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ABSTRACT 1 

The current approaches for crash frequency and severity prediction in the Highway Safety Manual 2 

(HSM) do not employ vehicle mix information. In this research effort, we build advanced 3 

alternatives to HSM methods while incorporating vehicle mix information. Two model systems: 4 

(a) multivariate Poisson-lognormal model (MVPLN) and (b) negative binomial – ordered probit 5 

fractional split model (NB-OPFS) are estimated by incorporating vehicle mix variables. The 6 

developed model systems can also capture the influence of observed and unobserved heterogeneity 7 

of different independent variables including vehicle mix variables. We estimate the models for 8 

three facility types including Urban Arterial 4-Lane Divided segments, Rural 3-Leg STOP 9 

Controlled and Rural 4-Leg STOP Controlled intersections using data from four Highway Safety 10 

Information System (HSIS) states including California, Illinois, Minnesota, Washington, and three 11 

Non-HSIS states including Connecticut, Florida and Texas. For modeling crashes at each facility 12 

level, we adopt a pooled modeling technique that accounts for state specific observed and 13 

unobserved heterogeneity in the pooled datasets. A comprehensive set of independent variables 14 

including traffic volume, vehicle mix indicators, roadway characteristics and state specific 15 

indicators are considered in the analysis. The model comparison exercise is conducted based on a 16 

comprehensive set of quantitative and qualitative metrics. The study highlights how different 17 

methodological approaches perform better for different facilities. The study findings also 18 

underscore how capturing the observed and unobserved impacts of vehicle mix variables improves 19 

model performance in crash frequency and severity dimensions across the facility types. 20 

 21 

Keywords: Crash frequency, Crash severity, Vehicle mix variables, Pooled model, Unobserved 22 

effects.   23 
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1. BACKGROUND 1 

Transportation safety literature employs statistical or econometric models to examine crash 2 

occurrences and their consequences at various spatial levels such as site level, corridor level and 3 

area level. The site level and corridor level analysis are conducted to identify geometric design 4 

specific and/or engineering solutions to reduce the impact of crashes for the examined road entities 5 

(segment, intersection or network) while the area level (state, zone or block) studies facilitate the 6 

identification of regional hotspots, and adoption of area-wide planning and remedial solutions. The 7 

different types of crash models employed include univariate count models (where a single count 8 

variable such as total crashes is examined for a spatial unit (1–3)), simulation based multivariate 9 

and/or unobserved heterogeneity incorporated count models (where multiple crash count variables 10 

by crash type and/or severity are analyzed for a spatial unit in multivariate models including means 11 

and variances approaches (4–13), latent class models to incorporate class-specific heterogeneity 12 

(14, 15)), analytically closed form based count models (where multivariate distributions or 13 

approximations of multivariate distributions with an analytical closed form probability expression 14 

are employed (16, 17)), count-fractional split models (where the count component models total 15 

crashes and the fractional split component models fraction of crashes by severity/crash type (18–16 

20)), and integrated multi-resolution crash frequency models (where crash data from multiple 17 

observational resolutions are considered simultaneously within a unified system (21–24)).  18 

The findings from these research studies traditionally form the basis for safety planning 19 

and guidance provided by transportation agencies across the country. The American Association 20 

of State Highway and Transportation Officials (AASHTO) released the first edition of the 21 

Highway Safety Manual (HSM) in 2010 that provides a uniform guidance documenting methods 22 

and procedures for estimating total crashes, crashes by type and crashes by severity at the site 23 

level, project level and corridor level (25). While the HSM approaches are widely employed in 24 

transportation agencies, researchers are continuing to develop enhanced approaches that are 25 

practical and reliable for application across transportation jurisdictions in the country. Several 26 

research studies identified vehicle mix information as a relevant variable for inclusion in applied 27 

crash frequency and severity models (19, 20, 22, 26, 27). Vehicle mix, in this context, is defined 28 

as traffic volume (AADT) by vehicle type. The vehicle type information can be considered at a 29 

coarser resolution such as passenger car and truck AADT (or percentage). A finer resolution 30 

vehicle mix variable can include detailed information such as types of buses, trucks, utility 31 

vehicles, SUV and other vehicle classes (see (1, 2, 28–32) for studies employing this resolution 32 

for modeling).  33 

In the NCHRP project titled “The Effect of Vehicle Mix on Crash Frequency and Crash 34 

Severity”, we developed a practical approach to systematically incorporate the impact of vehicle 35 

mix on crash occurrence and severity (33). In this project, we considered the impact of different 36 

vehicle mix variables (coarse and fine resolution) on crash frequency and severity analysis. While 37 

the negative binomial model system is the most commonly incorporated framework in HSM, 38 

several competing frameworks have emerged in recent years. Eluru et al. (2024) tested two 39 

emerging methods: (a) multivariate Poisson-lognormal model and (b) negative binomial – ordered 40 

probit fractional split model (33). The model estimation procedures were implemented for a large 41 

number of facilities using data from multiple states and a user guidebook was developed. The 42 

current study builds on the NCHRP project effort along the following ways. First, the 43 

methodological frameworks developed in the NCHRP project were limited by practical 44 

considerations. Hence, the model building process was limited to a smaller set of variables with 45 

few interactions i.e., limited observed heterogeneity. Further, the models estimated did not account 46 
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for random parameters and/or common unobserved factors affecting the dependent variables. 1 

Thus, in our current research effort, we developed advanced variants of the modeling frameworks 2 

that account for additional observed and unobserved heterogeneity while accounting for the impact 3 

of vehicle mix. Second, the study builds on the pooled modeling approach employed in NCHRP 4 

project by incorporating additional interactions of jurisdiction-specific variables with other 5 

independent variables. For example, we examine how the impact of independent variables such as 6 

AADT vary by jurisdiction. The approach allows for custom development of jurisdiction specific 7 

models without the disadvantages of partitioning data by jurisdiction. Thus, the proposed approach 8 

accommodates state specific observed and unobserved heterogeneity. Finally, we recognize that a 9 

single model structure cannot outperform all alternatives for all facility types. Hence, in the current 10 

study we employ a detailed model comparison exercise based on a comprehensive set of 11 

quantitative and qualitative metrics to identify the most appropriate model system for each facility 12 

type. We compare the two novel frameworks with the current state of the art models employed in 13 

practice through the HSM model.  14 

For our analysis, we consider data from four Highway Safety Information System (HSIS) 15 

states including California, Illinois, Minnesota, Washington and three Non-HSIS states including 16 

Connecticut, Florida, and Texas. Finally, the guidance exercise is undertaken for different facility 17 

types to illustrate how there is no universal model system that offers enhanced fit across different 18 

facility types. In our analysis, we developed models for three different facility types based on HSM 19 

facility guidelines (see (33)). In this paper, we select Urban Arterial 4-Lane Divided segment 20 

(UA4LD) facility, Rural 3-Leg STOP Controlled (R3ST) and Rural 4-Leg STOP Controlled 21 

(R4ST) intersection facilities for our comparison exercise. We wanted to select different facility 22 

types to examine if and how the impact of vehicle mix varies by location (urban and rural) and 23 

facility type (segment and intersection). Further, we considered three facility types to highlight 24 

how a single framework does not necessarily offer improvement for all facility types. The 25 

comparison exercise allows us to see how different model systems might offer enhanced 26 

performance across facility types. 27 

 28 

2. METHODOLOGY 29 

In this study, we consider two advanced frameworks: a) negative binomial-fractional split 30 

framework (NB-OPFS), and b) multivariate Poisson-lognormal (MVPLN) model. The equation 31 

systems for NB-OPFS and MVPLN models are discussed in the following sections. 32 

 33 

2.1 Negative Binomial-Ordered Probit Fractional Split (NB-OPFS) Model 34 

In the NB-OPFS framework, NB component models the total crashes and the OPFS component 35 

estimates the fraction of crashes by severity levels.  36 

 37 

2.1.1 Count component (NB model) 38 

For a spatial unit 𝑙 (where 𝑙 is segment 𝑠 or intersection 𝑖), negative binomial (NB) model can be 39 

employed to estimate total crash count. The probability density function of NB model can be 40 

written as, 41 

𝑃(𝑐𝑙) =  
Γ (𝑐𝑙 +

1
𝛼𝑙

)

