78 -1.21 -1.86 0.06 -7.80 

Non-integrated NB-OPFS model -6.66 -1.62 -2.02 0.01 -10.29 

Integrated approach 3 with 

unobserved heterogeneity MAD 
27.57 4.75 4.01 1.42 35.06 

Non-integrated NB-OPFS model 39.77 7.61 6.08 1.43 52.02 

Integrated approach 3 with 

unobserved heterogeneity MSPE 
2,172.68 57.07 35.66 4.37 3,305.37 

Non-integrated NB-OPFS model 3,781.79 130.84 59.15 3.71 6,222.42 

Integrated approach 3 with 

unobserved heterogeneity  RMSE 
46.61 7.55 5.97 2.09 57.49 

Non-integrated NB-OPFS model 61.50 11.44 7.69 1.93 78.88 

Note: NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal 

and incapacitating injury crashes.  

 

The results clearly highlight that the proposed integrated model performs better than 

traditional independent NB-OPFS model across almost all fit measures computed for both 

estimation and validation datasets (3 exceptions, see underlined values).  
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6. ELASTICITY EFFECT ANALYSIS 

The results presented in Table 4 represent a joint interaction of disaggregate, micro and macro 

level variables and do not directly provide the actual magnitude of the effects of the variables on 

crash counts. To quantify the actual effects across three dimensions, we compute aggregate level 

elasticity effects. This study follows the elasticity effects estimation procedure demonstrated in 

Eluru and Bhat (2007) (see Eluru and Bhat, 2007 for a discussion on the methodology for 

computing elasticities). Following this procedure, the percentage change in the expected zonal 

crash counts by severity caused by the change in the disaggregate, micro and macro level 

exogenous variables are computed. For continuous variables, we obtain these changes in response 

to the increase of the explanatory variables by 10%. For indicator variables, we obtain the changes 

by changing the value of the variable to one for the subsample of observations for which the 

variable takes a value of zero and to zero for the subsample of observations for which the variable 

takes a value of one. The computed elasticities are presented in Table 6.  

 

Table 6: Elasticity Effects of the Variables  

Parameters %Total %NI %PI %NII %FII 

Segment Record Level (Disaggregate)      

DUI related 3.80 2.97 5.24 6.42 7.88 

Distraction related 2.73 2.14 3.77 4.60 5.63 

Single vehicle 3.10 3.71 6.54 8.00 9.81 

Driving with passengers 3.93 3.08 5.42 6.62 8.09 

Divided road  -4.45 -3.48 -6.15 -7.53 -9.25 

Dark lighted 0.91 0.71 1.26 1.53 1.87 

Dark not lighted 3.15 2.47 4.35 5.32 6.52 

Intersection Record Level (Disaggregate)      

DUI related 17.44 17.45 17.41 17.40 17.38 

Distraction related 5.86 5.87 5.85 5.84 5.83 

Driving with passengers 6.36 6.37 6.35 6.35 6.34 

Late night  2.21 2.22 2.21 2.21 2.21 

Dark lighted 2.33 2.33 2.33 2.33 2.32 

Dark not lighted 3.21 3.21 3.20 3.20 3.19 

Segment Facility Level (Micro)      

Ln (AADT) 0.51 0.51 0.51 0.51 0.51 

Ln (Segment length) 1.48 1.48 1.48 1.48 1.48 

Number of lanes 1.85 1.85 1.84 1.84 1.83 

Ln (Sidewalk width+1) -0.36 -0.36 -0.36 -0.36 -0.36 

Traffic signal density 0.25 0.25 0.25 0.25 0.25 

Intersection Facility Level (Micro)      

Proportion of arterial roads 0.71 0.71 0.71 0.71 0.71 

Average inside shoulder width 0.42 0.42 0.42 0.42 0.42 

Proportion of institutional area -0.25 -0.25 -0.25 -0.25 -0.25 

Number of financial centers -0.01 -0.01 -0.01 -0.01 -0.01 

Zonal Level (Macro)      

Ln (Truck AADT+1) 2.25 2.25 2.25 2.25 2.25 

Proportion of >= 3lane roads 1.79 1.79 1.77 1.77 1.75 

Average inside shoulder width 0.00 0.33 -0.60 -1.02 -1.51 

Traffic signal density 0.50 0.58 0.35 0.24 0.11 

Number of restaurants  0.00 0.22 -0.41 -0.66 -0.93 

Proportion of commercial area 0.79 0.80 0.78 0.77 0.76 

Proportion of African American population 0.39 0.39 0.39 0.39 0.39 
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In this study, we consider a subset of exogenous variables to estimate the elasticity effects. 