Γ(𝑐𝑙 + 1)Γ (
1
𝛼𝑙

)
(

1

1 + 𝛼𝑙𝜇𝑙
)

1
𝛼𝑙

(1 −
1

1 + 𝛼𝑙𝜇𝑙
)

𝑐𝑙

 
(1) 

 42 
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where, 𝑐𝑙 be the index for crashes occurring over a period of time in a spatial unit 𝑙 (segment 1 

or intersection). 𝑃(𝑐𝑙) is the probability that unit 𝑙 has 𝑐𝑙 number of crashes. Γ(∙) is the gamma 2 

function, 𝛼𝑙 is negative binomial overdispersion parameter and 𝜇𝑙 is the expected number of 3 

crashes occurring in the unit 𝑙 over a given time period. The equation for 𝜇𝑙 can be written as 4 

follows, 5 

𝜇𝑙 = 𝐸(𝑐𝑙|𝒀𝑙) = 𝑒𝑥𝑝((𝜹𝑙+ 𝜻𝑙)𝑌𝑙 + 𝜀𝑙 + 𝜂𝑙) (2) 

where, 𝒀𝑙 is a vector of explanatory variables associated with the analysis unit 𝑙. 𝜹𝑙 is a 6 

vector of coefficients to be estimated.  𝜻𝑙 a vector of unobserved factors on crash count propensity 7 

for unit 𝑙. 𝜀𝑙 is a gamma distributed error term with mean 1 and variance 𝛼𝑙. 𝜂𝑙 captures the 8 

influence of common unobserved factors that impact the total number of crashes and proportion 9 

of crashes by severity for unit 𝑙.  10 

 11 

2.1.2 Fractional split component (OPFS model) 12 

The modeling of crash proportions by severity levels is undertaken using the ordered probit 13 

fractional split model (OPFS). In the ordered outcome framework, the actual injury severity 14 

proportions (𝑦𝑙𝑘) are assumed to be associated with an underlying continuous latent variable (𝑦𝑙
∗) 15 

as follows: 16 

𝑦𝑙
∗ = ((𝜷𝒍+𝝆𝒍)𝑭𝑙 + 𝜉𝑙 ± 𝜂𝑙), 𝑦𝑙𝑘 = 𝑘 𝑖𝑓 𝜏𝑙(𝑘−1) < 𝑦𝑙

∗ < 𝜏𝑙𝑘 (3) 

The latent propensity 𝑦𝑙
∗ is mapped to the actual severity proportion categories 𝑦𝑙𝑘 by 𝜏𝑙 17 

thresholds (𝜏𝑙0 = −∞ 𝑎𝑛𝑑 𝜏𝑙𝐾 = +∞). 𝑭𝑙 is a vector of attributes (not including a constant) that 18 

influences the propensity associated with severity proportion categories for unit 𝑙. 𝜷𝒍 is the 19 

corresponding vector of mean effects. 𝝆𝒍 a vector of unobserved factors on severity proportion 20 

propensity for unit 𝑙.  𝜉𝑙 is an idiosyncratic error term assumed to be identically and independently 21 

standard normally distributed across unit 𝑙. 𝜂𝑙 term generates the correlation between equations 22 

for total number of crashes and crash proportions by severity levels and also allows for considering 23 

the influence of various unobserved factors affecting the frequency and proportion variables. The 24 

± sign in front of 𝜂𝑙 indicates that the correlation in unobserved individual factors between total 25 

crashes and crash proportions by severity levels may be positive or negative. A positive sign 26 

implies that facilities with higher number of crashes are intrinsically more likely to incur higher 27 

proportions for severe crashes. On the other hand, negative sign implies that facilities with higher 28 

number of crashes intrinsically incur lower proportions for severe crashes. To determine the 29 

appropriate sign one can empirically test the models with both ′ + ′ and ′ − ′ signs independently. 30 

The model structure that offers the superior data fit is considered as the final model. 31 

It is important to note here that the unobserved heterogeneity between total number of 32 

crashes and crash proportions by severity levels can vary across facilities. Therefore, in the current 33 

study, the correlation parameter 𝜂𝑙 is parameterized as a function of observed attributes as follows: 34 

𝜂𝑙 = 𝐺𝑙𝑸𝑙 (4) 

where, 𝑄𝑙 is a vector of exogenous variables, 𝑮𝑙 is a vector of unknown parameters to be 35 

estimated (including a constant). 36 

To estimate the model presented in equation 3, we assume that:    37 
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𝐸(𝑦𝑙𝑘|𝐹𝑙) = 𝐻𝑙𝑘(𝛽𝑙, 𝜏𝑙), 0 ≤ 𝐻𝑙𝑘 ≤ 1, ∑ 𝐻𝑙𝑘 = 1𝐾
𝑘=1  (5) 

𝐻𝑙𝑘 in our model takes the ordered probit probability (Λ) form for the severity category 𝑘.  1 

Given these relationships across different parameters, the resulting probability (Λ) for the 2 

ordered probit fractional split model takes the following form:  3 

Λ(𝑦𝑙𝑘 = 𝑘) = φ{𝜏𝑙𝑘 − 𝑦𝑙
∗} − φ{𝜏𝑙(𝑘−1) − 𝑦𝑙

∗} (6) 

where, φ(∙) is the standard normal cumulative distribution function.  4 

 5 

2.1.3 Model estimation 6 

In examining the model structure of total crash count and proportions of crashes by severity level, 7 

it is necessary to specify the structure for the unobserved vectors 𝑮, 𝜻, 𝝆 represented by Ω. In this 8 

study, it is assumed that the elements are drawn from independent realization from normal 9 

population: Ω~𝑁(0, (𝝈1
2, 𝝈2

2, 𝝈3
2)). Thus, conditional on Ω, the likelihood function for the 10 

integrated probability can be expressed as: 11 

𝐿𝑙 = ∫ 𝑃(𝑐𝑙) × ∏(Λ(𝑦𝑙𝑘 = 𝑘))
𝜛𝑙𝑑𝑙𝑘

𝐾

𝑘=1Ω

𝑑Ω 
(7) 

where, 𝑤𝑙 is a dummy variable taking a value of 1 if the corresponding unit 𝑙 has at least 12 

one crash over the study period and 0 otherwise. 𝑑𝑙𝑘 is the proportion of crashes in severity 13 

category 𝑘 for unit 𝑙. Finally, the log-likelihood function is:     14 

  𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑙)𝑙  (8) 

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 15 

presented in equation 8. To estimate the proposed model, we apply Quasi-Monte Carlo simulation 16 

techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 17 

function and maximize the logarithm of the resulting simulated likelihood function across 18 

individuals (please see (34, 35) for details). We use the GAUSS matrix programming software to 19 

run the models (36).  20 

 21 

2.2 Multivariate Poisson-Lognormal (MVPLN) Model 22 

Multivariate Poisson-lognormal (MVPLN) model estimates the factors affecting crashes across 23 

severity levels. Let n be the number of observations in facility (segments or intersections), J be the 24 

number of severity levels, and Y be a matrix of crash counts, with Yij be the number of crashes at 25 

location i with severity j. The crash count of the jth severity type at the ith entity, yij, follows a 26 

Poisson distribution with parameter λ𝑖𝑗, as shown in equations below (37).  27 

  𝑌𝑖𝑗|λij ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λij) (9) 

𝜆𝑖𝑗 = exp (𝑋𝑖𝑗′𝛽𝑗 + 𝜀𝑖𝑗) (10) 
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In this model, 𝑋𝑖𝑗 is a k-dimensional matrix of covariates, and 𝛽𝑗 is a vector of parameters. 1 

Notably, the parameter for some selected covariates 𝑋𝑡, for example 𝛽𝑗,𝑡 , are allowed to vary 2 

according to a multivariate normal distribution across all severity levels, while the other 3 

parameters remain constant. 4 

  𝛽𝑗,𝑡~𝑁𝐽(𝜇𝑡, Ω)  (11) 

Where 𝜇𝑡 is a mean vector of coefficients of covariate 𝑋𝑡 across all severities and Ω is 5 

corresponding variance-covariance matrix. All other parameters 𝛽𝑗,𝑘 (for 𝑘 ≠ 𝑡) are constant. The 6 

random effects 𝜀𝑖𝑗 are assumed to follow a multivariate normal distribution as: 7 

𝜀𝑖|∑~𝑁𝐽(0, ∑)     (12) 

The unrestricted covariance matrix ∑ captures the correlation between severity levels that 8 

is modeled using a J-dimensional multivariate normal distribution 𝑁𝐽. A full Bayesian approach is 9 

adopted for estimation of parameters, and this involves solving multi-dimensional integrals 10 

without a closed form solution and hence Markov Chain Monte Carlo (MCMC) simulation 11 

approach is used to determine parameter estimates. The MCMC algorithm is implemented using 12 

Just Another Gibbs Sampler (JAGS) to estimate posterior distributions of parameters (38). For all 13 

the regression coefficients, noninformative normal prior with zero mean and very high variance is 14 

used; and the inverse of variance-covariance is estimated using Wishart distributed prior as: 15 

 16 

Ω−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐼, 𝐽),   Σ−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐼, 𝐽);  𝐼 =
𝐽 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥                  

(13) 

 17 

3. DATA PREPARATION  18 

This study considers data from four Highway Safety Information System (HSIS) states including 19 

California, Illinois, Minnesota, Washington and three Non-HSIS states including Connecticut, 20 

Florida, and Texas for the analysis. The reader will note that we attempted to collect data from 21 

other HSIS and non-HSIS states such as Michigan, Maine, Utah, North Carolina, Ohio and South 22 

Dakota. However, data obtained from some states were outdated or had missing information for 23 

very important variables such as lane width, shoulder type, shoulder width, and median width. 24 

Hence, we did not include those states for our analysis. Based on the data availability by facility 25 

types, we considered data from California, Florida, Illinois, Minnesota, Texas, and Washington 26 

states for segment facilities and California, Connecticut, Florida, and Minnesota states for 27 

intersection facilities. This study considers Urban Arterial 4-Lane Divided (UA4LD) segment 28 

facility, Rural 3-Leg STOP Controlled (R3ST) and Rural 4-Leg STOP Controlled (R4ST) 29 

intersection facilities for the empirical analysis. For the analysis, we spatially assign the crashes 30 

for segment and intersection facilities by using ArcGIS tools. In this process, for assigning 31 

intersection-related crashes, a 250 feet buffer around the center of each intersection was considered 32 

and the crashes were spatially assigned (see earlier studies that adopted this approach (21, 39–41)). 33 

The information of the facility types and crash statistics across the facility types are shown in Table 34 

1. 35 

 36 

 37 

 38 
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TABLE 1 Information of the Facility Types 1 

State 
Crash Data 

(Year) 

Urban 4-Lane 

Divided Arterial  

Rural 3-Leg STOP 

Controlled 

Rural 4-Leg STOP 

Controlled 

Number 

of Sites 

Total 

Crashes  

Number 

of Sites  

Total 

Crashes 

Number 

of Sites 

Total 

Crashes 

HSIS 

California 2013 – 2017 1,549 17,488 6,197 977 1,850 850 

Illinois 2013 – 2017 21,600 160,786 --a -- -- -- 

Minnesota 2011 – 2015 3,281 9,959 1,699 5,900 1,953 9,525 

Washington 2014 – 2018 1,374 3,753 -- -- -- -- 

Non-HSIS 

Connecticut 2015 - 2019 --b -- 198 446 46 200 

Florida 2015 - 2019 1,533 258,375 746 5,192 185 1,908 

Texas 2015 - 2019 6,342 25,822 -- -- -- -- 

Total 35,679 476,183 8,840 12,115 4,034 12,483 

Estimation Samples 7,500 93,832 6,500 8,991 3,000 9,310 

Validation Samples 20,000 279,778 2,340 3,524 1,034 3,173 

Note: a) The intersection file is only available for 2 HSIS states including California and Minnesota and 2 non HSIS 2 
states including Connecticut and Florida. b) For Connecticut state, the crash counts for the selected segment facility 3 
were very low in addition to the missing information of some important variables. Hence, we excluded Connecticut 4 
state from segment facility. 5 
 6 

For modeling crashes at each facility level by using data from all the analysis states, we 7 

adopt a pooled modeling technique. In this technique, for each facility, we gather the datasets from 8 

all the analysis states and prepare a single dataset for model estimation process. This single pooled 9 

dataset is then split into estimation dataset (used for the model development) and validation dataset 10 

(used for the model performance assessment) by randomly sampling the data. For instance, for 11 

UA4LD segment facility, the data from all six states resulted in a pooled dataset of 35,679 12 

segments. From these segments, 7,500 segments were randomly drawn for model estimation while 13 

drawing 20,000 different segments for model validation. A similar procedure was followed for the 14 

two intersection facilities.  15 

 16 

3.1 Variables Considered 17 

In this study, a five-point severity scale KABCO is considered for the crash analysis by severity 18 

type. KABCO is a widely used injury severity scale where K = fatal crashes (crashes which result 19 

in at least a death within 30 days of crashes), A = incapacitating crashes (non-fatal crashes which 20 

result in disabling injuries, such as broken bones, severed limbs, skull/chest/abdominal injuries, 21 

etc. and usually require hospitalization and transport to medical facility), B = non-incapacitating 22 

crashes (non-fatal crashes which result in non-disabling but evident injuries, such as lacerations, 23 

scrapes, bruises, etc.), C = possible injury crashes (non-fatal crashes which result in no visible 24 

signs of injury but complaint of pain, momentary unconsciousness, nausea or hysteria), and O = 25 

no injury crashes (42–44). For NB-OPFS model framework, total crash counts and crash 26 

proportion by each severity class are considered as dependent variables while for multivariate 27 

Poisson-lognormal modeling approach, crash counts by each severity level are considered. The 28 

severity proportion in the NB-OPFS model for a specific severity class is defined by crash counts 29 

by that severity class divided by total number of crashes (total of all severity classes). The severity 30 
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proportions are: 1) proportion of fatal crashes (KP), 2) proportion of incapacitating crashes (AP), 1 

3) proportion of non-incapacitating crashes (BP), 4) proportion of possible injury crashes (CP), 2 

and 5) proportion of no injury crashes (OP).  3 

    In terms of independent variables, a comprehensive set of variables including traffic 4 

volume information (aggregate level AADT), vehicle mix indicators (such as truck percentage, 5 

single unit truck percentage, and high truck zone indicator (a detailed definition of this variable is 6 

provided in Section 3.1.1 Approaches and assumptions of vehicle mix data)), roadway 7 

characteristics (such as lane width, median width, speed limit, shoulder type and width) and state 8 

specific indicators (variables reflecting the state specific differences caused by the driver behavior, 9 

roadway design and operations) are considered for the crash frequency analysis. The reader would 10 

note that we observed varying speed limit distributions across facility types in different states (see 11 

Table 2). The variation in speed limit distributions could be attributed to several factors such as 12 

state-specific geography, land-use, roadway environment, traffic intensity, and state-specific 13 

regulations. 14 

 15 

TABLE 2  Distribution of Speed Limits Across the States 16 

State 

UA4LD R3ST R4ST 

SL<=40 

mph 

SL 41-55 

mph 

SL>55 

mph 

SL<=40 

mph 

SL 41-55 

mph 

SL>55 

mph 

SL<=40 

mph 

SL 41-55 

mph 

SL>55 

mph 

CA 15.19 33.23 51.58 15.20 39.43 45.37 9.62 20.19 70.19 

CT -- -- -- 55.48 44.52 0.00 54.76 45.24 0.00 

FL 49.53 40.19 10.28 23.64 59.09 17.27 26.52 62.88 10.61 

IL 51.52 35.36 13.12 -- -- -- -- -- -- 

MN 0.00 100.00 0.00 3.98 90.46 5.56 2.29 92.17 5.54 

TX 14.35 22.89 62.76 -- -- -- -- -- -- 

WA 0.00 100.00 0.00 -- -- -- -- -- -- 
Note: The values in the table indicate percentages; -- indicates that the state is excluded from the analysis for that 17 
facility type due to data unavailability. 18 
 19 

3.1.1 Approaches and assumptions of vehicle mix data 20 

We explored the vehicle mix data availability across our study states. We used the observed vehicle 21 

mix data in the model estimation process for the states where data are available. Alternatively, if 22 

vehicle mix data was not available, we adopted the Quasi-induced exposure (QIE) technique for 23 

generating the vehicle mix data across each facility type within the state, and then used the 24 

generated vehicle mix data in crash frequency and severity models for the corresponding facility 25 