The table shows the percentage change in the number of crashes by different severities due to the 

changes in the disaggregate, micro and macro level exogenous variable of interest. For example, 

the elasticity estimate for the DUI related variable at segments and intersections indicates that 

driving under influence increases total crashes by 3.80% and 17.44% respectively. The elasticity 

estimates for the variable associated with segment facility level AADT indicates that the expected 

mean total crashes will increase by 0.51% for a 10% increase in the AADT of the segment. The 

effects of all the variables presented in Table 6 can be interpreted in a similar fashion. By analyzing 

these effects, several observations can be drawn. First, all the significant variables across the 

analysis resolutions are notably affecting the zonal level crash counts and severities. Second, there 

are differences in the elasticity effects across the expected number of crashes for different 

severities. Third, the most significant variables at the disaggregate level with respect to an increase 

in the expected number of zonal total crashes are driving with passengers, DUI related, dark not 

lighted, single vehicle and distraction related at the segment level and DUI related, driving with 

passengers, distraction related, dark not lighted, dark lighted and late night at the intersection level. 

Fourth, the most significant variables at micro level with respect to an increase in the expected 

number of fatal and incapacitating crashes are number of lanes, segment length, AADT, and traffic 

signal density at the segment facility level and proportion of arterial roads and average inside 

shoulder width at the intersection level. Finally, zonal truck AADT, proportion of 3-lane roads in 

the zone, proportion of commercial area and proportion of African American population in the 

zone are notably contributing to an increase in total, fatal and incapacitating crashes at the zonal 

level. 

 

7. CONCLUSIONS 

Transportation safety modelling techniques currently do not allow us to estimate the impact of 

observed and unobserved variables from different observation resolutions simultaneously within 

the same system. The integrated model systems overcome this limitation by capturing variable 

impacts from different analysis resolutions simultaneously within a unified framework while also 

accounting for unobserved heterogeneity. These integrated systems augment the macro level crash 

frequency estimation with the rich information flow from either micro level or disaggregate level. 

The current study proposes a unified framework that allows for the information flow of observed 

and unobserved variables from the micro level and disaggregate level into the macro level crash 

frequency by severity estimation. The approach involves summing up the crash propensities from 

micro level crash frequency computation and disaggregate level crash severity computation and 

incorporates the composite summed scores as independent variables within the macro level model 

estimation. 

For independent model system, the NB-OPFS framework can be employed at micro (for 

segment and intersection facility) and macro level (TAZ) to jointly estimate crash frequency by 

severity where the NB component models total crashes and the OPFS component determines the 

proportion of crashes by severity class for each spatial analysis unit. At disaggregate level, the 

crash severity variable can be examined using an OP model for each facility type (segment and 

intersection). The integrated system incorporates these building blocks from various observational 

resolutions into a unified framework with four model structures based on how the lower-level 

parameters are estimated. The proposed model system is estimated using data drawn from the City 

of Orlando, Florida for the year 2019. The study obtained 21,189 crash records (5,669 segment 

and 15,520 intersection crashes) for the disaggregate level model analysis. The records contain 
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crash-specific factors, driver and vehicle factors, roadway attributes, road environmental and 

weather information of each crash record. For macro and micro level analysis, the study aggregated 

the crash records over 300 traffic analysis zones (TAZs), and 1,818 segments and 4,184 

intersections, respectively. An exhaustive set of independent variables including roadway and 

traffic factors, land-use and built environment attributes, and sociodemographic characteristics are 

considered in these levels.  

A series of models was estimated for the empirical analysis of the proposed framework, 

including ordered probit model for facility-specific disaggregate level severity analysis, NB-OPFS 

model for micro level and macro level crash frequency by severity analysis, and four integrated 

models to jointly estimate crash frequency by severity. We compare the model systems and select 

the best model using Bayesian Information Criterion (BIC) and corrected Akaike Information 

Criterion (AICc). Based on the BIC and AICc values, we found that all the integrated systems 

provide improved data fit as evidenced by the lower BIC and AICc values in comparison to the 

non-integrated model system. Further, within the integrated systems, our proposed integrated 

approach 3 provides the lowest BIC and AICc indicating the best data fit in comparison to other 

integrated approaches. Finally, we captured unobserved heterogeneity in the form of spatial 

dependency of the segments and intersections in the same zone as well as all the crash records at 

a segment or intersection in the integrated approach 3 and find improved model performance. We 

also compared the performance of the proposed integrated model with the non-integrated model 

system by using several predictive performance measures using estimation and holdout samples. 

The measures also clearly highlighted the superiority of our proposed integrated model over the 

non-integrated model system.  