(please see (45, 46) for a detailed discussion on the QIE approach). By exploring the vehicle mix 26 

data availability and resolution of the vehicle classification (coarse and fine) across the seven 27 

states, we found that the data for passenger cars and trucks are available for the majority of the 28 

states, at least at the coarser resolution. At a finer resolution, we did not obtain any data on 29 

passenger cars. However, categorization of trucks is available for five states including California, 30 

Illinois, Minnesota, Washington, and Texas. Among these states, 4 states have available data for 31 

single unit trucks. Other finer resolutions such as combination unit or multi-unit are available for 32 

1 or 2 states only. Therefore, in the current study, we used total truck percentage and single unit 33 

truck percentage as the vehicle mix information variables. To examine the additional impacts of 34 

truck traffic, we tested the impact of trucks in locations with high truck volume, referred to as high 35 

truck zone. These locations are defined as having truck percentage ≥ 85th percentile of truck traffic 36 
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percentage for the corresponding facility type. We considered 85th percentile value as it is a 1 

commonly used metric in transportation engineering, such as 85th percentile speed. In addition to 2 

the direct vehicle mix variables, we incorporated several interaction variables between high truck 3 

zone and other geometric attributes to capture the non-linear effect of truck percentage on crash 4 

frequency and severity. 5 

In estimating the model, several functional forms, and combination of variables are 6 

considered and those that provide the best fit are retained in the final specification. The final 7 

specification of the models is based on removing the statistically insignificant variables in a 8 

systematic process based on 90% confidence level. The summary statistics of the variables 9 

considered for the final model estimation across the facilities are presented in Table A4 to Table 10 

A6 in the Appendix.  11 
 12 
4. EMPIRICAL ANALYSIS  13 

 14 

4.1 Model Specification and Overall Measure of Fit 15 

In this study, a negative binomial-ordered probit fractional split (NB-OPFS) model framework and 16 

a multivariate Poisson-lognormal (MVPLN) model framework are employed to estimate crash 17 

frequency for Urban Arterial 4-Lane Divided (UA4LD) segment facility, Rural 3-Leg STOP 18 

Controlled, and Rural 4-Leg STOP Controlled intersection facilities while incorporating vehicle 19 

mix information. We also estimate HSM predictive methods for three facilities by following the 20 

equations described in Chapter 11 and Chapter 12 of part C of HSM 2010 (25). The HSM methods 21 

provide the benchmark for newly developed model systems. Since three model systems are 22 

different, instead of depending on log-likelihood and Bayesian Information Criterion (BIC) value, 23 

we evaluate model predictive performance by employing two statistical measures of fit: mean 24 

absolute deviation (MAD) and mean squared prediction error (MSPE) (please see (23, 27) for a 25 

detailed definition of these measures). The model with the lower values of MAD and MSPE 26 

provides better predictions for the observed data. The MAD and MSPE values for all severity 27 

levels by facility for the three models are presented in Table 3.  28 

Table 3 presents the MAD and MSPE values for total crash frequency and crash frequency 29 

by five severity classes. For each facility type, we obtained the values from both estimation and 30 

validation datasets for the three model frameworks. The reader would note that a single framework 31 

might not perform consistently better across all the dimensions for a facility type. Therefore, 32 

identifying the best model for each facility type is challenging. To this end, we adopt two 33 

approaches that consider the model performances across all the estimated dimensions. The first 34 

approach, defined as total crash approach considers MAD and MSPE values from total crash 35 

frequency predictions (sum of crash frequency across all severity levels). Alternatively, the second 36 

approach, defined as severity level scoring approach considers MAD and MSPE values from five 37 

severity levels. The following sections discuss both approaches. 38 

 39 

4.1.1 Total crash approach 40 

In this approach, we identify the model that provides the lowest MAD and MSPE with respect to 41 

total crash frequency. The values of the MAD and MSPE measures are presented in the 10th column 42 

and the selected models based on this approach are presented in 12th column in Table 3.  43 

 44 

4.1.2 Severity level scoring approach 45 

In this approach, the model that performs better for the severity level is awarded a point and the 46 

total score for each model across the severity levels is aggregated.  47 
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TABLE 3 Predictive Performance and Model Selection Process 1 

Facility Dataset Measures Models O C B A K Total 
Severity 

Score 

Total 

Crash App. 

Severity  

Scoring App. 

Final 

Model 

UA4LD 

Estimation 

MAD 

HSM 9.977 1.507 1.087 0.898 0.075 12.581 1 

NB-OPFS MVPLN 

NB-OPFS 

NB-OPFS 8.909 1.450 1.080 1.057 0.086 11.479 3 

MVPLN 9.976 1.346 1.006 0.788 0.065 12.662 4 

MSPE 

HSM 1,335.919 33.522 9.507 4.340 0.078 2,002.542 1 

NB-OPFS NB-OPFS NB-OPFS 1,127.443 31.901 8.041 7.023 0.077 1,680.627 3 

MVPLN 2,315.543 56.700 10.661 3.146 0.066 3,566.045 2 

Validation  

MAD 

HSM 10.743 1.705 1.213 0.891 0.078 13.639 0 

NB-OPFS MVPLN NB-OPFS 9.764 1.651 1.205 1.086 0.090 12.669 2 

MVPLN 11.063 1.528 1.006 0.788 0.062 14.671 4 

MSPE 

HSM 2,463.751 56.808 17.231 4.748 0.102 3,574.123 2 

NB-OPFS MVPLN NB-OPFS 2,352.022 63.135 16.816 3.010 0.100 3,427.745 2 

MVPLN 2,963.729 78.095 10.661 3.146 0.068 4,651.209 3 

R3ST 

Estimation 

MAD 

HSM 1.094 0.372 0.279 0.111 0.039 1.677 1 

NB-OPFS MVPLN 

NB-OPFS 

NB-OPFS 0.751 0.287 0.211 0.091 0.043 1.110 4 

MVPLN 0.817 0.289 0.223 0.091 0.039 1.579 5 

MSPE 

HSM 10.338 0.921 0.512 0.161 0.027 23.462 1 

NB-OPFS NB-OPFS NB-OPFS 6.969 0.688 0.377 0.135 0.027 15.110 5 

MVPLN 7.860 0.680 0.451 0.126 0.026 22.873 3 

Validation 

MAD 

HSM 1.175 0.402 0.294 0.110 0.044 1.799 1 

NB-OPFS 
NB-OPFS 

/MVPLN 
NB-OPFS 0.809 0.308 0.234 0.097 0.047 1.214 4 

MVPLN 0.891 0.314 0.248 0.097 0.042 1.334 4 

MSPE 

HSM 8.387 0.873 0.392 0.113 0.027 17.944 1 

NB-OPFS NB-OPFS NB-OPFS 6.236 0.746 0.343 0.102 0.027 13.177 5 

MVPLN 7.801 0.759 0.403 0.103 0.027 15.958 3 

R4ST 

Estimation 

MAD 

HSM 2.039 0.939 0.555 0.177 0.126 3.339 1 

MVPLN MVPLN 

MVPLN 

NB-OPFS 1.640 0.771 0.472 0.176 0.142 2.637 3 

MVPLN 1.601 0.799 0.462 0.157 0.122 2.583 5 

MSPE 

HSM 328.781 60.992 3.149 0.332 0.091 780.322 3 

NBOPFS MVPLN NB-OPFS 323.821 59.991 2.816 0.309 0.092 765.033 4 

MVPLN 327.824 60.333 2.785 0.304 0.079 773.041 5 

Validation  

MAD 

HSM 1.828 0.832 0.574 0.229 0.109 3.038 1 

MVPLN MVPLN NB-OPFS 1.473 0.682 0.480 0.198 0.136 2.327 4 

MVPLN 1.427 0.710 0.469 0.183 0.115 2.274 5 

MSPE 

HSM 27.342 4.153 1.355 0.245 0.067 64.858 2 

MVPLN MVPLN NB-OPFS 22.833 4.070 1.105 0.206 0.073 54.896 4 

MVPLN 22.973 3.976 1.096 0.204 0.062 54.889 5 

2 
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Specifically, we identify the model with the lowest measures (MAD/MSPE) by severity level in 1 

the dataset and assigned a value of 1 while a value of 0 is given to the other models. In this process, 2 

two or all models are considered as similar performing models if the difference in the predictive 3 

measures are less than 10% relative to the top performing model. The final scores for each model 4 

are computed by adding the score across severity levels for each facility type (as shown in 11th 5 

column in Table 3). The model with the highest score at a facility type is considered as the top 6 

performing model for that facility type (as shown in 13th column). 7 

 8 

4.1.3 Final model selection process 9 

Based on the two approaches discussed above, the model that performs better across the measures 10 

and datasets is considered as the final model for the respective facility type. The final selected 11 

models across facility types are shown in the Final Model Column in Table 3. The results show 12 

that both NB-OPFS and MVPLN frameworks with vehicle mix data performed better than HSM 13 

predictive model that does not consider vehicle mix data. Within these advanced frameworks, the 14 

NB-OPFS models are selected for UA4LD segment and R3ST intersection facility while the 15 

MVPLN model is selected for R4ST intersection facility type. 16 

 17 

4.2 Accommodating Unobserved Heterogeneity in the Final Selected Models 18 

To capture the parameter variability across the sample, we estimate the random parameters in our 19 

selected model system. We compare the random parameter models with their independent 20 

counterparts (fixed parameter models) in terms of log-likelihood (LL) and BIC values (as shown 21 

in Figure 1) to see the improvement of the models. Figure 1 shows that models that capture random 22 

parameter effects perform better than fixed parameter models across facility types.  23 

 24 

 25 
 26 

Figure 1 Comparison between random parameters and fixed parameters model frameworks 27 

 28 
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4.3 Model Estimation Results 1 

This section provides a detailed discussion of the factors affecting crash count by severity levels 2 

across the facility types considered in the analysis. Since random parameters models are found to 3 

have improved data fit as evidenced by lower LL and BIC values in Figure 1, we discuss the results 4 

of random parameter NB-OPFS and random parameter MVPLN models. Tables 4, 5 and 6 5 

represent the final selected models with random parameter effects. The reader would note that a 6 

positive (negative) sign for a variable in Tables indicates that an increase in the variable is likely 7 

to result in more (less) crashes as well as exhibits a higher (lower) impact on severity. We discuss 8 

the variables effects by facility types in the following sections. The results of the fixed parameter 9 

models are presented in Table A1 to Table A3 in the Appendix. 10 

 11 

4.3.1 Urban arterial 4-lane divided (UA4LD) segment facility  12 

In the crash count component of UA4LD segment facility, the model constant does not have any 13 

substantive interpretation. However, our model shows that the model constant value varies across 14 

the jurisdictions (states). For Minnesota and Washington states, the values are different from the 15 

other states as shown by state indicator variables in Table 4. For instance, for all the states other 16 

than Minnesota and Washington, the constant value is -1.767, and for Minnesota and Washington, 17 

the constants are -9.538 (-1.767-7.771) and -7.968 (-1.767-6.201) respectively. These differences 18 

highlight the region-specific influences on the estimates. It is to be noted that the segment length 19 

and number of years (5) are used as an offset variable in the NB model specification. 20 

With respect to the traffic characteristics, several variables were found to be significant in 21 

our model. As expected, the parameter associated with AADT shows a positive impact on the 22 

likelihood of total crashes. AADT serves as a surrogate for exposure for traffic volume and 23 

therefore, with higher exposure, the likelihood of crash risk increases (see (21, 22, 47) for similar 24 

results). The interactions of AADT variables and state variables indicate that the effect of the 25 

AADT varies for Minnesota and Washington states. Further, the parameter associated with AADT 26 

also exhibits significant variation across segments as evidenced by the significant random 27 

parameter (indicated by the standard deviation variable in Table 4). Among the vehicle mix 28 

variables, a higher percentage of truck traffic and percentage of single unit truck traffic are found 29 

to decrease the crash risk in the UA4LD segments (see (48) for similar finding). The results 30 

possibly are the effects of cautious driving with the increased percentage of heavy vehicles on the 31 

UA4LD segments. Additionally, the effect of the percentage of single unit truck traffic on crash 32 

count propensity varies significantly across the segments as indicated by the standard deviation 33 

parameter in Table 4. 34 

With regards to the roadway characteristics, the results show that segments with wider lane 35 

(>12 feet) and wider median width (> 20 feet) show a negative impact on crash count compared 36 

to the lane width ≤12 feet and median with ≤ 20 feet, respectively (as found in (49)). Interestingly, 37 

a wider lane width (>12 feet) in the high truck zone is found to further reduce the crash risk. 38 

Further, narrow outside and inside shoulder width (<8 feet) are found to increase crash risk in the 39 

UA4LD segment facility compared to the wider shoulder width (≥8 feet) (see (49) for similar 40 

results). Again, the results show that the narrow outside shoulder (<8 feet) in the high truck zone 41 

further increases the crash risk. The paved shoulder type is found to reduce crash risk in the 42 

segments and the effect gets moderated for California state as indicated by the interaction variable. 43 

The speed limit >55 mph variable also shows similar effect, perhaps reflecting the better roadway 44 

facilities and design conditions on sections with higher speed limits (48, 50). 45 

 46 
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TABLE 4 Model Estimation Results of Random Parameters NB-OPFS Model for UA4LD 1 

Segments (N=7,500) 2 

Variable Names 
Count Component 

Severity Proportion 

Component 

Estimates t-stat Estimates t-stat 

Constant -1.767 -5.424 -- -- 

State-Minnesota -7.771 -6.146 -- -- 

State-Washington -6.201 -3.379 -- -- 

Ln (Year = 5) 1.000 -- -- -- 

Threshold Parameters 

Threshold between OP-CP -- -- 0.708 4.648 

Threshold between CP-BP -- -- 1.010 6.610 

Threshold between BP-AP -- -- 1.455 9.511 

Threshold between AP-KP -- -- 2.664 16.620 

Traffic Characteristics 

Ln (AADT) 0.436 13.860 0.033 2.279 

Standard Deviation 0.061 18.194 -- -- 

Ln (AADT)* State-Florida -- -- -0.013 -3.797 

Ln (AADT)* State-Minnesota 0.722 5.712 -- -- 

Ln (AADT)* State-Washington 0.510 2.832 -- -- 

%Truck  -0.026 -4.204 -0.007 -3.120 

%Single unit truck -0.043 -4.128 -- -- 

Standard Deviation 0.028 1.657 -- -- 

Roadway Characteristics 

Ln (Segment length, miles) 1.000 -- 0.036 3.136 

Lane width (base: ≤12 feet)     

LW>12 -0.171 -2.231 -- -- 

HTZ*LW>12 -0.982 -4.089 -- -- 

Median width (base: ≤20 feet)     

MW>20 -0.293 -5.187 -0.065 -2.252 

Outside shoulder width (base: ≥8 feet)     

OSW<8 0.449 8.226 -- -- 

HTZ*OSW<8 0.433 4.453 -- -- 

Inside shoulder width (base: ≥8 feet)     

ISW<8 0.372 3.661 -0.133 -2.680 

Shoulder type (base: unpaved)     

Paved -0.716 -8.899 -- -- 

Paved* State-California 0.442 3.015 -- -- 

Speed limit (base: ≤55 mph)   

SL>55 -0.725 -5.484 0.173 3.723 

SL>55* State-California 0.430 2.467 -- -- 

Overdispersion Parameter 

Constant 1.810 32.108 -- -- 

State-California -0.950 -7.456 -- -- 

State-Washington -1.679 -17.085 -- -- 

Unobserved Heterogeneity (Correlation between crash count and severity component) 

%Truck  0.001 1.972 0.001 1.972 

Log-Likelihood: -24,122.100; BIC: 48,574.338; Number of Parameters: 37 
Note: -- denotes that the variable is not significant at 90% significant level. 3 



Pervaz, Joshi, Bhowmik, Parvez, Wang, Ivan, and Eluru 

 

15 

 

In the severity proportion component, interestingly the parameter associated with the 1 