This study is not without limitations. The proposed integrated approach requires substantial 

data compilation and processing efforts for different observation resolutions as well as coding 

resources for model estimation. In addition, the model framework requires systematic analysis, 

i.e., the approach should start from disaggregate level analysis and involves step-by-step 

integration with micro level analysis followed by integration with zonal level analysis. The current 

study considered crash data for one year from Orlando city, Florida for the empirical analysis. It 

would be useful to consider data from multiple cities and/or states for multiple years while also 

accounting for potential spatial and temporal heterogeneity of the parameter estimates within the 

proposed integrated framework in future research efforts. It would also be useful to exhaustively 

test the impact of incorporating additional unobserved heterogeneity across all integrated 

approaches.  
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APPENDIX 

 

Table A1: Estimation Results of the Non-integrated Model System 

Disaggregate Level 

Variables 
Segment OP Intersection OP 

Est. t-stat Est. t-stat 

Threshold between NI-PI 0.713 7.114 0.734 44.528 

Threshold between PI-NII 1.402 13.708 1.460 75.057 

Threshold between NII-FII 2.185 20.253 2.299 80.107 

DUI related 0.360 2.111 0.667 7.401 

Distraction related 0.271 5.952 0.260 9.763 

Single vehicle 0.454 8.412 -- -- 

Driving with passengers 0.365 9.210 0.277 12.671 

Divided road  -0.185 -1.879 -- -- 

Late night  -- -- 0.090 2.104 

Dark lighted 0.087 1.853 0.103 3.561 

Dark not lighted 0.320 3.113 0.150 2.153 

Foggy weather -- -- 0.757 1.819 

Log-likelihood -3,724.584 -11,585.204 

Number of parameters 10 10 

Micro Level 

Variables 
Segment NB Segment OPFS 

Est. t-stat Est. t-stat 

Constant -0.464 -0.790 -- -- 

Threshold between PNI-PPI -- -- 0.493 10.476 

Threshold between PPI-PNII -- -- 1.062 20.394 

Threshold between PNII-PFII -- -- 1.746 25.455 

Ln (Segment length) 0.645 7.747 0.043 1.927 

Ln (AADT) 0.224 3.813 -- -- 

Speed limit <=40mph -- -- -0.217 -2.981 

Number of lanes 0.303 4.029 -- -- 

Ln (Sidewalk width+1) -0.158 -2.088 -- -- 

Traffic signal density 0.031 5.191 -- -- 

Over dispersion parameter 1.797 10.541 -- -- 

Log-likelihood -2,863.301 -642.898 

Number of parameters 7 5 

Variables 
Intersection NB Intersection OPFS 

Est. t-stat Est. t-stat 

Constant 1.161 13.024 -- -- 

Threshold between PNI-PPI -- -- 0.405 8.303 

Threshold between PPI-PNII -- -- 1.094 21.267 

Threshold between PNII-PFII -- -- 1.933 32.844 

Proportion of arterial roads 0.143 1.650 -- -- 

Proportion of minor roads -- -- -0.107 -1.888 

Proportion of >= 3lane roads -- -- -0.179 -1.842 

Average inside shoulder width 0.016 2.024 -- -- 

Proportion of institutional area -0.667 -1.650 -- -- 

Proportion of recreational area -- -- 0.232 1.650 

Number of financial centers -0.075 -2.211 -- -- 

Over dispersion parameter 3.863 34.054 -- -- 

Log-likelihood -7,917.508 -1,700.927 

Number of parameters 6 6 
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Macro Level 

Variables 
TAZ NB TAZ OPFS 

Est. t-stat Est. t-stat 

Constant  -2.500 -5.671 -- -- 

Threshold between PNI-PPI -- -- 0.917 3.977 

Threshold between PPI-PNII -- -- 1.597 7.213 

Threshold between PNII-PFII -- -- 2.361 10.568 

Ln (Truck AADT+1) 0.638 12.609 0.050 1.902 

Proportion of >= 3lane roads 0.309 1.734 -- -- 

Average inside shoulder width -0.020 -1.762 -0.017 -3.499 

Proportion of divided roads 0.635 3.454 -- -- 

Intersection density  1.283 2.659 -- -- 

Traffic signal density 1.060 1.914 -0.272 -2.476 

Number of restaurants  -- -- -0.037 -2.535 

Proportion of residential area 0.610 3.877 -- -- 

Proportion of commercial area 0.454 2.203 -0.100 -1.650 

Proportion of African American population 0.362 2.200 0.132 1.854 

Over dispersion parameter 1.053 7.453 -- -- 

Log-likelihood -1,316.534 -218.404 

Number of parameters 11 9 

Total log-likelihood: -29,969.460; Total number of parameters: 64; BIC: 60,297.219; AICc: 60,107.505 

 Note: Note: “--” indicates variables are not statistically significant at 90% confidence level; NI = no-injury crashes, 

PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal and incapacitating injury 

crashes; PNI = proportion of no-injury crashes, PPI = proportion of possible injury crashes, PNII = proportion of 

non-incapacitating injury crashes, and PFII = proportion of fatal and incapacitating injury crashes.  

 

 