AADT shows positive effect. While this finding is counterintuitive, it requires further 2 

investigation. The results also show that the effect of AADT is different for Florida state as 3 

indicated by interaction variable. Among the vehicle mix variables, a higher percentage of truck 4 

traffic is found to reduce the severity risk. In contrast, the longer urban arterial segments are found 5 

to contribute to increased severity. Usually, drivers in the longer segments with no/little change in 6 

geometry tend to drive at a higher speed than usual, which might increase the risk of severe crashes. 7 

Wider median width (> 20 feet) and narrow inside shoulder width (<8 feet) are found to decrease 8 

severity of crashes. A wider median may provide additional safety zone in crashes while narrow 9 

shoulders may discourage higher operating speed. Alternatively, as expected, urban arterial 10 

segments with speed limit higher than 55 mph have higher probability of severe crashes.  11 

The proposed model system can capture the unobserved correlation between total crash 12 

count and crash proportion by severity levels. In our testing, we found the percentage of truck 13 

traffic exhibit significant unobserved correlation that affects both crash count and crash severity. 14 

 15 

4.3.2 Rural 3-leg STOP controlled (R3ST) intersection facility  16 

In the crash count component of R3ST intersections, the model constant does not have any 17 

substantive interpretation. However, our model shows that the model constant is not same across 18 

the states and the value is different for Florida and Minnesota states as indicated by state indicator 19 

variables in Table 5. These deviations highlight the region-specific influences on the estimates. 20 

We use the number of years (5) as an offset variable in the NB model specification. 21 

Among the traffic characteristics, variables associated with both major road AADT and 22 

minor road AADT are found to have positive association with total crash count for R3ST 23 

intersections (as found in (51)). Further, the impact of major road AADT varies across R3ST 24 

intersections as indicated by significant standard deviation parameter in Table 5. In the case of 25 

Minnesota state, the net impact of major road AADT on crashes is further moderated. Among the 26 

vehicle mix indicators, the results show that a higher percentage of major road trucks is more likely 27 

to increase the number of intersection crashes (as found in (6, 51)). This could be due to the 28 

visibility issues as wider space is required by heavy vehicles for turning movement and differential 29 

speeds with other vehicles at the intersections. Among the roadway attributes, intersections with 30 

major road speed limit higher than 55 mph are more likely to increase the total number of crashes 31 

(as found in (52)). 32 

In the severity component for R3ST intersections, major road AADT is found to have a 33 

negative impact on crash severity. This could be due to the lower operating speed in the presence 34 

of higher volume of traffic at the intersection (6, 51). Further, intuitively, intersections with major 35 

roads posted speed limit ≤ 40 mph are found to be associated with lower probability of severe 36 

crashes. 37 

 38 

TABLE 5 Model Estimation Results of Random Parameters NB-OPFS Model for R3ST 39 

Intersection (N=6,500) 40 

Variable Names 
Count Component 

Severity Proportion 

Component 

Estimates t-stat Estimates t-stat 

Constant -10.880 -34.999 -- -- 

State-Connecticut -- -- -0.291 -2.838 

State-Florida 2.795 34.291 -- -- 

State-Minnesota 2.989 5.844 -- -- 
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Variable Names 
Count Component 

Severity Proportion 

Component 

Estimates t-stat Estimates t-stat 

Ln (Year = 5) 1.000 -- -- -- 

Threshold Parameters 

Threshold between OP-CP -- -- -0.124 -0.673 

Threshold between CP-BP -- -- 0.451 2.429 

Threshold between BP-AP -- -- 1.128 6.124 

Threshold between AP-KP -- -- 1.633 8.686 

Traffic Characteristics 

Ln (Major road AADT) 0.588 15.338 -0.041 -2.004 

Standard Deviation 0.061 7.054 -- -- 

Ln (Major road AADT) * State-Minnesota -0.125 -2.219 -- -- 

Ln (Minor road AADT) 0.502 25.117 -- -- 

% Major road truck 0.012 3.108 -- -- 

Roadway Characteristics 

Major road speed limit (base: 41-55 mph)     

Maj SL<=40 -- -- -0.242 -3.574 

Maj SL >55 -0.237 -3.815 -- -- 

Overdispersion Parameter 

Constant 0.690 6.487 -- -- 

State-Florida -0.251 -2.569 -- -- 

Log-Likelihood: -8,174.985; BIC: 16,516.782; Number of Parameters: 19 
Note: -- denotes that the variable is not significant at 90% significant level. 1 
 2 

4.3.3 Rural 4-leg STOP controlled (R4ST) intersection facility 3 

The results of the RPMVPLN model show that the model constant in the framework is not the 4 

same across the states and the values are different for California and Florida states as indicated by 5 

state indicator variables in Table 6. These deviations highlight the region-specific influences on 6 

the estimates. We use the number of years (5) as an offset variable in the model specification. 7 

With respect to the traffic characteristics, the findings show that the parameters associated 8 

with AADT on both major and minor roads are positively correlated with crash counts across all 9 

severities (similar results are found in (6, 51)). Interestingly, a higher percentage of trucks on major 10 

roads generally reduces crash counts, especially for more severe crashes, while the same 11 

percentage on minor roads increases fatal crash counts in R4ST intersections. The random 12 

parameter effects for the percentage of trucks on major roads show variability across intersections 13 

and severity levels, as indicated by the main-diagonal values. The non-diagonal values represent 14 

the covariance among severity levels due to these random parameter effects, suggesting 15 

interdependencies influenced by the truck percentage.  16 

 17 

TABLE 6 Model Estimation Results of Random Parameters MVPLN Model for R4ST 18 

Intersection (N=3,000) 19 
Variable Names O C B A K 

Constant -10.447 -10.628 -10.683 -10.262 -8.873 

State-California -1.789 -2.026 -2.162 -1.797 -1.165 

State-Florida 1.659 1.092 1.533 1.903 1.006 

Ln (Year = 5) 1.000 1.000 1.000 1.000 1.000 

Traffic Characteristics 
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Variable Names O C B A K 

Ln (Major road AADT) 0.717 0.647 0.642 0.384 0.302 

Ln (Minor road AADT) 0.469 0.481 0.408 0.458 0.352 

% Major road truck  -0.045 -0.066 -0.062 -0.129 -0.196 

% Minor road truck  -- -- -- -- 0.138 

Roadway Characteristics 

Major road speed limit (base: ≤55 mph)      

Maj SL > 55 mph -0.545 -0.374 -- -- -- 

Maj SL >55 * State-California 0.536 -- -- -- -- 

Light (Base: No lighting) -- -- -- -- -0.464 

Variance-Covariance Matrix for Random Effects (% Major road truck) 

 O C B A K 

O 0.007 0.002 0.002 -- -- 

C  0.009 0.002 -- -- 

B   0.010 -- -- 

A    0.022 -- 

K     0.026 

Variance Covariance Matrix for Unobserved Heterogeneity 

O 0.679 0.676 0.617 0.677 0.631 

C  0.778 0.657 0.737 0.683 

B   0.694 0.679 0.649 

A    0.916 0.689 

K     0.873 

Log-Likelihood: -7,215.850; BIC: 15,232.337; Number of Parameters: 100 
Note: -- denotes that the variable is not significant at 90% significant level. 1 
 2 

With regards to the roadway characteristics, higher speed limit on major roads (>55 mph 3 

relative to ≤55mph) is associated with reduction of crash counts of lower severities but increase 4 

them in California for O crashes. The results align with the expectation because collisions 5 

occurring at high speed usually result in higher severity and there is slim possibility to those 6 

resulting in property damage only or just a possible injury. The presence of lighting is found to 7 

reduce fatal crashes significantly. Furthermore, the statistically significant variance-covariance 8 

matrix for unobserved heterogeneity further underscores significant correlations across severity 9 

levels, pointing to underlying factors affecting multiple crash severities at an intersection. 10 

 11 

5. CONCLUSIONS 12 

The vehicle mix information, defined as traffic volume by vehicle type, has been identified as a 13 

significant contributing factor to crash frequency analysis. However, the current version of the 14 

HSM predictive methods does not incorporate the vehicle mix information when estimating 15 

crashes. The current study estimates and compares the performance of crash frequency and 16 

severity systems with vehicle mix information incorporated in different methodological 17 

frameworks. Specifically, we build on the HSM approach with two model systems: (a) multivariate 18 

Poisson-lognormal model (MVPLN) and (b) negative binomial – ordered probit fractional split 19 

model (NB-OPFS). The MVPLN model estimates crash counts by each severity level while NB 20 

component estimates total crashes and OPFS component models crash proportion by severity class 21 

in the NB-OPFS model framework. We developed advanced variants that account for additional 22 

observed and unobserved heterogeneity while accounting for the impact of vehicle mix data. 23 

Further, using data from multiple jurisdictions, we develop pooled models that accommodate for 24 
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jurisdiction-specific observed and unobserved heterogeneity. The models developed are compared 1 

with each other and the HSM benchmark model based on a comprehensive set of quantitative and 2 

qualitative metrics to identify the most appropriate model system for each facility type. The 3 

proposed models are estimated using data from multiple states that include four Highway Safety 4 

Information System (HSIS) states including California, Illinois, Minnesota, Washington and three 5 

Non-HSIS states including Connecticut, Florida, and Texas. We selected Urban Arterial 4-Lane 6 

Divided segment facility (UA4LD), Rural 3-Leg STOP Controlled (R3ST) and Rural 4-Leg STOP 7 

Controlled (R4ST) intersection facilities for our analysis.  8 

In the current study, we consider five severity levels for crash frequency estimation 9 

including fatal, incapacitating, non-incapacitating, possible injury and no injury crashes. A 10 

comprehensive set of independent variables including traffic volume, vehicle mix indicators (truck 11 

percentage, single unit truck percentage, and high truck zone), roadway characteristics and state 12 

specific indicators are considered. We evaluate the model performance by employing two 13 

statistical measures of fit: mean absolute deviation (MAD) and mean squared prediction error 14 

(MSPE). A single framework might not perform best across all the dimensions at a facility type. 15 

Therefore, we adopt two approaches (total crash approach and severity level scoring approach) 16 

that consider the model performances across all the estimated dimensions for final model selection. 17 

The total crash approach considers MAD and MSPE values from total crash frequency predictions 18 

while the severity level scoring approach considers MAD and MSPE values from five severity 19 

levels. Based on the two approaches, the model that performs better across the measures is selected 20 

for the respective facility type. The results show that both NB-OPFS and MVPLN frameworks 21 

with vehicle mix data performed better than the HSM predictive models that do not consider 22 

vehicle mix data. Within these advanced frameworks, the NB-OPFS model performed better for 23 

UA4LD segment and R3ST intersection facility while the MVPLN model showed better 24 

performance for R4ST intersection facility. Further, within all the frameworks, vehicle mix 25 

variables show statistically significant observed and unobserved effects in crash frequency 26 

dimensions across the facility types.   27 

The study found that higher truck traffic reduces crash frequency and severity at UA4LD 28 

segments. This may be due to factors like lower truck speeds, less disruptive flow, fewer abrupt 29 

lane changes, designated truck lanes, advanced traffic management systems (ITS), and strict law 30 

enforcement. Further, for R4ST, higher truck traffic decreased crashes, while for R3ST it increased 31 

crashes. This difference may be due to the larger intersection areas, more maneuvering space and 32 

wider turning radius at 4-leg intersections compared to 3-leg intersections. Taking these results 33 

into consideration, transportation engineers and safety planners may prioritize infrastructure 34 

investment and road safety initiatives at road segments and intersections with high truck traffic. 35 

These investments and initiatives could include dedicated truck lanes, wider lanes, curb 36 

adjustments, better signage, ITS, and stricter enforcement. In areas with heavy truck traffic, 37 

additional measures for vulnerable road users, such as improved crosswalks, pedestrian signals, 38 

and barriers, could also be considered. Additionally, promoting safe driving behaviors through 39 

education, driver training programs, and public awareness campaigns can further reduce crash 40 

frequency and severity at segments and intersections. 41 

This study is not without limitations. The study considers crash data from multiple years. 42 

Due to the lack of detailed multi-year independent variables information, temporal heterogeneity 43 

could not be accommodated in the current model estimation. However, the characteristics of the 44 

explanatory variables may change over time, affecting the crash frequency/severity along different 45 

sections of a facility (53). For example, driver behavior may change over the years due to the 46 
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advancement of the vehicle’s technological features, traffic management dynamics, and 1 

infrastructure improvements impacting crash patterns. Future research efforts could address this 2 

issue by incorporating data from additional states while also accounting for temporal effects with 3 

multi-year independent variables information to obtain more precise inference and enhanced 4 

predictive power.  Further, it would be interesting to explore the effects of the factors including 5 

technological advancements, changes in driver behavior, infrastructure development, and societal 6 

responses in response to the emergence of electric and autonomous vehicles (EVs and AVs) in 7 

addition to more finer resolution vehicle mix information on crash frequency and severity.   8 
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APPENDIX 

 

TABLE A1 Model Estimation Results of Fixed Parameter NB-OPFS Model for UA4LD 

Segments (N=7,500)  

Variable Names 
Count Component 

Severity Proportion 

Component 

Estimates t-stat Estimates t-stat 

Constant -1.836 -5.487 -- -- 

State-Minnesota -6.926 -5.345 -- -- 

State-Washington -6.963 -3.598 -- -- 

Ln (Year = 5) 1.000 -- -- -- 

Threshold Parameters 

Threshold between OP-CP -- -- 0.711 4.646 

Threshold between CP-BP -- -- 1.013 6.601 

Threshold between BP-AP -- -- 1.458 9.490 

Threshold between AP-KP -- -- 2.667 16.574 

Traffic Characteristics 

Ln (AADT) 0.461 14.415 0.033 2.280 

Ln (AADT)* State-Florida -- -- -0.013 -3.796 

Ln (AADT)* State-Minnesota 0.622 4.822 -- -- 

Ln (AADT)* State-Washington 0.582 3.058 -- -- 

%Truck  -0.030 -4.548 -0.007 -3.114 

%Single unit truck -0.033 -2.486 -- -- 

Roadway Characteristics 

Ln (Segment length, miles) 1.000 -- 0.036 3.133 

Lane width (base: ≤12 feet)     

LW>12 -0.167 -1.835 -- -- 

HTZ*LW>12 -1.015 -4.248 -- -- 

Median width (base: ≤20 feet)     

MW>20 -0.299 -3.863 -0.065 -2.242 

Outside shoulder width (base: ≥8 feet)     

OSW<8 0.418 6.388 -- -- 

HTZ*OSW<8 0.422 3.583 -- -- 

Inside shoulder width (base: ≥8 feet)     

ISW<8 0.402 3.557 -0.133 -2.675 

Shoulder type (base: unpaved)     

Paved -0.632 -6.538 -- -- 

Paved* State-California 0.350 2.088 -- -- 

Speed limit (base: ≤55 mph)   

SL>55 -0.650 -4.336 0.173 3.728 

SL>55* State-California 0.339 1.683 -- -- 

Overdispersion Parameter 

Constant 2.208 38.717 -- -- 

State-California -1.028 -7.531 -- -- 

State-Washington -1.686 -13.198 -- -- 

Log-Likelihood: -24,228.525; BIC: 48,760.420; Number of Parameters: 34 

Note: -- denotes that the variable is not significant at 90% significant level. 
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TABLE A2 Model Estimation Results of Fixed Parameters NB-OPFS Model for R3ST 

Intersection (N=6,500) 

Variable Names 
Count Component 

Severity Proportion 

Component 

Estimates t-stat Estimates t-stat 

Constant -10.930 -36.493 -- -- 

State-Connecticut -- -- -0.291 -2.838 

State-Florida 2.764 33.497 -- -- 

State-Minnesota 2.917 5.534 -- -- 

Ln (Year = 5) 1.000 -- -- -- 

Threshold Parameters 

Threshold between OP-CP -- -- -0.124 -0.675 

Threshold between CP-BP -- -- 0.451 2.438 

Threshold between BP-AP -- -- 1.128 6.145 

Threshold between AP-KP -- -- 1.633 8.715 

Traffic Characteristics 

Ln (Major road AADT) 0.611 16.896 -0.041 -2.011 

Ln (Major road AADT) * State-Minnesota -0.118 -2.049 -- -- 

Ln (Minor road AADT) 0.504 24.418 -- -- 

% Major road truck 0.012 2.853 -- -- 

Roadway Characteristics 

Major road speed limit (base: 41-55 mph)     

Maj SL <=40 -- -- -0.242 -3.576 

Maj SL >55 -0.245 -3.852 -- -- 

Overdispersion Parameter 

Constant 1.077 16.012 -- -- 

State-Florida -0.439 -4.519 -- -- 

Log-Likelihood: -8,192.925; BIC: 16,543.882; Number of Parameters: 18 

Note: -- denotes that the variable is not significant at 90% significant level. 
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TABLE A3 Model Estimation Results of Fixed Parameters MVPLN Model for R4ST 

Intersection (N=3,000) 
Variable Names O C B A K 

Constant -10.421 -10.568 -10.62 -10.026 -8.978 

State-California -1.708 -1.865 -2.096 -1.839 -1.003 

State-Florida 1.670 1.061 1.530 1.716 0.890 

Ln (Year = 5) 1.000 1.000 1.000 1.000 1.000 

Traffic Characteristics 

Ln (Major road AADT) 0.703 0.610 0.620 0.308 0.247 

Ln (Minor road AADT) 0.458 0.491 0.401 0.481 0.379 

% Major road truck  -- -- -- -- -- 

% Minor road truck  -- -- -- -- -- 

Roadway Characteristics 

Major road speed limit (base: ≤55 mph)      

Maj SL > 55 mph -0.525 -0.311 -0.348 -- -- 

Maj SL >55 * State-California 0.548 -- 0.704 -- -- 

Light (Base: No Lighting) -- -- -- -- -0.417 

Variance-Covariance Matrix 

 O C B A K 

O 0.793 0.771 0.685 0.747 0.662 

C  0.886 0.729 0.805 0.714 

B   0.778 0.739 0.703 

A    0.986 0.690 

K     0.947 

Correlation 

O -- 0.920 0.873 0.845 0.763 

C  -- 0.878 0.861 0.780 

B   -- 0.845 0.819 

A    -- 0.714 

K     -- 

Log-Likelihood: -7,549.000; BIC: 15,899.000 

Note: -- denotes that the variable is not significant at 90% significant level. 
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TABLE A4 Descriptive Statistics of the Variables for UA4LD Segment Facility 

 Variables Min. Max. Sum Mean 
Std. 

Dev. 

State- California (1 if yes, 0 otherwise) 0.000 1.000 316.000 0.042 0.201 

State- Florida (1 if yes, 0 otherwise) 0.000 1.000 321.000 0.043 0.202 

State- Illinois (1 if yes, 0 otherwise) 0.000 1.000 4,567.000 0.609 0.488 

State- Minnesota (1 if yes, 0 otherwise) 0.000 1.000 692.000 0.092 0.289 

State- Texas (1 if yes, 0 otherwise) 0.000 1.000 1,324.000 0.177 0.381 

State- Washington (1 if yes, 0 otherwise) 0.000 1.000 280.000 0.037 0.190 

Total segment crashes 0.000 1,078.000 93,832.000 12.511 53.140 

Proportion of fatal crashes (KP) 0.000 1.000 24.035 0.003 0.033 

Proportion of incapacitating crashes (AP) 0.000 1.000 396.040 0.053 0.137 

Proportion of non-incapacitating crashes (BP) 0.000 1.000 461.118 0.061 0.151 

Proportion of possible injury crashes (CP) 0.000 1.000 448.120 0.060 0.163 

Proportion of no injury crashes (OP) 0.000 1.000 3,812.687 0.508 0.413 

Ln (AADT) 2.303 12.459 73,150.499 9.753 0.770 

%Truck (Truck AADT*100/AADT) 0.000 49.793 39,064.819 5.209 6.204 

%Single Unit Truck (Single Unit Truck 

AADT*100/AADT) 
0.000 24.638 18,270.740 2.436 3.231 

Ln (Segment length, mile) -4.605 2.199 -20,148.390 -2.686 1.150 

Paved shoulder type (1 if yes, 0 otherwise) 0.000 1.000 2,019.000 0.269 0.444 

Lane width >12 ft (1 if yes, 0 otherwise) 0.000 1.000 608.000 0.081 0.273 

Median width >20 ft (1 if yes, 0 otherwise) 0.000 1.000 2,015.000 0.269 0.443 

Outside shoulder width < 8 ft (1 if yes, 0 otherwise) 0.000 1.000 4,612.000 0.615 0.487 

Inside shoulder width < 8 ft (1 if yes, 0 otherwise) 0.000 1.000 6,724.000 0.897 0.305 

Speed limit >55 mph (1 if yes, 0 otherwise) 0.000 1.000 573.000 0.076 0.266 

Hight Truck Zone (HTZ) (1 if yes, 0 otherwise) 0.000 1.000 1,134.000 0.151 0.358 

 

 

TABLE A5 Descriptive Statistics of the Variables for R3ST Intersection Facility 
Variables Min. Max. Sum Mean Std. Dev. 

State- California (1 if yes, 0 otherwise) 0.000 1.000 4,598.000 0.707 0.455 

State- Connecticut (1 if yes, 0 otherwise) 0.000 1.000 146.000 0.022 0.148 

State- Florida (1 if yes, 0 otherwise) 0.000 1.000 550.000 0.085 0.278 

State- Minnesota (1 if yes, 0 otherwise) 0.000 1.000 1,206.000 0.186 0.389 

Total intersection crashes 0.000 199.000 8,991.000 1.383 5.164 

Proportion of fatal crashes (KP) 0.000 1.000 41.625 0.006 0.065 

Proportion of incapacitating crashes (AP) 0.000 1.000 82.370 0.013 0.083 

Proportion of non-incapacitating crashes (BP) 0.000 1.000 259.456 0.040 0.151 

Proportion of possible injury crashes (CP) 0.000 1.000 373.153 0.057 0.185 

Proportion of no injury crashes (OP) 0.000 1.000 1,174.397 0.181 0.343 

Ln (Major road AADT) 4.248 11.478 53,624.442 8.250 1.085 

Ln (Minor road AADT) 0.000 10.235 30,744.337 4.730 1.655 

%Major road truck (Major road truck 

AADT*100/Major road AADT) 
0.000 72.196 26,126.607 4.019 6.031 

Speed limit ≤ 40 mph (1 if yes, 0 otherwise) 0.000 1.000 958.00 0.147 0.354 

Speed limit >55 mph (1 if yes, 0 otherwise) 0.000 1.000 2,248.000 0.346 0.476 

 

 

 



Pervaz, Joshi, Bhowmik, Parvez, Wang, Ivan, and Eluru 

 

29 

 

TABLE A6 Descriptive Statistics of the Variables for R4ST Intersection Facility 
Variables Min. Max. Sum Mean Std. Dev. 

State- California (1 if yes, 0 otherwise) 0.000 1.000 1,382.000 0.461 0.499 

State- Connecticut (1 if yes, 0 otherwise) 0.000 1.000 42.000 0.014 0.118 

State- Florida (1 if yes, 0 otherwise) 0.000 1.000 132.000 0.044 0.205 

State- Minnesota (1 if yes, 0 otherwise) 0.000 1.000 1,444.000 0.481 0.500 

Total intersection crashes 0.000 1,525.000 9,310.000 3.103 28.428 

Proportion of fatal crashes (KP) 0.000 1.000 57.561 0.019 0.103 

Proportion of incapacitating crashes (AP) 0.000 1.000 66.920 0.022 0.113 

Proportion of non-incapacitating crashes (BP) 0.000 1.000 230.068 0.077 0.194 

Proportion of possible injury crashes (CP) 0.000 1.000 339.911 0.113 0.238 

Proportion of no injury crashes (OP) 0.000 1.000 835.539 0.279 0.373 

Ln (Major road AADT) 4.700 11.446 25,360.259 8.453 0.986 

Ln (Minor road AADT) 0.000 10.077 16,606.961 5.536 1.582 

%Major road truck (Major road truck 

AADT*100/Major road AADT) 
0.000 48.847 19,360.128 6.453 6.741 

%Minor road truck (Minor road truck 

AADT*100/Minor road AADT) 
0.000 23.913 2,789.775 0.930 1.672 

Speed limit >55 mph (1 if yes, 0 otherwise) 0.000 1.000 1,064.000 0.355 0.478 

Presence of light (1 if yes, 0 otherwise) 0.000 1.000 514.000 0.171 0.377 

 


